

UNIT

6
1 2 3 4 5 6

Unit 6 - Algorithms
Unit Overview

Students learn to design and analyze algorithms to understand how they work and why some algorithms are

considered more efficient than others. This short unit is entirely unplugged, and features hands-on activities that

help students get an intuitive sense of how quickly different algorithms run and the pros and cons of different

algorithms. Later in the unit, students explore concepts like undecidable problems and parallel and distributed

computing.

Unit Philosophy and Pedagogy

A Break from Programming: This unit is intentionally designed as a short respite from programming. After three

units and a major hackathon project, it's a great opportunity to get away from screens for a while before the final

programming push that leads to the Create PT.

Just Enough Math: This unit includes some mathematical concepts which enrich students' understanding of how

algorithms are analyzed, which might at first be a little intimidating to some students (and teachers!). The

mathematical topics included in this unit are only those necessary to provide a solid foundation in algorithmic

analysis to the depth described in the CS Principles framework. If you're a teacher with a strong mathematical

background, check carefully that you don't needlessly add complexity to a unit which might already prove

challenging for some students. All teachers should keep an eye out for the ways visuals, hands-on examples, and

patterns in presentation style are used to ensure a consistent presentation of these mathematical topics.

Major Assessment and Projects

This unit does not conclude with a major project. Students will complete an end-of-unit assessment that is aligned

with CS Principles framework objectives covered in this unit.

AP Connections

This unit helps build towards the enduring understandings listed below. For a detailed mapping of units to Learning

Objectives and EKs please see the "Standards" page for this unit.

AAP-2: The way statements are sequenced and combined in a program determines the computed result.

Programs incorporate iteration and selection constructs to represent repetition and make decisions to handle

varied input values.

AAP-4: There exist problems that computers cannot solve, and even when a computer can solve a problem, it

may not be able to do so in a reasonable amount of time.

CSN-2: Parallel and distributed computing leverage multiple computers to more quickly solve complex problems

or process large data sets.

This unit includes content from the following topics from the AP CS Principles Framework. For more detailed

information on topic coverage in the course review Code.org CSP Topic Coverage.

3.9 Developing Algorithms

3.11 Binary Search

3.17 Algorithmic Efficiency

3.18 Undecidable Problems

4.3 Parallel and Distributed Computing

Week 1

https://docs.google.com/document/d/1dqYF5u0AULjw049gaCwAP34ZSe0VuEWbAjWoH1-YMW0/edit?usp=sharing

Lesson 1: Algorithms Solve Problems
Learn how computer scientists think about problems and the way different algorithms can

be designed to solve them.

Lesson 2: Algorithm Efficiency
Learn how computers describe how fast different algorithms are and the fact that different

algorithms that solve the same problem may be faster than others.

Lesson 3: Unreasonable Time
Explore two different types of algorithms that seem similar but take fundamentally different

amounts of computing power to run.

Lesson 4: The Limits of Algorithms
Widget

Explore two different kinds of problems at the limits of what a computer is capable of solving

and learn the difference in how computer scientists respond.

Lesson 5: Parallel and Distributed Algorithms
Learn how algorithms are designed to run on many computers and the benefits and

challenges that result.

Week 2

Lesson 6: Assessment Day
Project

Assessment day to conclude the unit.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

6
1 2 3 4 5 6

Lesson 1: Algorithms Solve Problems

Overview

Students will complete two exploratory activities that introduce

the concept of a problem and an algorithm. In the first students

answer a series of questions about birthdates and names of their

classmates. They then discuss the similarities and differences

between the problems. In the second activity students are given

six different algorithms and must analyze them to determine

which they think are the same or different. At the end of the

lesson they are introduced to the formal definitions of a problem

and an algorithm.

Purpose

This lesson is an approachable and interactive introduction to the

main concepts of this short unit. Students have been writing a lot

of code, and now they are ready to think on a high level about

the patterns that make two different problems, or two different

algorithms, similar or different. This mindset will be important as

they tackle the more challenging material later in the unit where

students will learn to compare different algorithms that address

the same problem.

Agenda
Warm Up (5 mins)

Activity (30 mins)

Comparing Problems

Comparing Algorithms

Wrap Up (10 mins)

Assessment: Check For Understanding

View on Code Studio

Objectives
Students will be able to:

Explain the formal definitions of a problem,

an algorithm, sequencing, selection, and

iteration.

Explain that some problems may look

different but be similar or look similar but

be different.

Explain that some algorithms may look or

operate differently but still solve the same

problem.

Preparation

Review the algorithms students will be

comparing in the second activity to make

sure you are prepared to support students

in trying them out.

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

CSP Unit 6 - Algorithms - Presentation

https://curriculum.code.org/csp-20/unit6/
https://studio.code.org/s/csp6-2020/stage/1/puzzle/1/
https://docs.google.com/presentation/d/1pIuUH3QAxdGkEUBmG0YOduf1Xb16UHKCTC7-EmVMJ2Y/edit?usp=sharing

 Discussion Goal

Goal: This discussion should focus on what made the

problems that students solved similar to one another.

You likely will want to put the problems back on the

screen to make it easier to talk through. Here are

some connections you may pull out though there are

more students may make.

Problems 1 and 2 are very similar. As soon as you

find one person who meets the criteria you know

you're done.

Problem 3 and 4 are very similar but you need to

talk to every other student to answer it. You only

need to keep track of the closest birthday you've

heard so far, however.

Problem 5 is easy to solve as soon as you've solved

problems 3 and 4.

Problem 6 - 10 require you to have written down

everyone's birthday, likely in order.

Problems 7 - 9 are the same problem but for

different numbers of people. Whatever strategy you

use for one of those would be helpful to solve the

others

Problem 10 is a different version of problem 7 but

instead of finding the smallest gap you're finding

the largest.

 Discussion Goal

Goal: This is an optional prompt. If you are able to

move directly to the main activity you should do so.

This prompt should get students thinking about the

themes of the lesson.

There are no "wrong answers" here though you should

expect answers that focus on the fact that often

there's lots of ways to write code that does the same

thing.

Teaching Guide

Warm Up (5 mins)

  Prompt: What makes two pieces of code “the

same”? Could there ever be two pieces of code that

you consider to be “the same” even if they aren’t

identical?

Discuss: Have students think about their answers on

their own, then share with a partner, and then finally

discuss responses with the entire room.

Activity (30 mins)

 Remarks

Today we are going to kick off a short unit about how computer scientists think about problem solving. A really

important skill will be recognizing patterns and similarities. The same thing that

Comparing Problems

Distribute: Ask students to take out their journals or give them some blank paper for working on the following

problems

 Display: Show the slides for the ten problems students will need to solve.

Circulate: Ask students to review the problems for

one minute, and then let them move around the room

collecting information needed to solve the problems.

This may take them several minutes.

  Prompt: Which problems did you need to do

something similar in order to solve them?

Discuss: Have students discuss the prompt with a

neighbor before asking them to share with the room.

Lead a discussion on their experiences.

 Remarks

The first thing that we need to think about as

computer scientists is what is a "problem". We just

looked at 10 problems, but as we discussed, a lot of

them are similar. If we solve one problem we may

actually solve another, or at least have a good idea

for how to start solving another. As computer

scientists it's important to ask "have I seen this

problem before" or "how is this problem similar to

others I've solved?"

Comparing Algorithms

 Remarks

We just thought about whether problems are

similar. Now we're going to look at whether we're

actually solving the same problem.

 Discussion Goal

Goal: Use this discussion to reinforce vocabulary

introduced in the slides and check in on whether

students have begun the transition towards thinking

on a higher level about algorithms and problems.

 Discussion Goal

Goal: This discussion should focus on what made the

algorithms the same. While they are designed to fall

into two categories, ideally a number of points should

come out of this discussion.

Algorithms 1, 3, and 4 draw a square while 2, 5, and

6 draw a rectangle

Algorithms 4 and 6 are written using a flowchart

while 1, 2, 3, and 5 are written in the AP

Pseudocode

Some of these algorithms turn the robot right but

turning left three times. It's debateable whether we

can really call these algorithms "the same"

Some of these algorithms create lists or variables to

store information. Depending on the context we

may not be able to call these algorithms "the same"

  Prompt: Which of these algorithms are “the same” as one another?

Circulate: Ask students to review the algorithms with

a partner and group them into categories. Move

around the room making sure students are not

getting stuck. If they finish early push them to see if

they can think about the problem in a different way.

 Prompt: Discuss with another group. which of these

algorithms are “the same” as one another?

Discuss: Have students discuss the prompt with

another before asking them to share with the room.

Lead a discussion on their experiences using tips from

the discussion goal at the side.

Wrap Up (10 mins)

 Journal: Students add the following vocabulary

words and definitions to their journals: problem,

algorithm, sequencing, selection, iteration.

 Prompt: How did today’s activities change the way

you think about algorithms and problems?

Discuss: Have students think about their answers on

their own, then share with a partner, and then finally

discuss responses with the entire room.

 Remarks

Computer scientists don't just think about "code", they think about problems and the algorithms that solve them.

In this unit we're going to explore what makes two problems, or two algorithms, similar or different from one

another, and the way computer scientists talk about them. Not only will you be a better programmer, but you'll

get to work on some really interesting problems along the way.

Assessment: Check For Understanding

Check For Understanding Question(s) and solutions can be found in each lesson on Code Studio. These questions

can be used for an exit ticket.

Question: In your own words explain the difference between a problem and an algorithm.

Standards Alignment

CSP2021

AAP-2 - The way statements are sequenced and combined in a program determines the computed result

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

6
1 2 3 4 5 6

Lesson 2: Algorithm Efficiency

Overview

In this lesson students follow a demonstration of Linear Search

before writing their own search algorithms. Following this,

students are introduced to Binary Search after which they

compare graphs of the search algorithms to determine which is

most efficient.

Purpose

In the previous lesson students learned that there are many

different ways to write an algorithm to solve a problem. However,

not all solutions are good options, and some algorithms require

many fewer steps to run than others. This lesson focuses on

comparing Linear Search to Binary Search. The the length of the

list being searched, the more efficient Binary Search is compared

to Linear Search. That sai,d Binary Search has a constraint: the

list must first be sorted. This lesson more broadly introduces

students to thinking about the efficiency of an algorithm, an idea

that will be explored more in future lessons.

Agenda
Warm Up (5 mins)

Activity (30 mins)

Wrap Up (10 mins)

Assessment: Check For Understanding

View on Code Studio

Objectives
Students will be able to:

Use Linear Search to determine if a number

is in a list

Use Binary Search to determine if a

number is in a list

Compare the efficiency of Linear Search

and Binary Search

Preparation

Preview the slides and click through all

animations

Practice running Binary Search yourself

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

CSP Unit 6 - Algorithms - Presentation

https://curriculum.code.org/csp-20/unit6/
https://studio.code.org/s/csp6-2020/stage/2/puzzle/1/
https://docs.google.com/presentation/d/1pIuUH3QAxdGkEUBmG0YOduf1Xb16UHKCTC7-EmVMJ2Y/edit?usp=sharing

 Teaching Tip

Before class, choose your own winning number (a

number between 0-999), or alternatively use the

Ticket Generator yourself!

 Discussion Goal

Answer:

The greatest possible number of steps for this

instance is 3.

With six volunteers, the greates number of steps is

6.

The patterns is a 1:1 relationship. The number of

tickets in the raffle exactly equals the number of

steps it would take to check for a number in the

worst case.

 Discussion Goal

Goal: Use this discussion to highlight the following

points

Students may have as systematic approach (search

through every pocket in order) or a random

approach.

Some students may have a system where they

place their books and materials in their backpack to

be retrieved in the order of their class schedule. If

they look in their bag at a certain spot and don't see

the pencil, they have a pretty good idea where to

search next.

There are no right answers here - the idea is to start

thinking about the efficiency of different search

methods.

Teaching Guide

Warm Up (5 mins)

  Prompt: Have you ever lost a pencil in a

backpack? What are the steps you take to find the

pencil?

Discuss: Have students think about their answers on

their own, then share with a partner, and then finally

discuss responses with the entire room.

 Remarks

There are many different ways to achieve the same

goal for this problem: finding your pencil. Today we

are going to explore different search methods that

computers use.

Activity (30 mins)

 Distribute: Students should have sticky notes and

their journals

 Do This: Call for three volunteers. These students use the Ticket Generator on Code Studio to produce raffle

tickets numbers (one per volunteer). Students write the number on a sticky note and come to the front of the room.

 Remarks

  Thank you, volunteers! Let's figure out if any

of you have the winning number for this instance of

the problem. I'm going to ask you one by one to

show your number and we will compare it with the

winning number.

Do This: Each volunteer reveals their number and

compares it to the winning number.

  Prompt: How many steps did it take to find out if

anyone had the winning ticket? What is the greatest

possible number of steps it could take for this

instance?

 Prompt: What if we had six volunteers? The whole

class? The whole school? What is the pattern here?

 Display: Look at the chart as a class and examine

the graph. The graph visualizes the pattern the class

discussed.

 Remarks

Now let's try a different way to search.

Group: Place students in groups of two

 Do This: With a partner, students navigate to Code Studio and use the Ticket Generator to create seven random

numbers that are copied to sticky notes. Students organize these sticky notes in numerical order. Students choose

one extra number as the "winning number" and write that number down on a separate sticky note.

 Challenge: Students work with their partner to write an algorithm to search for their winning number. Make sure

the rules are displayed.

 Teaching Tip

It's important for students to think about this problem

as looking for the number in the worst possible

situation. In other words, what is the least amount of

steps it would take to definitevely cross off every

option?

 Teaching Tip

What if there is no middle number while performing a

step in Binary Search? Students can come up with a

protocol for this like: if there is no middle number,

compare the number on the right.

 Teaching Tip

This is a tricky concept! It's ok if students don't fully

understand. What's most important is what is revealed

next: Binary Search is more efficient than Linear

Search.

The search can start at any of the sticky notes

You can "jump" over sticky notes. In other words, you don't need to search the stickies in order.

You can determine which sticky notes to search next based on the current sticky note you are checking.

The goal is to make the determination in the least steps possible, but don't forget your number could be

anywhere in the list - what is the worst possible case? What is the greatest number of comparison steps it would

take to find any number in your list using your current algorithm?

  Discuss: Students share their algorithms with

another group and determine which one runs faster,

depending on the number of steps it takes to find a

number in the list.

 Do This: Students return to their partner and now

run a given algorithm, displayed on the board, step

by step (click through for animation). As they are

doing this, they should think about whether or not

this algorithm runs faster (has less steps) than their own algorithms.

 Remarks

This search algorithm is known as Binary Search. Let's see it in action.

 Do This: Click through the animations to see Binary Search in action on the activity slide. Discuss each step as it

is happening.

Find the number in the middle and compare it with the given number. The given number is greater than the

middle number, so remove the middle number and all to the left.

Find the number in the middle of the numbers left, and compare it with the given number. The given number is

less than the middle number, so remove the middle number and all to the right.

Find the number in the middle of the numbers left (there is only one!), and compare it with the given number.

The given number is equal to the middle number. We have found our number!

 Remarks

Binary search only works with a sorted list of numbers. This allows us to remove options from the search after

we've made a decision. In other words, if we know the number is greater than 410, we can remove all numbers

less than or equal to 410 and we don't have to manually check those numbers one by one.

  Do This: Display the graph. Students copy the

chart into their journals and fill out the missing parts.

They can use their sticky note to try out each

instance of the problem. When the class has mostly

finished, click through the animations to see the

answers.

  Display: Display the chart on the next slide. Click

through the animations. This slide shows another way

to fill out the chart, that does not require multiple

sticky notes. Instead, we can use the flippy do! For

Binary Search, for each instance the number of steps

it take to run is equal to the number of bits required

to represent the input.

 Display: Discuss the graph and click through the

animation to see Binary Search graphed.

 Remarks

Both Binary Search and Linear Search find the

answer to our search problem. However, one option

is much faster than the other: Binary Search,

although it requires that the numbers are sorted

first.

 Discussion Goal

Answers:

For one input, either Binary Search or Linear Search

would be appropriate. Students may argue for

Linear as it does not need to first be sorted.

For five inputs, it's clear that Binary Search is

fastest, although it only saves two steps over Linear

Search. This is all the more true with one hundred

inputs, which only takes seven steps (Binary

number: 1100100) compared to Linear Search's one

hundred steps.

Wrap Up (10 mins)

  Prompt: If I had one input, which algorithm

would I use to get my answer with the fewest amount

of steps? What if I had five? What about one hundred?

Discuss: Have students think about their answers on

their own, then share with a partner, and then finally

discuss responses with the entire room.

Journal: Students add the following vocabulary words

and definitions to their journals: efficiency, linear

search, binary search.

 Remarks

Well done! It's clear that there are many algorithms

we can use to search for an item in a list. Some are

faster, or more efficient, than others. In the case of

Binary Search, the larger the list we are searching through, the greater the efficiency in using this algorithm

instead of Linear Search.

Assessment: Check For Understanding

Check For Understanding Question(s) and solutions can be found in each lesson on Code Studio. These questions

can be used for an exit ticket.

Question: What is the third step using Binary Search to look for the number 32 in this list?

Question: Which of the following is true of two algorithms designed to solve the same problem?

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CSP2021

AAP-2 - The way statements are sequenced and combined in a program determines the computed result

AAP-4 - There exist problems that the computer cannot solve

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

6
1 2 3 4 5 6

Lesson 3: Unreasonable Time

Overview

Students investigate two different types of raffles that highlight

the way seemingly small problems can quickly grow large. The

first raffle asks students to hunt for pairs of tickets that add to a

target value. The second raffle asks students to hunt for any

group of tickets that adds to a target value. After trying out each

raffle live students will try to figure out the patterns for how many

total combinations need to be checked in each. At the end they

discuss the difference between reasonable and unreasonable

algorithms based on their experiences.

Purpose

This lesson explores some tricky mathematical concepts in a

hands on and interactive way. Building off the raffle analogy used

in the previous lesson, it gives students an experience with two

types of problems that grow quickly in size, though as they'll see

one grows much faster than the other. This lesson should give

students a sense of how computer scientists use mathematics to

think about problems without relying too heavily on mathematical

background that not all students may have.

Agenda
Warm Up (5 mins)

Activity (30 mins)

Running The Two Raffles

Activity Guide - Unreasonable Time

Wrap Up (10 mins)

Assessment: Check For Understanding

View on Code Studio

Objectives
Students will be able to:

Explain the difference between problems

that run in a reasonable time and those

that do not

Explain how both formal mathematical

reasoning and informal measurement can

be used to determine an algorithms

efficiency

Preparation

Review the slides to make sure you are

prepared to lead the different discussions

in this lesson.

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

CSP Unit 6 - Algorithms - Presentation

For the Students

Unreasonable Time - Activity Guide

Make a Copy

https://curriculum.code.org/csp-20/unit6/
https://studio.code.org/s/csp6-2020/stage/3/puzzle/1/
https://docs.google.com/presentation/d/1pIuUH3QAxdGkEUBmG0YOduf1Xb16UHKCTC7-EmVMJ2Y/edit?usp=sharing
https://docs.google.com/document/d/13VSFGtFwbJT73aYr4VnNJrsbnbyZBTDiSImVkqJGc5w/edit?usp=sharing

 Teaching Tip

Running the Raffles: Both because it helps give

students a sense of the problem space and because

it's fun to run a raffle, you should run both the pair

raffle and the group raffle in your classroom. Here's

some helpful tips.

Insist that students check for the pair raffle silently.

For this one it's very easy to just yell out what

number you would pair with and lose the

opporuntity to see how many total checks are

necessary if they can just all yell from their seats.

The group raffle doesn't necessarily need to be

silent. As students will see, it's an incredibly difficult

problem and they're going to need to do a lot of

checking even if they're able to talk out loud.

Think ahead about whether you actually want to

award winners of the raffles. It's pretty unlikely that

there will be a winner.

There's a pretty good chance that no one will win

either raffle.

 Discussion Goal

Goal: This prompt is a review from the previous lesson.

Students should be free to refer to notes or their

journals. You should might hear the following points.

One algorithm requires fewer steps to complete

than another

"The line for one algorithm curves below the other"

More efficient algorithms are much more helpful as

input size grows. The amount of work grows more

slowly.

You may wish to refer to slides from previous lessons.

Teaching Guide

Warm Up (5 mins)

  Prompt: What does it mean to say one algorithm

is “more efficient” than another?

Discuss: Have students think about their answers on

their own, then share with a partner, and then finally

discuss responses with the entire room.

 Remarks

Yesterday we started looking at how computer

scientists might compare two algorithms that solve

the same problem. Today we're going to look at two

different problems. They may seem similar but as

we'll see they actually are much harder to solve

than either of the two we saw yesterday. The

question will be "how much harder"? Let's get to it!

Activity (30 mins)

Running The Two Raffles

 Distribute: Send students to the ticket generator

widget on Code Studio.

 Display: Show slides that explain the pair raffle.

Circulate: Give students a couple of minutes to walk

around the room seeing if they can find a partner with

which they can win the raffle. After a couple of

minutes have them return to their desks. If there are

any winners feel free to celebrate.

 Remarks

Alright, that was interesting. Let's try out a different

version of the raffle. Last time I made you work

silently so that we got a better sense of how many

checks needed to happen. This time we're going to

run a group raffle, but I'll let you talk out loud if you

want.

 Display: Show slides that explain the group raffle.

Circulate: Give students a couple of minutes to walk

around the room seeing if they can find a group with

which they can win the raffle. After a couple of

minutes have them return to their desks. If there are

any winners feel free to celebrate.

 Prompt: Which raffle felt like it was more difficult to check? Why?

Discuss: Have students discuss this prompt with a neighbor. Then have a few students share out their reflections.

 Remarks

As computer scientists we're getting better at thinking about problems and algorithms. We also saw last time that

we can use a little mathematical reasoning to decide if one algorithm is more efficient than the other. Let's do a

little work on these two raffles to see if our intuitions are correct.

 Discussion Goal

Goal: This discussion is primarily designed to get quick

reactions from students to motivate the second big

activity in this lesson. Students will likely note that the

group raffle felt a lot harder to check, even with the

ability to talk. That said, there's no wrong answers at

this point. You're about to check their intutions

mathematically.

 Teaching Tip

Encouraging Drawing: Students will likely be able to

answer these questions much more easily if they draw

on a sheet of paper. The question for the pair raffle

becomes "if I draw some dots on a sheet of paper, how

many lines can I draw between them?" since each line

connects two points. For the group raffle it is a little

more tricky but it's "how many ways can I combine the

dots?"

8 is a Challenge: The activity guide indicates that 8 is

a challenge for both activities. Unless students are

starting to see that patterns for each raffle size they

will likely find this extremely challenging, especially for

the group raffle. Reassure students it's a challenge

and they don't need to complete it.

Ending Early: It's more important that students get

experience with how these two problems are different

in how quickly they grow. If students are getting stuck

with one encourage them to move on to the other.

 Discussion Goal

Goal: Use this discussion to reinforce vocabulary

introduced in the slides and make sure they have

understood the main concepts of the day. Students

should be able to explain with the term reasonable,

unreasonable, and exponential, why running a group

raffle in a school of most sizes is impossible.

Distribute: Distribute copies of Unreasonable Time -

Activity Guide

Activity Guide - Unreasonable
Time

 Pair Raffle: Ask students to fill out the first page

where they must figure out the total number of

pairs for different sized "pair raffles". This may take

several minutes and require students to draw

pictures.

Group Raffle: Ask students to fill out the second

page where they must figure out the total number

of groups for different sized "group raffles". This

may take several minutes and require students to

draw pictures.

 Share Responses: Ask students to share their

responses with another group.

 Display: Show the slides summarizing the correct

solutions for each as well as providing language to

describe these two kinds of curves.

Prompt: Polynomial and exponential both curve up.

Why do you think only exponential is considered

“unreasonable”?

Discuss: Briefly ask students for their ideas why

before showing them the following slides.

Exponential curves grow extremely quickly. You

simply can't build a computer fast enough even for

relatively small raffle sizes.

Wrap Up (10 mins)

 Journal: Students add the following vocabulary words and definitions to their journals: unreasonable time,

reasonable time

 Prompt: Your school is considering running the

group raffle at an upcoming assembly to give away a

prize. Write a brief explanation of what advice you

would give them.

Discuss: Have students think about their answers on

their own, then share with a partner, and then finally

discuss responses with the entire room.

 Remarks

The group raffle is just one example of an algorithm that is "unreasonable". It grows exponentially and so we'd

never want to run it at our school. Next time we'll talk more about what to do when we encounter unreasonable

problems.

Assessment: Check For Understanding

Check For Understanding Question(s) and solutions can be found in each lesson on Code Studio. These questions

can be used for an exit ticket.

Question: Which of the follow efficiencies would be considered unreasonable?

https://docs.google.com/document/d/13VSFGtFwbJT73aYr4VnNJrsbnbyZBTDiSImVkqJGc5w/edit?usp=sharing

Question: Based on the data provided, does this algorithm run in a reasonable or unreasonable time? Explain your

answer

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CSP2021

AAP-4 - There exist problems that the computer cannot solve

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

6
1 2 3 4 5 6

Lesson 4: The Limits of Algorithms

Overview

Students explore the limits of what algorithms are able to

compute. First they use a widget that exposes students to the

Traveling Salesman Problem. After recognizing this problem can

only be solved using an unreasonable time algorithm the develop

their own good enough solutions that run more efficiently. Later in

the lesson students watch a video about undecidable problems

for which no algorithm can ever be developed to solve them.

Purpose

Prior to this lesson students have learned about the efficiencies of

different algorithms and have considered the difference between

reasonable and unreasonable algorithms. In this lesson they

explore what happens when you reach that limit. In one instance

the response is to accept good enough solutions that run more

reasonably. In the other case the problem simply can't be solved

at all.

Agenda
Warm Up (5 mins)

Activity (30 mins)

Traveling Salesman

Undecidable Problems

Wrap Up (10 mins)

Assessment: Check For Understanding

View on Code Studio

Objectives
Students will be able to:

Determine if an algorithm runs in

unreasonable time.

Develop a heuristic to solve a problem.

Distinguish between decision problems and

optimization problems.

Explain the existence of undecidable

problems

Preparation

Read through the slides

Preview the Traveling Salesman widgets

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

CSP Unit 6 - Algorithms - Presentation

https://curriculum.code.org/csp-20/unit6/
https://studio.code.org/s/csp6-2020/stage/4/puzzle/1/
https://docs.google.com/presentation/d/1pIuUH3QAxdGkEUBmG0YOduf1Xb16UHKCTC7-EmVMJ2Y/edit?usp=sharing

 Discussion Goal

Goal: Use this discussion to quickly review topics

brought up in the previous lesson.

Reasonable algorithms grow at a polynomial rate or

slower. Unreasonable algorithms grow exponentially.

The time to solve an unreasonable algorithm grows

very quickly even for relatively small problem sizes.

Teaching Guide

Warm Up (5 mins)

  Prompt: What is the difference between a

reasonable and unreasonable time algorithm?

Discuss: Have students think about their answers on

their own, then share with a partner, and then finally

discuss responses with the entire room.

 Remarks

This was a good reminder of what we learned last

time. Unreasonable time algorithms just don't make

sense to run. Today we're going to be thinking more

about what happens when we reach the limits of algorithms, and how sometimes we can make compromises.

Activity (30 mins)

Traveling Salesman

 Set Up: Each student needs to have their journals and a pen or pencil.

 Display: Use the activity slides for this lesson to guide the activity on the limits of algorithms.

Slides Speaker Notes

Say: Today we are going to explore the Traveling Salesman

Problem.

Prompt: How many different paths can you find to visit all of your

friends' houses?

Do This: Students should sketch out different paths in their

journals. Read through the rules together as a class.

Rules:
You must start and end at your own house.

You can only visit each house once.

Discuss: Students share their paths with a partner before

discussing as a class.

Say: Take a look at some of these paths on the screen. You may

have similar ones in your journal.

Prompt: What do you need to know to determine the best path?

Slides Speaker Notes

Say: Distance! If we know the distance between each house, we

can make a better decision about which path to take. In this

example, the first option is shortest, so that's the path we would

choose.

Prompt: What if we had a lot more places to visit? How would we

determine the best path?

Discussion Goal: The goal here is for students to come to the

realization that they would need to explore all possible paths in

order to determine which one is the best.

Say: This is known as the Traveling Salesman Problem. For each

new place to visit, the number of options for possible paths

increases factorialy.

Say: A factorial function is written with the letter "n" followed by

an explanation point. Here's how n! works: Multiply all whole

numbers from the given number down to the number 1.

Note: Talk through the examples and the table. The goal here

isn't for students to memorize the math, but to understand that

with each new house added, the number of potential paths that

have to be checked expands very quickly.

Say: The Traveling Salesman is an Optimization Problem. It's not

a Decision Problem. We know there is a path. Now we must

determine which is the shortest or most efficient path.

Say: The Traveling Salesman Problem can be solved with an

algorithm, which checks each possible option.

BUT, it would take massive amounts of computing power to

compare every single option, especially as the number of homes

to visit (otherwise known as nodes) increases.

Therefore, it would take an unreasonable amount of time for the

solution to be calculated for most instances of the problem.

Say: Welcome to heuristics! Heuristics provide a good enough

solution to a problem when an actual solution is impractical or

impossible.

 Discussion Goal

Goal: Tease out what factors students used to create

their heuristics.

 Discussion Goal

Goal: There are times when the Next-Closest heuristic

will not provide the best option, but on average it's a

good option.

Students can reflect back on the paper route

problem from earlier in the class. This may have

been the option they first suggested.

 Teaching Tip

Do I Need to Understand the Halting Problem?:
Students don't actually need to understand the Halting

Problem or the proof in this video. The main ideas are

covered in the takeaways and are fairly simple. There

are a few problems, most notably "will this code run?"

that we've proven there is no algorithm that will ever

be able to determine the correct answer in every case.

The proof is interesting but if you are short on time

you may opt to skip the video.

 Discussion Goal

Answer: A heuristic is used when it's impossible or

impractical to use an algorithm to solve a problem.

Therefore, we need something that is good enough on

average for most instances. This is where a heuristic

shines.

 Do This: Students now navigate to Level 2 on Code Studio where they will use the Traveling Salesman Widget to

find the "best" path to visit all nodes.

In their journal, students should write down a plan or heuristic for choosing a good path.

Discuss: In pairs, students should share their heuristics and make adjustments to their own as needed.

 Do This: Now students navigate to Level 3 and use the Widget: Traveling Salesman with Random Nodes.

Students test their heuristic on this widget, keeping a log in their journal of the distance for the path their heuristic

finds and the best distance the student finds not using the stated heuristic (i.e. clicking around, or "brute force").

Note: Click reset to try different paths on the same level. Click "New Level" to generate at new random

assortment of nodes.

  Prompt: How did you create your heuristic? Did

you change your heuristic after testing it out?

  Discuss: Call on several students to share their

heuristics. As a class, discuss which heuristic we think

is best, and will give us a "good enough" result for

most cases.

 Display: Show the sample heuristic. This may be

one that students already came up with. Discuss

whether or not this heuristic is "good enough".

 Remarks

 The Traveling Salesman Problem is an

optimization problem. We are attempting to find the

best path.

It's also unreasonable because there is not an

algorithm that can solve the problem in a

reasonable amount of time.

We need to use a heuristic to come up wtih a solution that is "good enough" for most instances of the problem.

Undecidable Problems

 Remarks

 We've learned how we address unreasonable

problems. Before we finish our study of problems

let's learn about one more type, problems that no

algorithm will ever be able to solve. This video is a

little tricky, but it gives you a good sense for the

way this problem shows up.

  Video: Show the video on the halting problem,

located on the slide

 Display: Review the main takeaways about

undecidable problems.

Wrap Up (10 mins)

  Prompt: Why is a heuristic acceptable when it

doesn't always produce the "best" result?

Discuss: Have students think about their answers on

their own, then share with a partner, and then finally

discuss responses with the entire room.

 Remarks

Great! Heuristics are handy in every day life. Think about using mapping software to find the best route to a

destination!

Assessment: Check For Understanding

Check For Understanding Question(s) and solutions can be found in each lesson on Code Studio. These questions

can be used for an exit ticket.

Question: In which of the following situations is it most appropriate to use a heuristic solution?

Question: In your own words, explain the difference between undecidable problems and unreasonable time

algorithms.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CSP2021

AAP-4 - There exist problems that the computer cannot solve

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

6
1 2 3 4 5 6

Lesson 5: Parallel and Distributed Algorithms

Overview

In this lesson students explore the benefits and limitations of

parallel and distributed computing. First they discuss the way

human problem solving changes when additional people lend a

hand. Then they run a series of demonstrations that show how

simple tasks like sorting cards get faster when more people help,

but there is a limitation to the efficiency gains. Later in the lesson

students watch a video about distributed computing that

highlights the ways distributed computing can help tackle new

kinds of problems. To conclude the lesson students record new

vocabulary in their journals and discuss any open questions.

Purpose

This lesson is a quick tour of the challenges and benefits of

parallel and distributed computing. It caps off the unit to

showcase ways these techniques are being used to push the

boundaries of how efficiently computer can solve problems.

Agenda
Warm Up (5 mins)

Activity (30 mins)

Card Sorting Challenge

Debriefing the Challenge

Distributed Computing in Real World Settings

Wrap Up (10 mins)

Assessment: Check For Understanding

View on Code Studio

Objectives
Students will be able to:

Explain the difference between sequential,

parallel, and distributed computing.

Calculate the speedup of a parallel solution

to a problem

Describe the benefits and challenges of

parallel and distributed computing.

Preparation

Collect the manipulatives you will use for

the main activity. While decks of cards are

suggested, other manipulatives are

possible. See the teaching tip in the main

activity for suggestions.

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

CSP Unit 6 - Algorithms - Presentation

https://curriculum.code.org/csp-20/unit6/
https://studio.code.org/s/csp6-2020/stage/5/puzzle/1/
https://docs.google.com/presentation/d/1pIuUH3QAxdGkEUBmG0YOduf1Xb16UHKCTC7-EmVMJ2Y/edit?usp=sharing

 Discussion Goal

Goal: This should be a quick prompt to foreshadow the

main ideas of the lesson. Students should brainstorm

many potential tasks. When they start mentioning the

maximum number of people they'd want to help them

direct attention towards why that's the case. You

might hear that:

Adding extra people makes it more complicated

Sometimes extra people doesn't really speed things

up

If you're working with lots of people then if one

person is slower the whole group is slowed down

 Teaching Tip

Choosing Manipulatives: This activity can easily be

done with many different types of manipulatives, not

just cards. For example, students could sort pennies

by even / odd year, sort coins into piles of different

denominations, sort blocks by color / size, or sort any

other readily available item. Pick whatever makes the

most sense for your context.

Teaching Guide

Warm Up (5 mins)

  Prompt: Brainstorm a task that you can

complete faster if you get other people to help.

What’s the most number of people you’d want to help

you and why?

Discuss: Have students think about their answers on

their own, then share with a partner, and then finally

discuss responses with the entire room.

 Remarks

As we've explored in this unit, computer scientists

are always looking for more efficient ways to run

programs. One way to do this is to develop faster

algorithms that run on a single computer. Another

idea we'll explore today, is figuring out ways to run

programs on many computers at the same time. We

just talked about some benefits and challenges when many people help with a task. As we'll see, the same is true

with running programs on multiple computers. It can lead to some improvements, but also some new challenges.

Activity (30 mins)

Card Sorting Challenge

Group: Place students in groups of three or four.

  Distribute: Give one member of each group a

deck of cards.

 Challenge 1 - One Person Sort: At the front of the

room display the directions for the first sort as well as

the clock. Run the clock, and have students put the

cards in order. Have students record their time. Then

let the another partner repeat the process.

 Challenge 2 - Two Person Sort: At the front of the

room display the directions for the second. Run the clock, and have students put the cards in order. Have students

record their time. If students are in groups of four offer to let the other two students try the challenge.

 Challenge 3 - Full Group Sort: At the front of the room display the directions for the challenge. Run the clock, and

have students put the cards in order. Have students record their time.

Debriefing the Challenge

 Display: Show the slides explaining the difference between parallel and sequential computing models. Talk

through the different models.

  Prompt: What portions of your algorithms for Challenges 2 and 3 were parallel? What makes things

complicated or slows you down during parallel portions of your algorithm?

Discuss: Have groups discuss responses at their tables before sharing with the room.

 Remarks

A lot of the challenges you just encountered show up when you try to run a program on multiple computers as

well.

 Discussion Goal

Goal: This discussion has two goals. The first is to

reinforce the difference between parallel and

sequential portions of an algorithm. Any time multiple

processes are happening at once (for example

multiple people are sorting cards), an algorithm is

parallel. The second goal is to bring up some common

challenges that come up when running parallel

algorithms. The remarks cover some of the most

important ones but the main point is that while

parallel algorithms are faster, they still present

challenges.

 Discussion Goal

Goal: Use this discussion to reinforce how speedup is

calculated, but also to prime students to realize that

adding additional parallel processes doesn't always

lead to the same amount of speedup. During the

parallel portion things are in fact moving faster, but

sequential portions still take a long time (e.g.

collecting individual piles once each group member

has sorted their cards). Therefore speedup is rarely

your original time divided by the number of computers

running the process. Eventually it will level off.

Sometimes you need to wait because one

computer finished before another

It can be complicated to split up work and

recombine it when moving in and out of parallel

portions

They're faster, but not always as much faster as

you think.

  Prompt: What was your group’s speedup in

Challenge 2? What about in Challenge 3? Are you

surprised?

Discuss: Have groups calculate their speedup and

share with the room.

 Display: Cover the primary points of speed in the

real world.

Students probably noticed their speedup is lower

than the number of people helping sort. Sorting

with two people doesn't give a speedup of 2.

Sorting with 3 people doesn't give a speedup of 3.

Because some portions are always still sequential,

the benefits of adding more processors will go

down and eventually the speedup reaches a limit.

Distributed Computing in Real
World Settings

 Remarks

We've just explored some of the core and theoretical ideas of parallel computing. It can speed things up, but not

infinitely, and it adds complications and many more resources. That said, parallel computing can help tackle

some big problems.

 Prompt: Before showing the video share the two prompts.

Why is the type of computing presented “distributed”?

Why is distributed computing used to solve the problem?

 Display: Show the video on Folding at home

 Discuss: Have students share their responses to the two prompts:

Why is the type of computing presented "distributed"?

Why is distributed computing used to solve the problem?

 Remarks

Distributed computing is very similar to parallel computing. The main idea is that programs can be run on lots

and lots of computers. Distributed and parallel computing are helpful for solving really big problems that you

couldn't normally solve on a single computer.

Wrap Up (10 mins)

 Remarks

Let's sum up what we learned: Parallel computing consists of both a parallel portion that is shared and a

sequential portion.

A sequential solution's efficiency is measured as the sum of all of its steps, but a parallel solution takes as along

as its sequential tasks plus the longest of its paralell tasks. Often times a parallel solution will be the fastest

option, but there is a limit.

 Discussion Goal

Goal: This lesson covers a lot of ground so this is a

good chance to review some of the main points of the

lesson. Here's some big ones to cover.

Parallel programs typically are faster

Parallel programs don't get faster forever. At some

point adding more processors doesn't really help

Parallel programs can be more complicated.

Parallel programs can be slowed down if only one of

many devices is slow.

Distributed programs can be run on thousands or

even millions of computers which allows you to take

on enormous problems

Solutions that use parallel computing can scale more effectively than solutions that use sequential computing.

Why is this so? If we continue to add tasks, a sequential solution would continue to get larger and larger.

However, with a parallel system, those tasks can be balanced.

 Journal: Students add the following vocabulary words and definitions to their journals: sequential computing,

parallel computing, distributed computing, speedup

  Prompt: Based on what we saw here today,

create a list of pros and cons for distributed and

parallel computing. Share it with a partner.

Discuss: Have students write their list, then share

with a partner, and then finally discuss responses

with the entire room.

 Remarks

Assessment: Check For
Understanding

Check For Understanding Question(s) and solutions

can be found in each lesson on Code Studio. These

questions can be used for an exit ticket.

Question: What is the speedup of this parallel

solution?

Question: In your own words, explain why the speedup of a parallel algorithm will eventually reach some limit.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CSP2021

CSN-2 - Parallel and distributed computing leverages multiple computers to more quickly solve complex problems or process large

data sets

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

6
1 2 3 4 5 6

Lesson 6: Assessment Day

Overview

Students complete a multiple choice assessment which covers

the unit topics.

Agenda
Assessment (25 mins)

Topic Coverage

Assessment Review (20 mins)

View on Code Studio

Preparation

Preview the assessment questions

https://curriculum.code.org/csp-20/unit6/
https://studio.code.org/s/csp6-2020/stage/6/puzzle/1/

 Teaching Tip

Topic Coverage

The College Board has provided a bank of questions to

help formatively assess student understanding of the

content in the framework. These questions are

mapped to topics with each topic having a handful of

questions available.

The College Board has a few strict guidelines about

how topic questions can be used. In particular,

students may not receive a grade based on

performance on topic questions nor can they be used

for teacher evaluation. Beyond these requirements,

however, they are primarily intended to formatively

assess student progress and learning as they prepare

for the end of course exam.

Within our own course we recommend that you use

them in a variety of ways:

Throughout the unit assign topic questions to

students related to the topics students are learning

about that day or that week

Prior to the unit assessment assign topic questions

to help students practice and prepare for the

summative assessment

After the unit assessment use these topic questions

to help students track their progress towards

preparation for the AP assessment

Click for more info: Code.org CSP Topic Coverage

Teaching Guide

Assessment (25 mins)

  Administer the Unit 6 Assessment, found on Code

Studio. Make sure to unlock the assessment following

instructions here.

Assessment Review (20
mins)

Review the answers to the assessment with the class.

Discuss any questions that come up and take note of

topics where students may need extra review.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://docs.google.com/document/d/1dqYF5u0AULjw049gaCwAP34ZSe0VuEWbAjWoH1-YMW0/edit?usp=sharing
https://support.code.org/hc/en-us/articles/115001331951-Using-lock-settings-for-assessments-and-surveys
https://creativecommons.org/
https://code.org/contact

