CS Principles 2018

Standards Alignment


Download as CSV

Unit 5 - Building Apps

Lesson 1: Introduction to Event-Driven Programming

Standards Alignment

CSTA K-12 Computer Science Standards (2011)

CL - Collaboration
  • CL.L2:4 - Exhibit dispositions necessary for collaboration: providing useful feedback, integrating feedback, understanding and accepting multiple perspectives, socialization.
CPP - Computing Practice & Programming
  • CPP.L2:5 - Implement problem solutions using a programming language, including: looping behavior, conditional statements, logic, expressions, variables and functions.
  • CPP.L3A:3 - Use various debugging and testing methods to ensure program correctness (e.g., test cases, unit testing, white box, black box, integration testing)
  • CPP.L3A:4 - Apply analysis, design, and implementation techniques to solve problems (e.g., use one or more software lifecycle models).
  • CPP.L3A:5 - Use Application Program Interfaces (APIs) and libraries to facilitate programming solutions.
CT - Computational Thinking
  • CT.L2:12 - Use abstraction to decompose a problem into sub problems.
  • CT.L3A:1 - Use predefined functions and parameters, classes and methods to divide a complex problem into simpler parts.
  • CT.L3A:3 - Explain how sequence, selection, iteration, and recursion are building blocks of algorithms.

Computer Science Principles

1.1 - Creative development can be an essential process for creating computational artifacts.
1.1.1 - Apply a creative development process when creating computational artifacts. [P2]
  • 1.1.1B - Creating computational artifacts employs an iterative and often exploratory process to translate ideas into tangible form.
1.2 - Computing enables people to use creative development processes to create computational artifacts for creative expression or to solve a problem.
1.2.1 - Create a computational artifact for creative expression. [P2]
  • 1.2.1A - A computational artifact is anything created by a human using a computer and can be, but is not limited to, a program, an image, audio, video, a presentation, or a web page file.
  • 1.2.1B - Creating computational artifacts requires understanding and using software tools and services.
  • 1.2.1E - Creative expressions in a computational artifact can reflect personal expressions of ideas or interests.
5.1 - Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve problems (to help people, organizations, or society).
5.1.1 - Develop a program for creative expression, to satisfy personal curiosity, or to create new knowledge. [P2]
  • 5.1.1A - Programs are developed and used in a variety of ways by a wide range of people depending on the goals of the programmer.
  • 5.1.1B - Programs developed for creative expression, to satisfy personal curiosity, or to create new knowledge may have visual, audible, or tactile inputs and outputs.
5.1.2 - Develop a correct program to solve problems. [P2]
  • 5.1.2J - A programmer designs, implements, tests, debugs, and maintains programs when solving problems.
5.4 - Programs are developed, maintained, and used by people for different purposes.
5.4.1 - Evaluate the correctness of a program. [P4]
  • 5.4.1A - Program style can affect the determination of program correctness.
  • 5.4.1C - Meaningful names for variables and procedures help people better understand programs.
  • 5.4.1D - Longer code blocks are harder to reason about than shorter code blocks in a program.
  • 5.4.1E - Locating and correcting errors in a program is called debugging the program.
  • 5.4.1F - Knowledge of what a program is supposed to do is required in order to find most program errors.
  • 5.4.1H - Visual displays (or different modalities) of program state can help in finding errors.
  • 5.4.1K - Correctness of a program depends on correctness of program components, including code blocks and procedures.
  • 5.4.1M - The functionality of a program is often described by how a user interacts with it.

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming
  • 3A-AP-16 - Design and iteratively develop computational artifacts for practical intent, personal expression, or to address a societal issue by using events to initiate instructions.
CS - Computing Systems
  • 3A-CS-03 - Develop guidelines that convey systematic troubleshooting strategies that others can use to identify and fix errors.

Lesson 2: Multi-Screen Apps

Standards Alignment

CSTA K-12 Computer Science Standards (2011)

CPP - Computing Practice & Programming
  • CPP.L2:5 - Implement problem solutions using a programming language, including: looping behavior, conditional statements, logic, expressions, variables and functions.
  • CPP.L3A:3 - Use various debugging and testing methods to ensure program correctness (e.g., test cases, unit testing, white box, black box, integration testing)
  • CPP.L3A:4 - Apply analysis, design, and implementation techniques to solve problems (e.g., use one or more software lifecycle models).
  • CPP.L3A:5 - Use Application Program Interfaces (APIs) and libraries to facilitate programming solutions.
CT - Computational Thinking
  • CT.L2:12 - Use abstraction to decompose a problem into sub problems.
  • CT.L2:6 - Describe and analyze a sequence of instructions being followed (e.g., describe a character’s behavior in a video game as driven by rules and algorithms).
  • CT.L3A:1 - Use predefined functions and parameters, classes and methods to divide a complex problem into simpler parts.
  • CT.L3A:3 - Explain how sequence, selection, iteration, and recursion are building blocks of algorithms.
  • CT.L3B:4 - Evaluate algorithms by their efficiency, correctness, and clarity.

Computer Science Principles

1.1 - Creative development can be an essential process for creating computational artifacts.
1.1.1 - Apply a creative development process when creating computational artifacts. [P2]
  • 1.1.1B - Creating computational artifacts employs an iterative and often exploratory process to translate ideas into tangible form.
1.2 - Computing enables people to use creative development processes to create computational artifacts for creative expression or to solve a problem.
1.2.1 - Create a computational artifact for creative expression. [P2]
  • 1.2.1A - A computational artifact is anything created by a human using a computer and can be, but is not limited to, a program, an image, audio, video, a presentation, or a web page file.
1.2.3 - Create a new computational artifact by combining or modifying existing artifacts. [P2]
  • 1.2.3A - Creating computational artifacts can be done by combining and modifying existing artifacts or by creating new artifacts.
1.2.4 - Collaborate in the creation of computational artifacts. [P6]
  • 1.2.4A - A collaboratively created computational artifact reflects effort by more than one person.
  • 1.2.4D - Effective collaboration strategies enhance performance.
  • 1.2.4E - Collaboration facilitates the application of multiple perspectives (including sociocultural perspectives) and diverse talents and skills in developing computational artifacts.
5.1 - Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve problems (to help people, organizations, or society).
5.1.1 - Develop a program for creative expression, to satisfy personal curiosity, or to create new knowledge. [P2]
  • 5.1.1B - Programs developed for creative expression, to satisfy personal curiosity, or to create new knowledge may have visual, audible, or tactile inputs and outputs.
  • 5.1.1C - Programs developed for creative expression, to satisfy personal curiosity, or to create new knowledge may be developed with different standards or methods than programs developed for widespread distribution.
5.1.2 - Develop a correct program to solve problems. [P2]
  • 5.1.2J - A programmer designs, implements, tests, debugs, and maintains programs when solving problems.
5.1.3 - Collaborate to develop a program. [P6]
  • 5.1.3D - Collaboration can make it easier to find and correct errors when developing programs.
5.4 - Programs are developed, maintained, and used by people for different purposes.
5.4.1 - Evaluate the correctness of a program. [P4]
  • 5.4.1C - Meaningful names for variables and procedures help people better understand programs.
  • 5.4.1E - Locating and correcting errors in a program is called debugging the program.
  • 5.4.1F - Knowledge of what a program is supposed to do is required in order to find most program errors.
  • 5.4.1M - The functionality of a program is often described by how a user interacts with it.

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming
  • 3A-AP-16 - Design and iteratively develop computational artifacts for practical intent, personal expression, or to address a societal issue by using events to initiate instructions.

Lesson 3: Building an App: Multi-Screen App

Standards Alignment

Computer Science Principles

1.1 - Creative development can be an essential process for creating computational artifacts.
1.1.1 - Apply a creative development process when creating computational artifacts. [P2]
  • 1.1.1A - A creative process in the development of a computational artifact can include, but is not limited to, employing nontraditional, nonprescribed techniques; the use of novel combinations of artifacts, tools, and techniques; and the exploration of personal cu
  • 1.1.1B - Creating computational artifacts employs an iterative and often exploratory process to translate ideas into tangible form.
1.2 - Computing enables people to use creative development processes to create computational artifacts for creative expression or to solve a problem.
1.2.1 - Create a computational artifact for creative expression. [P2]
  • 1.2.1A - A computational artifact is anything created by a human using a computer and can be, but is not limited to, a program, an image, audio, video, a presentation, or a web page file.
  • 1.2.1B - Creating computational artifacts requires understanding and using software tools and services.
  • 1.2.1C - Computing tools and techniques are used to create computational artifacts and can include, but are not limited to, programming IDEs, spreadsheets, 3D printers, or text editors.
  • 1.2.1E - Creative expressions in a computational artifact can reflect personal expressions of ideas or interests.
5.1 - Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve problems (to help people, organizations, or society).
5.1.1 - Develop a program for creative expression, to satisfy personal curiosity, or to create new knowledge. [P2]
  • 5.1.1A - Programs are developed and used in a variety of ways by a wide range of people depending on the goals of the programmer.
  • 5.1.1B - Programs developed for creative expression, to satisfy personal curiosity, or to create new knowledge may have visual, audible, or tactile inputs and outputs.
5.1.2 - Develop a correct program to solve problems. [P2]
  • 5.1.2A - An iterative process of program development helps in developing a correct program to solve problems.
  • 5.1.2B - Developing correct program components and then combining them helps in creating correct programs.
  • 5.1.2C - Incrementally adding tested program segments to correct, working programs helps create large correct programs.
  • 5.1.2D - Program documentation helps programmers develop and maintain correct programs to efficiently solve problems.
  • 5.1.2E - Documentation about program components, such as blocks and procedures, helps in developing and maintaining programs.
  • 5.1.2F - Documentation helps in developing and maintaining programs when working individually or in collaborative programming environments
  • 5.1.2J - A programmer designs, implements, tests, debugs, and maintains programs when solving problems.
5.1.3 - Collaborate to develop a program. [P6]
  • 5.1.3B - Collaboration facilitates multiple perspectives in developing ideas for solving problems by programming.
  • 5.1.3C - Collaboration in the iterative development of a program requires different skills than developing a program alone.
  • 5.1.3D - Collaboration can make it easier to find and correct errors when developing programs.
5.4 - Programs are developed, maintained, and used by people for different purposes.
5.4.1 - Evaluate the correctness of a program. [P4]
  • 5.4.1E - Locating and correcting errors in a program is called debugging the program.
  • 5.4.1F - Knowledge of what a program is supposed to do is required in order to find most program errors.
  • 5.4.1G - Examples of intended behavior on specific inputs help people understand what a program is supposed to do.
  • 5.4.1L - An explanation of a program helps people understand the functionality and purpose of it.

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming
  • 3A-AP-16 - Design and iteratively develop computational artifacts for practical intent, personal expression, or to address a societal issue by using events to initiate instructions.

Lesson 4: Controlling Memory with Variables

Standards Alignment

CSTA K-12 Computer Science Standards (2011)

CPP - Computing Practice & Programming
  • CPP.L2:5 - Implement problem solutions using a programming language, including: looping behavior, conditional statements, logic, expressions, variables and functions.
  • CPP.L3A:3 - Use various debugging and testing methods to ensure program correctness (e.g., test cases, unit testing, white box, black box, integration testing)
  • CPP.L3A:4 - Apply analysis, design, and implementation techniques to solve problems (e.g., use one or more software lifecycle models).
  • CPP.L3A:5 - Use Application Program Interfaces (APIs) and libraries to facilitate programming solutions.
CT - Computational Thinking
  • CT.L2:12 - Use abstraction to decompose a problem into sub problems.
  • CT.L3A:1 - Use predefined functions and parameters, classes and methods to divide a complex problem into simpler parts.
  • CT.L3A:3 - Explain how sequence, selection, iteration, and recursion are building blocks of algorithms.

Computer Science Principles

5.2 - People write programs to execute algorithms.
5.2.1 - Explain how programs implement algorithms. [P3]
  • 5.2.1C - Program instructions may involve variables that are initialized and updated, read, and written
  • 5.2.1F - Processes use memory, a central processing unit (CPU), and input and output.
5.4 - Programs are developed, maintained, and used by people for different purposes.
5.4.1 - Evaluate the correctness of a program. [P4]
  • 5.4.1C - Meaningful names for variables and procedures help people better understand programs.
5.5 - Programming uses mathematical and logical concepts.
5.5.1 - Employ appropriate mathematical and logical concepts in programming. [P1]
  • 5.5.1D - Mathematical expressions using arithmetic operators are part of most programming languages.

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming
  • 2-AP-11 - Create clearly named variables that represent different data types and perform operations on their values.

Lesson 5: Building an App: Clicker Game

Standards Alignment

CSTA K-12 Computer Science Standards (2011)

CL - Collaboration
  • CL.L2:4 - Exhibit dispositions necessary for collaboration: providing useful feedback, integrating feedback, understanding and accepting multiple perspectives, socialization.
CPP - Computing Practice & Programming
  • CPP.L2:5 - Implement problem solutions using a programming language, including: looping behavior, conditional statements, logic, expressions, variables and functions.
  • CPP.L3A:3 - Use various debugging and testing methods to ensure program correctness (e.g., test cases, unit testing, white box, black box, integration testing)
  • CPP.L3A:4 - Apply analysis, design, and implementation techniques to solve problems (e.g., use one or more software lifecycle models).
  • CPP.L3A:5 - Use Application Program Interfaces (APIs) and libraries to facilitate programming solutions.
CT - Computational Thinking
  • CT.L2:12 - Use abstraction to decompose a problem into sub problems.
  • CT.L3A:1 - Use predefined functions and parameters, classes and methods to divide a complex problem into simpler parts.
  • CT.L3A:3 - Explain how sequence, selection, iteration, and recursion are building blocks of algorithms.

Computer Science Principles

1.1 - Creative development can be an essential process for creating computational artifacts.
1.1.1 - Apply a creative development process when creating computational artifacts. [P2]
  • 1.1.1A - A creative process in the development of a computational artifact can include, but is not limited to, employing nontraditional, nonprescribed techniques; the use of novel combinations of artifacts, tools, and techniques; and the exploration of personal cu
  • 1.1.1B - Creating computational artifacts employs an iterative and often exploratory process to translate ideas into tangible form.
1.2 - Computing enables people to use creative development processes to create computational artifacts for creative expression or to solve a problem.
1.2.1 - Create a computational artifact for creative expression. [P2]
  • 1.2.1A - A computational artifact is anything created by a human using a computer and can be, but is not limited to, a program, an image, audio, video, a presentation, or a web page file.
  • 1.2.1B - Creating computational artifacts requires understanding and using software tools and services.
  • 1.2.1C - Computing tools and techniques are used to create computational artifacts and can include, but are not limited to, programming IDEs, spreadsheets, 3D printers, or text editors.
  • 1.2.1D - A creatively developed computational artifact can be created by using nontraditional, nonprescribed computing techniques.
  • 1.2.1E - Creative expressions in a computational artifact can reflect personal expressions of ideas or interests.
1.2.3 - Create a new computational artifact by combining or modifying existing artifacts. [P2]
  • 1.2.3A - Creating computational artifacts can be done by combining and modifying existing artifacts or by creating new artifacts.
5.1 - Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve problems (to help people, organizations, or society).
5.1.1 - Develop a program for creative expression, to satisfy personal curiosity, or to create new knowledge. [P2]
  • 5.1.1A - Programs are developed and used in a variety of ways by a wide range of people depending on the goals of the programmer.
  • 5.1.1B - Programs developed for creative expression, to satisfy personal curiosity, or to create new knowledge may have visual, audible, or tactile inputs and outputs.
  • 5.1.1C - Programs developed for creative expression, to satisfy personal curiosity, or to create new knowledge may be developed with different standards or methods than programs developed for widespread distribution.
5.2 - People write programs to execute algorithms.
5.2.1 - Explain how programs implement algorithms. [P3]
  • 5.2.1C - Program instructions may involve variables that are initialized and updated, read, and written
5.4 - Programs are developed, maintained, and used by people for different purposes.
5.4.1 - Evaluate the correctness of a program. [P4]
  • 5.4.1C - Meaningful names for variables and procedures help people better understand programs.
5.5 - Programming uses mathematical and logical concepts.
5.5.1 - Employ appropriate mathematical and logical concepts in programming. [P1]
  • 5.5.1D - Mathematical expressions using arithmetic operators are part of most programming languages.

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming
  • 2-AP-11 - Create clearly named variables that represent different data types and perform operations on their values.
  • 3A-AP-16 - Design and iteratively develop computational artifacts for practical intent, personal expression, or to address a societal issue by using events to initiate instructions.

Lesson 6: User Input and Strings

Standards Alignment

CSTA K-12 Computer Science Standards (2011)

CL - Collaboration
  • CL.L2:4 - Exhibit dispositions necessary for collaboration: providing useful feedback, integrating feedback, understanding and accepting multiple perspectives, socialization.
CPP - Computing Practice & Programming
  • CPP.L2:5 - Implement problem solutions using a programming language, including: looping behavior, conditional statements, logic, expressions, variables and functions.
  • CPP.L3A:3 - Use various debugging and testing methods to ensure program correctness (e.g., test cases, unit testing, white box, black box, integration testing)
  • CPP.L3A:4 - Apply analysis, design, and implementation techniques to solve problems (e.g., use one or more software lifecycle models).
  • CPP.L3A:5 - Use Application Program Interfaces (APIs) and libraries to facilitate programming solutions.
CT - Computational Thinking
  • CT.L2:12 - Use abstraction to decompose a problem into sub problems.
  • CT.L3A:1 - Use predefined functions and parameters, classes and methods to divide a complex problem into simpler parts.
  • CT.L3A:3 - Explain how sequence, selection, iteration, and recursion are building blocks of algorithms.

Computer Science Principles

5.1 - Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve problems (to help people, organizations, or society).
5.1.1 - Develop a program for creative expression, to satisfy personal curiosity, or to create new knowledge. [P2]
  • 5.1.1B - Programs developed for creative expression, to satisfy personal curiosity, or to create new knowledge may have visual, audible, or tactile inputs and outputs.
5.3 - Programming is facilitated by appropriate abstractions.
5.3.1 - Use abstraction to manage complexity in programs. [P3]
  • 5.3.1L - Using lists and procedures as abstractions in programming can result in programs that are easier to develop and maintain.

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming
  • 3B-AP-12 - Compare and contrast fundamental data structures and their uses.

Lesson 7: If-statements Unplugged

Standards Alignment

Computer Science Principles

4.1 - Algorithms are precise sequences of instructions for processes that can be executed by a computer and are implemented using programming languages.
4.1.1 - Develop an algorithm for implementation in a program. [P2]
  • 4.1.1A - Sequencing, selection, and iteration are building blocks of algorithms.
  • 4.1.1C - Selection uses a Boolean condition to determine which of two parts of an algorithm is used.
4.1.2 - Express an algorithm in a language. [P5]
  • 4.1.2A - Languages for algorithms include natural language, pseudocode, and visual and textual programming languages.
  • 4.1.2B - Natural language and pseudocode describe algorithms so that humans can understand them.
  • 4.1.2G - Every algorithm can be constructed using only sequencing, selection, and iteration.
5.2 - People write programs to execute algorithms.
5.2.1 - Explain how programs implement algorithms. [P3]
  • 5.2.1A - Algorithms are implemented using program instructions that are processed during program execution.
  • 5.2.1B - Program instructions are executed sequentially.
  • 5.2.1D - An understanding of instruction processing and program execution is useful for programming.

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming
  • 3A-AP-15 - Justify the selection of specific control structures when tradeoffs involve implementation, readability, and program performance and explain the benefits and drawbacks of choices made.

Lesson 8: Boolean Expressions and "if" Statements

Standards Alignment

CSTA K-12 Computer Science Standards (2011)

CL - Collaboration
  • CL.L2:3 - Collaborate with peers, experts and others using collaborative practices such as pair programming, working in project teams and participating in-group active learning activities.
CPP - Computing Practice & Programming
  • CPP.L2:5 - Implement problem solutions using a programming language, including: looping behavior, conditional statements, logic, expressions, variables and functions.
CT - Computational Thinking
  • CT.L2:1 - Use the basic steps in algorithmic problem-solving to design solutions (e.g., problem statement and exploration, examination of sample instances, design, implementing a solution, testing and evaluation).
  • CT.L2:14 - Examine connections between elements of mathematics and computer science including binary numbers, logic, sets and functions.
  • CT.L2:3 - Define an algorithm as a sequence of instructions that can be processed by a computer.
  • CT.L2:6 - Describe and analyze a sequence of instructions being followed (e.g., describe a character’s behavior in a video game as driven by rules and algorithms).
  • CT.L2:8 - Use visual representations of problem states, structures and data (e.g., graphs, charts, network diagrams, flowcharts).

Computer Science Principles

4.1 - Algorithms are precise sequences of instructions for processes that can be executed by a computer and are implemented using programming languages.
4.1.1 - Develop an algorithm for implementation in a program. [P2]
  • 4.1.1A - Sequencing, selection, and iteration are building blocks of algorithms.
  • 4.1.1B - Sequencing is the application of each step of an algorithm in the order in which the statements are given.
  • 4.1.1C - Selection uses a Boolean condition to determine which of two parts of an algorithm is used.
5.5 - Programming uses mathematical and logical concepts.
5.5.1 - Employ appropriate mathematical and logical concepts in programming. [P1]
  • 5.5.1E - Logical concepts and Boolean algebra are fundamental to programming.
  • 5.5.1G - Intuitive and formal reasoning about program components using Boolean concepts helps in developing correct programs.

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming
  • 2-AP-12 - Design and iteratively develop programs that combine control structures, including nested loops and compound conditionals.
  • 3A-AP-15 - Justify the selection of specific control structures when tradeoffs involve implementation, readability, and program performance and explain the benefits and drawbacks of choices made.

Lesson 9: "if-else-if" and Conditional Logic

Standards Alignment

Computer Science Principles

4.1 - Algorithms are precise sequences of instructions for processes that can be executed by a computer and are implemented using programming languages.
4.1.1 - Develop an algorithm for implementation in a program. [P2]
  • 4.1.1C - Selection uses a Boolean condition to determine which of two parts of an algorithm is used.
5.1 - Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve problems (to help people, organizations, or society).
5.1.2 - Develop a correct program to solve problems. [P2]
  • 5.1.2J - A programmer designs, implements, tests, debugs, and maintains programs when solving problems.
5.5 - Programming uses mathematical and logical concepts.
5.5.1 - Employ appropriate mathematical and logical concepts in programming. [P1]
  • 5.5.1E - Logical concepts and Boolean algebra are fundamental to programming.
  • 5.5.1G - Intuitive and formal reasoning about program components using Boolean concepts helps in developing correct programs.

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming
  • 2-AP-12 - Design and iteratively develop programs that combine control structures, including nested loops and compound conditionals.
  • 3A-AP-15 - Justify the selection of specific control structures when tradeoffs involve implementation, readability, and program performance and explain the benefits and drawbacks of choices made.

Lesson 10: Building an App: Color Sleuth

Standards Alignment

Computer Science Principles

1.1 - Creative development can be an essential process for creating computational artifacts.
1.1.1 - Apply a creative development process when creating computational artifacts. [P2]
  • 1.1.1A - A creative process in the development of a computational artifact can include, but is not limited to, employing nontraditional, nonprescribed techniques; the use of novel combinations of artifacts, tools, and techniques; and the exploration of personal cu
  • 1.1.1B - Creating computational artifacts employs an iterative and often exploratory process to translate ideas into tangible form.
1.2 - Computing enables people to use creative development processes to create computational artifacts for creative expression or to solve a problem.
1.2.1 - Create a computational artifact for creative expression. [P2]
  • 1.2.1A - A computational artifact is anything created by a human using a computer and can be, but is not limited to, a program, an image, audio, video, a presentation, or a web page file.
  • 1.2.1B - Creating computational artifacts requires understanding and using software tools and services.
  • 1.2.1C - Computing tools and techniques are used to create computational artifacts and can include, but are not limited to, programming IDEs, spreadsheets, 3D printers, or text editors.
  • 1.2.1D - A creatively developed computational artifact can be created by using nontraditional, nonprescribed computing techniques.
  • 1.2.1E - Creative expressions in a computational artifact can reflect personal expressions of ideas or interests.
1.2.3 - Create a new computational artifact by combining or modifying existing artifacts. [P2]
  • 1.2.3A - Creating computational artifacts can be done by combining and modifying existing artifacts or by creating new artifacts.
  • 1.2.3C - Combining or modifying existing artifacts can show personal expression of ideas.
1.2.4 - Collaborate in the creation of computational artifacts. [P6]
  • 1.2.4A - A collaboratively created computational artifact reflects effort by more than one person.
  • 1.2.4C - Effective collaborative teams practice interpersonal communication, consensus building, conflict resolution, and negotiation.
  • 1.2.4D - Effective collaboration strategies enhance performance.
  • 1.2.4E - Collaboration facilitates the application of multiple perspectives (including sociocultural perspectives) and diverse talents and skills in developing computational artifacts.
  • 1.2.4F - A collaboratively created computational artifact can reflect personal expressions of ideas.
1.2.5 - Analyze the correctness, usability, functionality, and suitability of computational artifacts. [P4]
  • 1.2.5D - The suitability (or appropriateness) of a computational artifact may be related to how it is used or perceived.
2.2 - Multiple levels of abstraction are used to write programs or create other computational artifacts
2.2.1 - Develop an abstraction when writing a program or creating other computational artifacts. [P2]
  • 2.2.1A - The process of developing an abstraction involves removing detail and generalizing functionality.
  • 2.2.1B - An abstraction extracts common features from specific examples in order to generalize concepts.
4.1 - Algorithms are precise sequences of instructions for processes that can be executed by a computer and are implemented using programming languages.
4.1.1 - Develop an algorithm for implementation in a program. [P2]
  • 4.1.1A - Sequencing, selection, and iteration are building blocks of algorithms.
  • 4.1.1C - Selection uses a Boolean condition to determine which of two parts of an algorithm is used.
4.1.2 - Express an algorithm in a language. [P5]
  • 4.1.2G - Every algorithm can be constructed using only sequencing, selection, and iteration.
5.1 - Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve problems (to help people, organizations, or society).
5.1.1 - Develop a program for creative expression, to satisfy personal curiosity, or to create new knowledge. [P2]
  • 5.1.1A - Programs are developed and used in a variety of ways by a wide range of people depending on the goals of the programmer.
  • 5.1.1B - Programs developed for creative expression, to satisfy personal curiosity, or to create new knowledge may have visual, audible, or tactile inputs and outputs.
  • 5.1.1C - Programs developed for creative expression, to satisfy personal curiosity, or to create new knowledge may be developed with different standards or methods than programs developed for widespread distribution.
  • 5.1.1D - Additional desired outcomes may be realized independently of the original purpose of the program.
5.1.2 - Develop a correct program to solve problems. [P2]
  • 5.1.2A - An iterative process of program development helps in developing a correct program to solve problems.
  • 5.1.2B - Developing correct program components and then combining them helps in creating correct programs.
  • 5.1.2C - Incrementally adding tested program segments to correct, working programs helps create large correct programs.
  • 5.1.2D - Program documentation helps programmers develop and maintain correct programs to efficiently solve problems.
  • 5.1.2E - Documentation about program components, such as blocks and procedures, helps in developing and maintaining programs.
  • 5.1.2F - Documentation helps in developing and maintaining programs when working individually or in collaborative programming environments
  • 5.1.2G - Program development includes identifying programmer and user concerns that affect the solution to problems.
  • 5.1.2H - Consultation and communication with program users is an important aspect of program development to solve problems.
  • 5.1.2I - A programmer’s knowledge and skill affects how a program is developed and how it is used to solve a problem.
  • 5.1.2J - A programmer designs, implements, tests, debugs, and maintains programs when solving problems.
5.1.3 - Collaborate to develop a program. [P6]
  • 5.1.3A - Collaboration can decrease the size and complexity of tasks required of individual programmers.
  • 5.1.3B - Collaboration facilitates multiple perspectives in developing ideas for solving problems by programming.
  • 5.1.3C - Collaboration in the iterative development of a program requires different skills than developing a program alone.
  • 5.1.3D - Collaboration can make it easier to find and correct errors when developing programs.
  • 5.1.3E - Collaboration facilitates developing program components independently.
  • 5.1.3F - Effective communication between participants is required for successful collaboration when developing programs.
5.2 - People write programs to execute algorithms.
5.2.1 - Explain how programs implement algorithms. [P3]
  • 5.2.1A - Algorithms are implemented using program instructions that are processed during program execution.
  • 5.2.1B - Program instructions are executed sequentially.
  • 5.2.1C - Program instructions may involve variables that are initialized and updated, read, and written
  • 5.2.1D - An understanding of instruction processing and program execution is useful for programming.
5.3 - Programming is facilitated by appropriate abstractions.
5.3.1 - Use abstraction to manage complexity in programs. [P3]
  • 5.3.1A - Procedures are reusable programming abstractions.
  • 5.3.1B - A function is a named grouping of programming instructions.
  • 5.3.1C - Procedures reduce the complexity of writing and maintaining programs.
5.4 - Programs are developed, maintained, and used by people for different purposes.
5.4.1 - Evaluate the correctness of a program. [P4]
  • 5.4.1C - Meaningful names for variables and procedures help people better understand programs.
  • 5.4.1D - Longer code blocks are harder to reason about than shorter code blocks in a program.
  • 5.4.1E - Locating and correcting errors in a program is called debugging the program.
  • 5.4.1F - Knowledge of what a program is supposed to do is required in order to find most program errors.
  • 5.4.1G - Examples of intended behavior on specific inputs help people understand what a program is supposed to do.
5.5 - Programming uses mathematical and logical concepts.
5.5.1 - Employ appropriate mathematical and logical concepts in programming. [P1]
  • 5.5.1D - Mathematical expressions using arithmetic operators are part of most programming languages.
  • 5.5.1E - Logical concepts and Boolean algebra are fundamental to programming.

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming
  • 2-AP-12 - Design and iteratively develop programs that combine control structures, including nested loops and compound conditionals.
  • 3A-AP-16 - Design and iteratively develop computational artifacts for practical intent, personal expression, or to address a societal issue by using events to initiate instructions.
  • 3B-AP-14 - Construct solutions to problems using student-created components, such as procedures, modules and/or objects.

Lesson 11: While Loops

Standards Alignment

Computer Science Principles

3.1 - People use computer programs to process information to gain insight and knowledge.
3.1.1 - Use computers to process information, find patterns, and test hypotheses about digitally processed information to gain insight and knowledge. [P4]
  • 3.1.1A - Computers are used in an iterative and interactive way when processing digital information to gain insight and knowledge.
4.1 - Algorithms are precise sequences of instructions for processes that can be executed by a computer and are implemented using programming languages.
4.1.1 - Develop an algorithm for implementation in a program. [P2]
  • 4.1.1A - Sequencing, selection, and iteration are building blocks of algorithms.
  • 4.1.1B - Sequencing is the application of each step of an algorithm in the order in which the statements are given.
  • 4.1.1C - Selection uses a Boolean condition to determine which of two parts of an algorithm is used.
  • 4.1.1D - Iteration is the repetition of part of an algorithm until a condition is met or for a specified number of times.
  • 4.1.1H - Different algorithms can be developed to solve the same problem.
4.1.2 - Express an algorithm in a language. [P5]
  • 4.1.2A - Languages for algorithms include natural language, pseudocode, and visual and textual programming languages.
  • 4.1.2B - Natural language and pseudocode describe algorithms so that humans can understand them.
  • 4.1.2C - Algorithms described in programming languages can be executed on a computer.
  • 4.1.2D - Different languages are better suited for expressing different algorithms.
  • 4.1.2E - Some programming languages are designed for specific domains and are better for expressing algorithms in those domains.
  • 4.1.2F - The language used to express an algorithm can affect characteristics such as clarity or readability but not whether an algorithmic solution exists.
  • 4.1.2G - Every algorithm can be constructed using only sequencing, selection, and iteration.
5.2 - People write programs to execute algorithms.
5.2.1 - Explain how programs implement algorithms. [P3]
  • 5.2.1A - Algorithms are implemented using program instructions that are processed during program execution.
  • 5.2.1B - Program instructions are executed sequentially.
  • 5.2.1C - Program instructions may involve variables that are initialized and updated, read, and written
  • 5.2.1D - An understanding of instruction processing and program execution is useful for programming.
  • 5.2.1I - Executable programs increase the scale of problems that can be addressed.
  • 5.2.1J - Simple algorithms can solve a large set of problems when automated.
  • 5.2.1K - Improvements in algorithms, hardware, and software increase the kinds of problems and the size of problems solvable by programming.
5.4 - Programs are developed, maintained, and used by people for different purposes.
5.4.1 - Evaluate the correctness of a program. [P4]
  • 5.4.1B - Duplicated code can make it harder to reason about a program.
  • 5.4.1E - Locating and correcting errors in a program is called debugging the program.
  • 5.4.1F - Knowledge of what a program is supposed to do is required in order to find most program errors.
  • 5.4.1G - Examples of intended behavior on specific inputs help people understand what a program is supposed to do.
  • 5.4.1H - Visual displays (or different modalities) of program state can help in finding errors.
  • 5.4.1K - Correctness of a program depends on correctness of program components, including code blocks and procedures.
  • 5.4.1L - An explanation of a program helps people understand the functionality and purpose of it.
  • 5.4.1M - The functionality of a program is often described by how a user interacts with it.
5.5 - Programming uses mathematical and logical concepts.
5.5.1 - Employ appropriate mathematical and logical concepts in programming. [P1]
  • 5.5.1D - Mathematical expressions using arithmetic operators are part of most programming languages.
  • 5.5.1E - Logical concepts and Boolean algebra are fundamental to programming.
  • 5.5.1F - Compound expressions using and, or, and not are part of most programming languages.
  • 5.5.1G - Intuitive and formal reasoning about program components using Boolean concepts helps in developing correct programs.

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming
  • 3A-AP-15 - Justify the selection of specific control structures when tradeoffs involve implementation, readability, and program performance and explain the benefits and drawbacks of choices made.

Lesson 12: Loops and Simulations

Standards Alignment

Computer Science Principles

2.3 - Models and simulations use abstraction to generate new understanding and knowledge.
2.3.1 - Use models and simulations to represent phenomena. [P3]
  • 2.3.1A - Models and simulations are simplified representations of more complex objects or phenomena.
  • 2.3.1C - Models often omit unnecessary features of the objects or phenomena that are being modeled.
  • 2.3.1D - Simulations mimic real world events without the cost or danger of building and testing the phenomena in the real world.
2.3.2 - Use models and simulations to formulate, refine, and test hypotheses. [P3]
  • 2.3.2A - Models and simulations facilitate the formulation and refinement of hypotheses related to the objects or phenomena under consideration.
  • 2.3.2B - Hypotheses are formulated to explain the objects or phenomena being modeled.
  • 2.3.2D - The results of simulations may generate new knowledge and new hypotheses related to the phenomena being modeled.
  • 2.3.2E - Simulations allow hypotheses to be tested without the constraints of the real world.
  • 2.3.2F - Simulations can facilitate extensive and rapid testing of models.
  • 2.3.2G - The time required for simulations is impacted by the level of detail and quality of the models, and the software and hardware used for the simulation.
  • 2.3.2H - Rapid and extensive testing allows models to be changed to accurately reflect the objects or phenomena being modeled.
4.1 - Algorithms are precise sequences of instructions for processes that can be executed by a computer and are implemented using programming languages.
4.1.2 - Express an algorithm in a language. [P5]
  • 4.1.2A - Languages for algorithms include natural language, pseudocode, and visual and textual programming languages.
  • 4.1.2B - Natural language and pseudocode describe algorithms so that humans can understand them.
5.1 - Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve problems (to help people, organizations, or society).
5.1.1 - Develop a program for creative expression, to satisfy personal curiosity, or to create new knowledge. [P2]
  • 5.1.1A - Programs are developed and used in a variety of ways by a wide range of people depending on the goals of the programmer.

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming
  • 3A-AP-15 - Justify the selection of specific control structures when tradeoffs involve implementation, readability, and program performance and explain the benefits and drawbacks of choices made.
DA - Data & Analysis
  • 2-DA-09 - Refine computational models based on the data they have generated.

Lesson 13: Introduction to Arrays

Standards Alignment

Computer Science Principles

1.1 - Creative development can be an essential process for creating computational artifacts.
1.1.1 - Apply a creative development process when creating computational artifacts. [P2]
  • 1.1.1B - Creating computational artifacts employs an iterative and often exploratory process to translate ideas into tangible form.
5.1 - Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve problems (to help people, organizations, or society).
5.1.2 - Develop a correct program to solve problems. [P2]
  • 5.1.2A - An iterative process of program development helps in developing a correct program to solve problems.
5.3 - Programming is facilitated by appropriate abstractions.
5.3.1 - Use abstraction to manage complexity in programs. [P3]
  • 5.3.1A - Procedures are reusable programming abstractions.
  • 5.3.1B - A function is a named grouping of programming instructions.
  • 5.3.1C - Procedures reduce the complexity of writing and maintaining programs.
  • 5.3.1K - Lists and list operations, such as add, remove, and search, are common in many programs.
  • 5.3.1L - Using lists and procedures as abstractions in programming can result in programs that are easier to develop and maintain.
5.5 - Programming uses mathematical and logical concepts.
5.5.1 - Employ appropriate mathematical and logical concepts in programming. [P1]
  • 5.5.1H - Computational methods may use lists and collections to solve problems.
  • 5.5.1I - Lists and other collections can be treated as abstract data types (ADTs) in developing programs.
  • 5.5.1J - Basic operations on collections include adding elements, removing elements, iterating over all elements, and determining whether an element is in a collection.

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming
  • 3A-AP-14 - Use lists to simplify solutions, generalizing computational problems instead of repeated use of simple variables.
  • 3A-AP-16 - Design and iteratively develop computational artifacts for practical intent, personal expression, or to address a societal issue by using events to initiate instructions.
  • 3B-AP-12 - Compare and contrast fundamental data structures and their uses.

Lesson 14: Building an App: Image Scroller

Standards Alignment

Computer Science Principles

5.1 - Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve problems (to help people, organizations, or society).
5.1.1 - Develop a program for creative expression, to satisfy personal curiosity, or to create new knowledge. [P2]
  • 5.1.1A - Programs are developed and used in a variety of ways by a wide range of people depending on the goals of the programmer.
5.2 - People write programs to execute algorithms.
5.2.1 - Explain how programs implement algorithms. [P3]
  • 5.2.1E - Program execution automates processes.
  • 5.2.1F - Processes use memory, a central processing unit (CPU), and input and output.
  • 5.2.1I - Executable programs increase the scale of problems that can be addressed.
  • 5.2.1J - Simple algorithms can solve a large set of problems when automated.
  • 5.2.1K - Improvements in algorithms, hardware, and software increase the kinds of problems and the size of problems solvable by programming.
5.3 - Programming is facilitated by appropriate abstractions.
5.3.1 - Use abstraction to manage complexity in programs. [P3]
  • 5.3.1A - Procedures are reusable programming abstractions.
  • 5.3.1B - A function is a named grouping of programming instructions.
  • 5.3.1C - Procedures reduce the complexity of writing and maintaining programs.
  • 5.3.1D - Procedures have names and may have parameters and return values.
  • 5.3.1G - Parameters provide different values as input to procedures when they are called in a program.
  • 5.3.1K - Lists and list operations, such as add, remove, and search, are common in many programs.
  • 5.3.1L - Using lists and procedures as abstractions in programming can result in programs that are easier to develop and maintain.
5.4 - Programs are developed, maintained, and used by people for different purposes.
5.4.1 - Evaluate the correctness of a program. [P4]
  • 5.4.1B - Duplicated code can make it harder to reason about a program.
  • 5.4.1C - Meaningful names for variables and procedures help people better understand programs.
  • 5.4.1G - Examples of intended behavior on specific inputs help people understand what a program is supposed to do.
  • 5.4.1M - The functionality of a program is often described by how a user interacts with it.
5.5 - Programming uses mathematical and logical concepts.
5.5.1 - Employ appropriate mathematical and logical concepts in programming. [P1]
  • 5.5.1H - Computational methods may use lists and collections to solve problems.
  • 5.5.1I - Lists and other collections can be treated as abstract data types (ADTs) in developing programs.
  • 5.5.1J - Basic operations on collections include adding elements, removing elements, iterating over all elements, and determining whether an element is in a collection.

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming
  • 3A-AP-14 - Use lists to simplify solutions, generalizing computational problems instead of repeated use of simple variables.
  • 3A-AP-16 - Design and iteratively develop computational artifacts for practical intent, personal expression, or to address a societal issue by using events to initiate instructions.
  • 3B-AP-12 - Compare and contrast fundamental data structures and their uses.
  • 3B-AP-14 - Construct solutions to problems using student-created components, such as procedures, modules and/or objects.

Lesson 15: Processing Arrays

Standards Alignment

Computer Science Principles

1.2 - Computing enables people to use creative development processes to create computational artifacts for creative expression or to solve a problem.
1.2.3 - Create a new computational artifact by combining or modifying existing artifacts. [P2]
  • 1.2.3A - Creating computational artifacts can be done by combining and modifying existing artifacts or by creating new artifacts.
4.1 - Algorithms are precise sequences of instructions for processes that can be executed by a computer and are implemented using programming languages.
4.1.1 - Develop an algorithm for implementation in a program. [P2]
  • 4.1.1A - Sequencing, selection, and iteration are building blocks of algorithms.
  • 4.1.1B - Sequencing is the application of each step of an algorithm in the order in which the statements are given.
  • 4.1.1C - Selection uses a Boolean condition to determine which of two parts of an algorithm is used.
  • 4.1.1D - Iteration is the repetition of part of an algorithm until a condition is met or for a specified number of times.
4.2 - Algorithms can solve many but not all computational problems.
4.2.4 - Evaluate algorithms analytically and empirically for efficiency, correctness, and clarity. [P4]
  • 4.2.4D - Different correct algorithms for the same problem can have different efficiencies.
  • 4.2.4E - Sometimes more efficient algorithms are more complex.
  • 4.2.4F - Finding an efficient algorithm for a problem can help solve larger instances of the problem.
  • 4.2.4H - Linear search can be used when searching for an item in any list; binary search can be used only when the list is sorted.
5.1 - Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve problems (to help people, organizations, or society).
5.1.2 - Develop a correct program to solve problems. [P2]
  • 5.1.2A - An iterative process of program development helps in developing a correct program to solve problems.
  • 5.1.2B - Developing correct program components and then combining them helps in creating correct programs.
5.3 - Programming is facilitated by appropriate abstractions.
5.3.1 - Use abstraction to manage complexity in programs. [P3]
  • 5.3.1K - Lists and list operations, such as add, remove, and search, are common in many programs.
  • 5.3.1L - Using lists and procedures as abstractions in programming can result in programs that are easier to develop and maintain.
5.5 - Programming uses mathematical and logical concepts.
5.5.1 - Employ appropriate mathematical and logical concepts in programming. [P1]
  • 5.5.1E - Logical concepts and Boolean algebra are fundamental to programming.
  • 5.5.1J - Basic operations on collections include adding elements, removing elements, iterating over all elements, and determining whether an element is in a collection.

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming
  • 3A-AP-14 - Use lists to simplify solutions, generalizing computational problems instead of repeated use of simple variables.
  • 3B-AP-10 - Use and adapt classic algorithms to solve computational problems.
  • 3B-AP-11 - Evaluate algorithms in terms of their efficiency, correctness, and clarity.
  • 3B-AP-12 - Compare and contrast fundamental data structures and their uses.
  • 3B-AP-14 - Construct solutions to problems using student-created components, such as procedures, modules and/or objects.

Lesson 16: Functions with Return Values

Standards Alignment

Computer Science Principles

1.1 - Creative development can be an essential process for creating computational artifacts.
1.1.1 - Apply a creative development process when creating computational artifacts. [P2]
  • 1.1.1B - Creating computational artifacts employs an iterative and often exploratory process to translate ideas into tangible form.
1.2 - Computing enables people to use creative development processes to create computational artifacts for creative expression or to solve a problem.
1.2.3 - Create a new computational artifact by combining or modifying existing artifacts. [P2]
  • 1.2.3A - Creating computational artifacts can be done by combining and modifying existing artifacts or by creating new artifacts.
  • 1.2.3C - Combining or modifying existing artifacts can show personal expression of ideas.
2.2 - Multiple levels of abstraction are used to write programs or create other computational artifacts
2.2.1 - Develop an abstraction when writing a program or creating other computational artifacts. [P2]
  • 2.2.1A - The process of developing an abstraction involves removing detail and generalizing functionality.
  • 2.2.1C - An abstraction generalizes functionality with input parameters that allow software reuse.
2.2.2 - Use multiple levels of abstraction to write programs. [P3]
  • 2.2.2A - Software is developed using multiple levels of abstractions, such as constants, expressions, statements, procedures, and libraries.
  • 2.2.2B - Being aware of and using multiple levels of abstraction in developing programs helps to more effectively apply available resources and tools to solve problems.
4.1 - Algorithms are precise sequences of instructions for processes that can be executed by a computer and are implemented using programming languages.
4.1.1 - Develop an algorithm for implementation in a program. [P2]
  • 4.1.1A - Sequencing, selection, and iteration are building blocks of algorithms.
  • 4.1.1B - Sequencing is the application of each step of an algorithm in the order in which the statements are given.
  • 4.1.1C - Selection uses a Boolean condition to determine which of two parts of an algorithm is used.
  • 4.1.1D - Iteration is the repetition of part of an algorithm until a condition is met or for a specified number of times.
  • 4.1.1E - Algorithms can be combined to make new algorithms.
  • 4.1.1F - Using existing correct algorithms as building blocks for constructing a new algorithm helps ensure the new algorithm is correct.
5.1 - Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve problems (to help people, organizations, or society).
5.1.2 - Develop a correct program to solve problems. [P2]
  • 5.1.2A - An iterative process of program development helps in developing a correct program to solve problems.
  • 5.1.2B - Developing correct program components and then combining them helps in creating correct programs.
  • 5.1.2C - Incrementally adding tested program segments to correct, working programs helps create large correct programs.
  • 5.1.2J - A programmer designs, implements, tests, debugs, and maintains programs when solving problems.
5.3 - Programming is facilitated by appropriate abstractions.
5.3.1 - Use abstraction to manage complexity in programs. [P3]
  • 5.3.1A - Procedures are reusable programming abstractions.
  • 5.3.1B - A function is a named grouping of programming instructions.
  • 5.3.1C - Procedures reduce the complexity of writing and maintaining programs.
  • 5.3.1D - Procedures have names and may have parameters and return values.
  • 5.3.1E - Parameterization can generalize a specific solution.
  • 5.3.1F - Parameters generalize a solution by allowing a function to be used instead of duplicated code
  • 5.3.1G - Parameters provide different values as input to procedures when they are called in a program.
  • 5.3.1K - Lists and list operations, such as add, remove, and search, are common in many programs.
  • 5.3.1L - Using lists and procedures as abstractions in programming can result in programs that are easier to develop and maintain.
5.5 - Programming uses mathematical and logical concepts.
5.5.1 - Employ appropriate mathematical and logical concepts in programming. [P1]
  • 5.5.1E - Logical concepts and Boolean algebra are fundamental to programming.
  • 5.5.1J - Basic operations on collections include adding elements, removing elements, iterating over all elements, and determining whether an element is in a collection.

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming
  • 3B-AP-14 - Construct solutions to problems using student-created components, such as procedures, modules and/or objects.

Lesson 17: Building an App: Canvas Painter

Standards Alignment

Computer Science Principles

1.2 - Computing enables people to use creative development processes to create computational artifacts for creative expression or to solve a problem.
1.2.1 - Create a computational artifact for creative expression. [P2]
  • 1.2.1A - A computational artifact is anything created by a human using a computer and can be, but is not limited to, a program, an image, audio, video, a presentation, or a web page file.
  • 1.2.1B - Creating computational artifacts requires understanding and using software tools and services.
  • 1.2.1C - Computing tools and techniques are used to create computational artifacts and can include, but are not limited to, programming IDEs, spreadsheets, 3D printers, or text editors.
  • 1.2.1D - A creatively developed computational artifact can be created by using nontraditional, nonprescribed computing techniques.
1.3 - Computing can extend traditional forms of human expression and experience.
1.3.1 - Use computing tools and techniques for creative expression. [P2]
  • 1.3.1C - Digital images can be created by generating pixel patterns, manipulating existing digital images, or combining images.
  • 1.3.1D - Digital effects and animations can be created by using existing software or modified software that includes functionality to implement the effects and animations.
  • 1.3.1E - Computing enables creative exploration of both real and virtual phenomena.
2.2 - Multiple levels of abstraction are used to write programs or create other computational artifacts
2.2.1 - Develop an abstraction when writing a program or creating other computational artifacts. [P2]
  • 2.2.1A - The process of developing an abstraction involves removing detail and generalizing functionality.
  • 2.2.1B - An abstraction extracts common features from specific examples in order to generalize concepts.
  • 2.2.1C - An abstraction generalizes functionality with input parameters that allow software reuse.
2.2.2 - Use multiple levels of abstraction to write programs. [P3]
  • 2.2.2A - Software is developed using multiple levels of abstractions, such as constants, expressions, statements, procedures, and libraries.
  • 2.2.2B - Being aware of and using multiple levels of abstraction in developing programs helps to more effectively apply available resources and tools to solve problems.
4.1 - Algorithms are precise sequences of instructions for processes that can be executed by a computer and are implemented using programming languages.
4.1.1 - Develop an algorithm for implementation in a program. [P2]
  • 4.1.1A - Sequencing, selection, and iteration are building blocks of algorithms.
  • 4.1.1B - Sequencing is the application of each step of an algorithm in the order in which the statements are given.
  • 4.1.1C - Selection uses a Boolean condition to determine which of two parts of an algorithm is used.
  • 4.1.1D - Iteration is the repetition of part of an algorithm until a condition is met or for a specified number of times.
4.1.2 - Express an algorithm in a language. [P5]
  • 4.1.2A - Languages for algorithms include natural language, pseudocode, and visual and textual programming languages.
  • 4.1.2B - Natural language and pseudocode describe algorithms so that humans can understand them.
  • 4.1.2C - Algorithms described in programming languages can be executed on a computer.
  • 4.1.2G - Every algorithm can be constructed using only sequencing, selection, and iteration.
  • 4.1.2I - Clarity and readability are important considerations when expressing an algorithm in a language.
5.1 - Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve problems (to help people, organizations, or society).
5.1.1 - Develop a program for creative expression, to satisfy personal curiosity, or to create new knowledge. [P2]
  • 5.1.1A - Programs are developed and used in a variety of ways by a wide range of people depending on the goals of the programmer.
  • 5.1.1B - Programs developed for creative expression, to satisfy personal curiosity, or to create new knowledge may have visual, audible, or tactile inputs and outputs.
  • 5.1.1C - Programs developed for creative expression, to satisfy personal curiosity, or to create new knowledge may be developed with different standards or methods than programs developed for widespread distribution.
  • 5.1.1D - Additional desired outcomes may be realized independently of the original purpose of the program.
  • 5.1.1E - A computer program or the results of running a program may be rapidly shared with a large number of users and can have widespread impact on individuals, organizations, and society
5.1.2 - Develop a correct program to solve problems. [P2]
  • 5.1.2A - An iterative process of program development helps in developing a correct program to solve problems.
  • 5.1.2B - Developing correct program components and then combining them helps in creating correct programs.
  • 5.1.2C - Incrementally adding tested program segments to correct, working programs helps create large correct programs.
  • 5.1.2J - A programmer designs, implements, tests, debugs, and maintains programs when solving problems.
5.3 - Programming is facilitated by appropriate abstractions.
5.3.1 - Use abstraction to manage complexity in programs. [P3]
  • 5.3.1A - Procedures are reusable programming abstractions.
  • 5.3.1B - A function is a named grouping of programming instructions.
  • 5.3.1C - Procedures reduce the complexity of writing and maintaining programs.
  • 5.3.1D - Procedures have names and may have parameters and return values.
  • 5.3.1E - Parameterization can generalize a specific solution.
  • 5.3.1F - Parameters generalize a solution by allowing a function to be used instead of duplicated code
  • 5.3.1G - Parameters provide different values as input to procedures when they are called in a program.
  • 5.3.1J - Integers and floatingpoint numbers are used in programs without requiring understanding of how they are implemented.
  • 5.3.1K - Lists and list operations, such as add, remove, and search, are common in many programs.
  • 5.3.1L - Using lists and procedures as abstractions in programming can result in programs that are easier to develop and maintain.
5.4 - Programs are developed, maintained, and used by people for different purposes.
5.4.1 - Evaluate the correctness of a program. [P4]
  • 5.4.1A - Program style can affect the determination of program correctness.
  • 5.4.1B - Duplicated code can make it harder to reason about a program.
  • 5.4.1C - Meaningful names for variables and procedures help people better understand programs.
  • 5.4.1D - Longer code blocks are harder to reason about than shorter code blocks in a program.
  • 5.4.1E - Locating and correcting errors in a program is called debugging the program.
  • 5.4.1F - Knowledge of what a program is supposed to do is required in order to find most program errors.
  • 5.4.1G - Examples of intended behavior on specific inputs help people understand what a program is supposed to do.
  • 5.4.1H - Visual displays (or different modalities) of program state can help in finding errors.
  • 5.4.1L - An explanation of a program helps people understand the functionality and purpose of it.
  • 5.4.1M - The functionality of a program is often described by how a user interacts with it.
  • 5.4.1N - The functionality of a program is best described at a high level by what the program does, not at the lower level of how the program statements work to accomplish this.
5.5 - Programming uses mathematical and logical concepts.
5.5.1 - Employ appropriate mathematical and logical concepts in programming. [P1]
  • 5.5.1D - Mathematical expressions using arithmetic operators are part of most programming languages.
  • 5.5.1E - Logical concepts and Boolean algebra are fundamental to programming.
  • 5.5.1F - Compound expressions using and, or, and not are part of most programming languages.
  • 5.5.1G - Intuitive and formal reasoning about program components using Boolean concepts helps in developing correct programs.
  • 5.5.1H - Computational methods may use lists and collections to solve problems.
  • 5.5.1I - Lists and other collections can be treated as abstract data types (ADTs) in developing programs.
  • 5.5.1J - Basic operations on collections include adding elements, removing elements, iterating over all elements, and determining whether an element is in a collection.

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming
  • 3A-AP-16 - Design and iteratively develop computational artifacts for practical intent, personal expression, or to address a societal issue by using events to initiate instructions.