
Unit 4 Lesson 1

Variables Explore

Resources

A Short Introduction to EIPM

What is EIPM?
EIPM is a structured approach to teaching programming in Code.org's CSP 20-21 Curriculum. It's designed to
meet the needs of diverse learners, encourage collaboration, support independent creation, and clarify the role
of the teacher throughout the learning process. Each letter represents a different type of lesson (E - Explore, I -
Investigate, P - Practice, M - Make) which are taught in sequence for each major programming construct. A
typical programming unit will feature 2 or 3 EIPM sequences, followed by a unit project and a multiple choice
assessment. The visual below shows that structure for Unit 5 - Lists, Loops and Traversals, with each square
being a separate lesson.

Why did you develop EIPM?
The biggest motivator in developing EIPM was direct feedback from students and teachers. While they had
many positive things to say about our programming units, we also heard some consistent concerns. Due to the
way our programming units are designed, students were often working in isolation, teachers lacked clarity on
their role, and classrooms would arrive at the end of the unit lacking the skills to take on major independent
projects. We took this feedback, consulted research and experts in the field of computing education, and
created a pathway for introducing programming concepts that is more collaborative, clarifies the teacher’s role,
and more intentionally prepares students to create programming projects independently.

The Teacher’s Role in the Classroom
The EIPM structure provides more clarity on the
way students are expected to learn in each lesson
and your role in facilitating that learning. In the
Explore and Investigate lessons you will spend
relatively more time leading group activities and
class-wide discussions. In the Practice and Make
lessons you will spend more time circulating the
room to provide support to individuals and small
groups. This predictable transition clarifies your
role in any individual lesson and encourages
students to work with greater independence as
they develop mastery over a new concept. The
graphic to the right shows the gradual transition
from leading students through activities to
supporting students working more independently.

A Summary of Each Lesson Type

 Overview Goal

Explore

Students explore the new concept
through a teacher-led hands-on
group activity.

● Typically uses physical

manipulatives
● Teacher leads with support of

slides and activity guides

Students begin to develop a
shared mental model and
understand the main ideas of the
new concept.

Investigate

Students investigate two or three
sample programs that use the new
concept.

● Close-reading of working

programs
● Teacher-led discussions
● Tasks to modify apps

Students become comfortable
reading and modifying programs
that use the new concept.

Practice

Students practice using the new
concept through a scaffolded
series of programming activities.

● Students work independently or

in pairs
● Teacher introduces debugging

practices at the beginning of
the Activity and circulates the
room during the lesson to
provide targeted support.

Students gain confidence in
writing and debugging programs
that use the new concept.

Make

Students make a target app for
which they are given the screen
elements but little to no starter
code.

● Students are provided

high-level steps to break down
the project

● Teacher supports students by
directing them towards notes,
previous work, and debugging
strategies practiced in earlier
lessons.

Students are able to
independently decide when and
how to use the new concept in
the context of a larger project.

Unit 4 Lesson 2

Variables Investigate

Resources

A Short Introduction to EIPM

What is EIPM?
EIPM is a structured approach to teaching programming in Code.org's CSP 20-21 Curriculum. It's designed to
meet the needs of diverse learners, encourage collaboration, support independent creation, and clarify the role
of the teacher throughout the learning process. Each letter represents a different type of lesson (E - Explore, I -
Investigate, P - Practice, M - Make) which are taught in sequence for each major programming construct. A
typical programming unit will feature 2 or 3 EIPM sequences, followed by a unit project and a multiple choice
assessment. The visual below shows that structure for Unit 5 - Lists, Loops and Traversals, with each square
being a separate lesson.

Why did you develop EIPM?
The biggest motivator in developing EIPM was direct feedback from students and teachers. While they had
many positive things to say about our programming units, we also heard some consistent concerns. Due to the
way our programming units are designed, students were often working in isolation, teachers lacked clarity on
their role, and classrooms would arrive at the end of the unit lacking the skills to take on major independent
projects. We took this feedback, consulted research and experts in the field of computing education, and
created a pathway for introducing programming concepts that is more collaborative, clarifies the teacher’s role,
and more intentionally prepares students to create programming projects independently.

The Teacher’s Role in the Classroom
The EIPM structure provides more clarity on the
way students are expected to learn in each lesson
and your role in facilitating that learning. In the
Explore and Investigate lessons you will spend
relatively more time leading group activities and
class-wide discussions. In the Practice and Make
lessons you will spend more time circulating the
room to provide support to individuals and small
groups. This predictable transition clarifies your
role in any individual lesson and encourages
students to work with greater independence as
they develop mastery over a new concept. The
graphic to the right shows the gradual transition
from leading students through activities to
supporting students working more independently.

A Summary of Each Lesson Type

 Overview Goal

Explore

Students explore the new concept
through a teacher-led hands-on
group activity.

● Typically uses physical

manipulatives
● Teacher leads with support of

slides and activity guides

Students begin to develop a
shared mental model and
understand the main ideas of the
new concept.

Investigate

Students investigate two or three
sample programs that use the new
concept.

● Close-reading of working

programs
● Teacher-led discussions
● Tasks to modify apps

Students become comfortable
reading and modifying programs
that use the new concept.

Practice

Students practice using the new
concept through a scaffolded
series of programming activities.

● Students work independently or

in pairs
● Teacher introduces debugging

practices at the beginning of
the Activity and circulates the
room during the lesson to
provide targeted support.

Students gain confidence in
writing and debugging programs
that use the new concept.

Make

Students make a target app for
which they are given the screen
elements but little to no starter
code.

● Students are provided

high-level steps to break down
the project

● Teacher supports students by
directing them towards notes,
previous work, and debugging
strategies practiced in earlier
lessons.

Students are able to
independently decide when and
how to use the new concept in
the context of a larger project.

Unit 4 Lesson 3

Variables Practice

Resources

A Short Introduction to EIPM

What is EIPM?
EIPM is a structured approach to teaching programming in Code.org's CSP 20-21 Curriculum. It's designed to
meet the needs of diverse learners, encourage collaboration, support independent creation, and clarify the role
of the teacher throughout the learning process. Each letter represents a different type of lesson (E - Explore, I -
Investigate, P - Practice, M - Make) which are taught in sequence for each major programming construct. A
typical programming unit will feature 2 or 3 EIPM sequences, followed by a unit project and a multiple choice
assessment. The visual below shows that structure for Unit 5 - Lists, Loops and Traversals, with each square
being a separate lesson.

Why did you develop EIPM?
The biggest motivator in developing EIPM was direct feedback from students and teachers. While they had
many positive things to say about our programming units, we also heard some consistent concerns. Due to the
way our programming units are designed, students were often working in isolation, teachers lacked clarity on
their role, and classrooms would arrive at the end of the unit lacking the skills to take on major independent
projects. We took this feedback, consulted research and experts in the field of computing education, and
created a pathway for introducing programming concepts that is more collaborative, clarifies the teacher’s role,
and more intentionally prepares students to create programming projects independently.

The Teacher’s Role in the Classroom
The EIPM structure provides more clarity on the
way students are expected to learn in each lesson
and your role in facilitating that learning. In the
Explore and Investigate lessons you will spend
relatively more time leading group activities and
class-wide discussions. In the Practice and Make
lessons you will spend more time circulating the
room to provide support to individuals and small
groups. This predictable transition clarifies your
role in any individual lesson and encourages
students to work with greater independence as
they develop mastery over a new concept. The
graphic to the right shows the gradual transition
from leading students through activities to
supporting students working more independently.

A Summary of Each Lesson Type

 Overview Goal

Explore

Students explore the new concept
through a teacher-led hands-on
group activity.

● Typically uses physical

manipulatives
● Teacher leads with support of

slides and activity guides

Students begin to develop a
shared mental model and
understand the main ideas of the
new concept.

Investigate

Students investigate two or three
sample programs that use the new
concept.

● Close-reading of working

programs
● Teacher-led discussions
● Tasks to modify apps

Students become comfortable
reading and modifying programs
that use the new concept.

Practice

Students practice using the new
concept through a scaffolded
series of programming activities.

● Students work independently or

in pairs
● Teacher introduces debugging

practices at the beginning of
the Activity and circulates the
room during the lesson to
provide targeted support.

Students gain confidence in
writing and debugging programs
that use the new concept.

Make

Students make a target app for
which they are given the screen
elements but little to no starter
code.

● Students are provided

high-level steps to break down
the project

● Teacher supports students by
directing them towards notes,
previous work, and debugging
strategies practiced in earlier
lessons.

Students are able to
independently decide when and
how to use the new concept in
the context of a larger project.

Unit 4 Lesson 4

Variables Make

Resources

Unit 4 Lesson 4

Name(s)___ Period ______ Date ___________________

 Activity Guide - Variables Make

Your Goal:​ Write the code to make the Photo Liker App. You've
already been given every screen element and have comments
that will help you design your program.

Step 1 - Try using this app

● Try all of the buttons and add a comment to the picture
● Discuss with a Partner

○ What does this app do?
○ What are the inputs?
○ What are the outputs?
○ What's one piece of information that might be

stored in a variable?

Step 2 - Plan
Fill in the information in the table below for each event handler
you'll need to create

Element ID Description of What the Event Handler will Do

Fill in the table below for each variable you'll need to create.

Variable Name What the Variable Stores

Computer Science Principles 1

Unit 4 Lesson 4

Step 3 - Write Your Code
● Write the code for the app, using your plan above and the comments provided in Code Studio to help
● Step You Can Follow

○ Create all the variables from your table above.
○ Give your variables a starting value using the assignment operator (=)
○ Create blank event handlers (onEvent) for each screen element in your table above
○ Write the code to make the "upButton" work and test it out. If it's working correctly, the "Likes" count

should go up by one every time you click it
○ Write code to make the "downButton" work and test it.
○ Write code to make the "commentButton" work
○ Use your debugging skills to identify unexpected behavior and fix your program
○ Comment your code as you go, explaining what each event handler does
○ Check the Help & Tips tab for ideas about Programming Patterns you can use

● Extension Ideas
○ Set the text in "new_comment" to blank after the comment has been added
○ Add sounds to each button

Step 4 - Submit
Before your submit check the rubric below to make sure your program

Category Extensive Evidence Convincing
Evidence

Limited Evidence No Evidence

Code: Event
Handlers Created

onEvents are defined
for all the required
buttons.

onEvents are defined
for most of the
required buttons.

onEvents are defined
for some of the
buttons.

onEvents are not
designed for any
buttons.

Code: Variables Variables are defined
to store the amount
of likes and the
comments. Variables
are named in a clear
and understandable
way.

Variables are defined
to store the amount
of likes and the
comments

One variable is
present that stores
either the amount of
likes or the
comments

There are no
variables which store
the necessary
information for the
app to work
correctly.

Code: Event
Handlers Written

All necessary
variables are
updated inside of the
onEvents.

Most necessary
variables are
updated inside of the
onEvents.

Some of the
necessary variables
are updated inside of
the onEvents.

None of the
necessary variables
are updated inside of
the onEvents.

Code: Output
Information

The screen correctly
displays the amount
of likes and the total
comments. Sound
plays when different
buttons are clicked.

The screen correctly
displays the amount
of likes and the total
comments.

The screen correctly
displays either the
amount of likes or
the some amount of
comments.

The screen does not
display the amount
of likes or the
comments.

Code runs without
errors.

No errors are
present in the code.

At most one error is
present in the code.

Some errors are
present in the code.

Many errors are
present in the code.

Coding Comments Comments are used
to correctly explain
the purpose and
function of all
onEvents.

Comments are used
to correctly explain
the purpose and
function of most
onEvents.

Comments are used
to explain the
purpose and function
of some onEvents.

Comments are not
present

Computer Science Principles 2

Unit 4 Lesson 5

Conditionals Explore

Resources

Unit 4 Lesson 6

Conditionals Investigate

Resources

Unit 4 Lesson 7

Conditionals Practice

Resources

Guide to Debugging

Introduction to Debugging
Debugging is the process of finding and fixing problems in code. For most
programs, the time spent debugging far outweighs the time spent writing new
code. Whether students or professional engineers, all programmers get bugs,
and debugging is a normal part of the programming process.

Although students may see bugs as inconveniences to be eliminated as soon
as possible, bugs in student programs should be seen as opportunities to
reinforce positive attitudes toward debugging and persistence, identify and
address student misconceptions, and further develop good debugging skills.
Your role as the teacher is to avoid directly debugging for your students, but to
guide students in better taking advantage of these opportunities.

Reinforcing positive attitudes
Finding bugs is the first step toward fixing them. Programmers deliberately test their code in order to uncover any possible
bugs. Celebrate the discovery of new bugs as students report them in the classroom, framing finding a bug as the first step
to fixing it. Model enjoying the interesting or funny behaviors a bug can cause, such as making a sprite move in
unexpected ways, or distorting an image on a web page. Remind students that if programs all worked exactly as they
wanted the first time, programming wouldn’t be as interesting or fun. Encourage students as they get frustrated, reinforcing
the debugging strategies and students’ self-efficacy as they improve their debugging skills, and talk about the bugs that
you get in your own programs, reminding them that everyone gets bugs, even professional software developers.

Identify and address misconceptions
Often a bug occurs because students have misconceptions around how the computer interprets their code. As part of the
debugging process, have students explain their code, line by line, reminding them that the program is really only doing
exactly as it was told. If the program displays an error message, ask the student to connect the message to what is
happening in the code itself. Prompt them with relevant questions about how the associated programming structures (such
as conditionals or loops) work, and refer them back to previous lessons, worked examples, or documentation when
needed. After students have found the bug, ask them to reflect on what they learned about the associated programming
structures and how they could explain it to a friend with a similar bug.

Develop debugging skills
As students get more experience debugging their programs, they will build the skills they need to debug more
independently. Help students to generalize the strategies that they use by asking them to reflect on what processes were
effective and reframing those processes as a general strategy. They should also learn ways to simplify the debugging
process by making their code more readable with good naming conventions, clear formatting, and relevant comments;
organizing code into functions or other logical chunks where appropriate; and testing small pieces of code as they go. Call
out these practices as facilitating debugging as you help students with their code.

Debugging as problem solving
In computer science, debugging is framed as a form of problem solving, and students can use a version of the four step
Problem Solving Process as a framework for debugging their programs. Just as in other forms of problem solving, many
students may jump to the “Try” part of the framework and begin making changes to their code before understanding the
nature of the bug itself. Remind them that all parts of the process are important, and that ignoring the other three steps will
actually make debugging more time consuming and difficult in the long run.

Define - Describe the bug
In the context of debugging, defining the problem is describing the bug. This step can be done by anyone using the
program, not just the person who will eventually be debugging it. Students will need to know the following information
before they move on to the next step:

● When does it happen?
● What did you expect the program to do?
● What did it do instead?
● Are there any error messages?

Some bugs will keep the code from running at all, while others will run, but not
correctly, or will run for a while, then stop or suddenly do something unexpected.
All of those things are clues that will help the student find the bug in the next step.

You can encourage students to clearly describe the bugs they find by having them
write up bug reports, such as in ​this worksheet​. As you foster a positive culture
around debugging, encourage students to write bug reports for their classmates’
code as well as their own.

Prepare - Hunt for the bug
In most cases, hunting for the bug (the “prepare” step in the debugging process) will take up most of a programmer’s time.
Remind students that it’s natural to take a long time to find a bug, but that there are things that will make their search easier.

1. Why is the bug happening?
Often students focus on what they want the program to do and why they believe their code is correct, rather than
investigating what could be causing the bug. Encourage students to start with the error messages and what is
actually happening when the program is run, and try to connect that with the code that they have written, rather
than explain why their code “should” be working. They can also “trace” their code, by reading it line by line, not
necessarily from top to bottom, but in the order that the computer would interpret it while the program is running.
Using debugging tools such as watchers, breakpoints, or the inspector tool may help them to identify why the code
is running as it is.

2. What changed right before the bug appeared?
If students have been testing their code along the way (as they should!), they can focus on code that they have
recently changed. As they investigate that code, they should follow the logic of their program in the same order
that the code runs, rather than reading the code line by line from top to bottom.

3. How does this code compare to “correct” solutions?
Students should also make use of the various resources available to them, such as working projects, examples in
previous lessons, and code documentation. Have them compare the patterns that they find in the documentation
and exemplars to their own code, differentiating between the programming patterns that should be the same
(loops, counter pattern, HTML syntax) and specifics of their program that will be different (variable names, image
URLs, coordinates).

https://docs.google.com/document/d/1M6mnq73DfyvzasucVAwfL-gjl2JqVPzjy_fRx5j4j7c/

Try - Change the code
If students believe that they have found the bug, they can go ahead and try to fix it, but in many cases they may want to
make changes to the code to narrow down their search. Some common strategies include:

1. Commenting out code
By commenting out sections of the program, students can narrow down the part of the program that is causing the
bug. After commenting out large sections of code, function calls, or html elements, test whether the bug is
eliminated. This method is especially helpful when students have used good modular programming techniques.

2. Print to the console
Using the console log command can help students to understand whether a conditional has been triggered, or
keep track of a quickly changing variable over a period of time.

3. Change the starting values of variables
Changing the starting values of variables can make it easier to reproduce a certain bug. For example, students
may want to change the starting score to 99 to test a bug that only occurs when the score reaches 100. They may
want to set their number of lives to a very high number to allow them to test for longer before losing the game.

4. Amplify small effects
Sometimes bugs have such tiny effects that it’s difficult to investigate them. Amplifying small effects, such as
making elements move further on the screen or giving web page elements a background color to make them more
visible, can make it easier to understand what is happening in a program.

In many cases, students will introduce new bugs during the debugging process, especially if they are randomly changing
code as part of a “guess and check” method. Prompt them to explain why they are changing the code, and encourage
them to make small changes and test them often, making it easier to go back if their solution didn’t work.

Reflect - Document what happened
As students make changes and see the effects, they should reflect and document on their experiences. This will help them
to build a better model of how the program constructs work and what debugging strategies are most effective. Students
should consider the following after they have eliminated a bug from their program:

1. What caused the bug?
The computer had a reason for doing what it did, and students should understand why their code caused the bug
itself. There may be a rule that they can share with others in the class (“There is no closing tag for images”) or a
misconception (“Sprites all get drawn to the screen when `drawSprites` is called, not when they are updated.”) that
they can clear up.

2. How did you find the bug?
Have students describe the debugging process that they used, paying special attention to how the type of bug and
any error messages lent themselves to particular debugging strategies. Help them to generalize their strategies so
that they can use them in a variety of situations. (e.g. “I had to capitalize the ‘r’ in my variable” might become “You
double checked the capitalization and spelling of the variable the program didn’t recognize.”)

3. What in your code made it easier or harder to debug?
Debugging is a great time to reinforce “clean code” practices, such as good naming conventions, use of functions
or other ways of “chunking” code into logical sections, commenting, and clear formatting. Point out when
comments or well named functions and variables make it easier to trace code and find an error. Debugging is also
easier when students have separated out code into logical chunks and functions, which can be commented out
individually.

Writing debuggable code
Various practices will make it easier for students to debug their code. Encourage students to neatly format their code, as
well as make good use of comments and whitespace. Organizing code into logical chunks, using functions, and having
reasonable names for classes, variables, and functions will help them to read and interpret their code as they debug. Point
out times when students’ good programming practices have made it easier for them to debug their own code.

Unit 4 Lesson 8

Conditionals Make

Resources

Unit 4 Lesson 8

Name(s)___ Period ______ Date ___________________

 Activity Guide - Conditionals Make

Step 1 - Try the app
Try making tickets for different combinations of inputs.

● Make a ticket for a weekend.
● Make a ticket for a weekday (Monday - Friday) and someone 18 or

younger.
● Try the discount code "FREEFRIDAY" on a Friday.

Discuss with a Partner

● What variables would you need to program this app?
● Where does this app use conditionals (if-statements)?

Step 2 - Plan
Variables: ​Fill in the table below for each variable you'll need to create.

Variable Name What the Variable Stores

Conditionals​: Draw a flowchart that follows the rules below. There's more than one way to do it. Use the table to make
sure that your flowchart works for different combinations of age, day, and discount code.

● On the weekends ("Saturday" and "Sunday") everyone pays full price of $10
● On weekdays (Monday through Friday) if you are 18 years or younger you pay $5.
● If you use the discount code "FREEFRIDAY" on a Friday you get in for $0. No other discount codes will work

and the code only works on Fridays.

Age Day Discount Code Price

18 Monday none $5

18 Saturday none $10

50 Monday none $10

50 Saturday none $10

18 Tuesday FREEFRIDAY $10

50 Friday FREEFRIDAY $0

18 Friday FREE $5

50 Friday FREE $10

Computer Science Principles 1

Unit 4 Lesson 8

Step 3 - Write Your Code
● Write the code for the app, using your plan above and the comments provided in Code Studio to help
● Step You Can Follow

○ Create all the variables from your table above.
○ Give your variables a starting value using the assignment operator (=)
○ Create an event handler (onEvent) for the "calculate_button"
○ Inside the event handler start writing code for your conditional using your flowchart
○ Test your code as you go using the table below. At the end it should work for every combination of

outputs in the table on the first page.
○ Use your debugging skills to identify unexpected behavior and fix your program
○ Comment your code as you go, explaining what each event handler does

● Check the Help & Tips tab for ideas about Programming Patterns you can use
● Extension Ideas

○ Add another discount code for a different day of the week or age range
○ Make guests 65 and older always pay $5 unless they use a discount code

Step 4 - Submit
Before your submit check the rubric below to make sure your program

Category Extensive Evidence Convincing
Evidence

Limited Evidence No Evidence

Input onEvents are
created for all the
required inputs.

onEvents are
created for most of
the inputs.

onEvents are
created for some of
the inputs.

onEvents are not
created for any
inputs.

Storage: Variables Variables are
created and
appropriately used
for all pieces of
information used in
the app.

Most information is
stored in a variable
and appropriately
updated throughout
the app.

Some information is
stored in a variable
and appropriately
updated throughout
the app.

There are no
variables which store
the necessary
information for the
app to work
correctly.

Processing:
Conditional Logic

The code correctly
determines the price
for all combinations
of inputs (age, price,
discount code).

The code correctly
determines the price
for most but not all
combinations of
inputs (age, price,
discount code).

The code correctly
determines the price
for some but not all
combinations of
inputs (age, price,
discount code).

The code does not
correctly determine
the price for any
combination of inputs
(age, price, discount
code).

Code: Output The screen correctly
displays the day,
age, and price of the
ticket.

The screen displays
most but not all
information correctly
in the ticket.

The screen displays
some but not all
information correctly
in the ticket.

The screen does not
correctly display any
information in the
ticket.

Code runs without
errors.

No errors are
present in the
required code.

On or two errors are
present in the
required code.

Three or four errors
are present in the
required code.

More than four errors
are present in the
required code.

Coding Comments Comments are used
to correctly explain
the purpose and
function of all
onEvents and
conditional logic.

Comments are used
to explain the
purpose and function
of most onEvents
and conditional logic.

Comments are used
to explain the
purpose and function
of some onEvents
and conditional logic.

Comments are not
present.

Computer Science Principles 2

Unit 4 Lesson 9

Functions Explore / Investigate

Resources

Unit 4 Lesson 9

Name(s)___ Period ______ Date ___________________

 Activity Guide - Song Lyrics

Style 1

00 Feeling my way through the darkness
01 Guided by a beating heart
02 I can't tell where the journey will end
03 But I know where to start
04
05 They tell me I'm too young to understand
06 They say I'm caught up in a dream
07 Well life will pass me by if I don't open up my eyes
08 Well that's fine by me
09
10 So wake me up when it's all over
11 When I'm wiser and I'm older
12 All this time I was finding myself
13 And I didn't know​ I was lost
14
15 So wake me up when it's all over
16 When I'm wiser and I'm older
17 All this time I was finding myself
18 And I didn't know​ I was lost
19
20 I tried carrying the weight of the world
21 But I only have two hands
22 I hope I get the chance to travel the world
23 But I don't have any plans
24 I wish that I could stay forever this young
25 Not afraid to close my eyes
26 Life's a game​ made for everyone
27 And love is the prize
28
29 So wake me up when it's all over
30 When I'm wiser and I'm older
31 All this time I was finding myself
32 And I didn't know​ I was lost
33
34 So wake me up when it's all over
35 When I'm wiser and I'm older
36 All this time I was finding myself
37 And I didn't know​ I was lost
38
39 I didn't know I was lost
40 I didn't know I was lost
41 I didn't know I was lost
42 I didn't know I was lost
43
44 So wake me up when it's all over
45 When I'm wiser and I'm older
46 All this time I was finding myself
47 And I didn't know​ I was lost

Style 2

00 Feeling my way through the darkness
01 Guided by a beating heart
02 I can't tell where the journey will end
03 But I know where to start
04
05 They tell me I'm too young to understand
06 They say I'm caught up in a dream
07 Well life will pass me by if I don't open up my eyes
08 Well that's fine by me
09
10 Sing Chorus (the lyrics are below)
11
12 Sing Chorus (the lyrics are below)
13
14 I tried carrying the weight of the world
15 But I only have two hands
16 I hope I get the chance to travel the world
17 But I don't have any plans
18
19 I wish that I could stay forever this young
20 Not afraid to close my eyes
21 Life's a game​ made for everyone
22 And love is the prize
23
24 Sing Chorus (the lyrics are below)
25
26 Sing Chorus (the lyrics are below)
27
28 I didn't know I was lost
29 I didn't know I was lost
30 I didn't know I was lost
31 I didn't know I was lost
32
33 Sing Chorus (the lyrics are below)
34
35 Chorus Lyrics:
36 So wake me up when it's all over
37 When I'm wiser and I'm older
38 All this time I was finding myself
39 And I didn't know​ I was lost

1

Unit 4 Lesson 10

Functions Practice

Resources

Unit 4 Lesson 11

Functions Make

Resources

Unit 4 Lesson 11

Name(s)___ Period ______ Date ___________________

 Activity Guide - Functions Make

Step 1 - Try the app

● Try many of the different options.
● Pay attention to what is happening on the screen

when you move the slider or choose an item from the
dropdown.

● When does the screen update?
● What happens if you choose lavender and Lucinda

Sans from the dropdowns? Try choosing lightreen and
moving the slider until you receive feedback.

Discuss with a Partner

● What does this app do?
● What are the inputs?
● What are the outputs?
● How could a function be used in this app?

Step 2 - Plan

Variables: ​Fill in the table below for each variable you'll need to create.

Variable Name What the Variable Stores

color the background color the user selects

fontFamily

Conditionals: ​An if-else-if statement is used to check if certain options have been selected. Set up the conditional
below using the variables you created above.

● Note: You can be creative here! Choose your own combinations and feedback messages.

if (color == ​_______________ ​&& fontFamily == ​_______________ ​){

 setText("feedbackOutput", ​______________________________​);

} else if (​_______________ ​== ​_______________ ​&& ​_______________ ​== ​_______________ ​){

 setText("feedbackOutput", ​______________________________​);

} else {

 setText("feedbackOutput", ​______________________________​);

}

 Computer Science Principles 1

Unit 4 Lesson 11

Functions:​ Consider what should be included in a function that updates the screen. Write out your plan below.
Things to think about:

● What elements on the screen need to be updated using the variables above?
● Does the conditional above belong in the function? Why or why not?
● When will the function be called?

 Review the ​updateScreen() Pattern​ to help you plan
your function.

Inputs: ​What are the inputs for the app? These will all be turned into onEvents.

Input Action Result

"quote_input" input The text on the screen appears, one character at a time as it's typed.

"font_family_input" change

 Computer Science Principles 2

Unit 4 Lesson 11

Step 3 - Write Your Code
● Write the code for the app, using your plan above and the comments provided in Code Studio to help
● Step You Can Follow

○ Create all the variables from your table above.
○ Give your variables a starting value using the assignment operator (=)
○ Create a conditional that checks if various options are selected.
○ Create a function that updates the screen.
○ Create event handlers (onEvent) for the inputs in your table above
○ Use your debugging skills to identify unexpected behavior and fix your program
○ Comment your code as you go, explaining what each event handler and function does

● Extension Ideas
○ Create a dropdown with image names and decorate your quote!

Step 4 - Submit
Before your submit check the rubric below to make sure your program

Category Extensive Evidence Convincing
Evidence

Limited Evidence No Evidence

Input onEvents are
created for all the
required inputs.

onEvents are
created for most of
the inputs.

onEvents are
created for some of
the inputs.

onEvents are not
created for any
inputs.

Storage: Variables Variables are
created and
appropriately used
for all pieces of
information used in
the app.

Most information is
stored in a variable
and appropriately
updated throughout
the app.

Some information is
stored in a variable
and appropriately
updated throughout
the app.

There are no
variables which store
the necessary
information for the
app to work
correctly.

Code: Conditionals An if-else-if
statement is used
which correctly
checks if certain
options have been
selected and
displays feedback.

An if-else-if
statement is used
that partially checks
if certain options
have been selected
and displays
feedback.

An if-else statement
or an if statement is
used that checks if
one option has been
selected.

No conditional is
present.

Code: Functions A function is used
which correctly
updates all output
elements. The
function is called in
all onEvents.

A function is used
which correctly
updates most of the
output elements. The
function is called in
all onEvents.

A function is used
which updates some
of the output
elements or the
function is only
called in some
onEvents.

There is no function
which updates the
screen.

Code runs without
errors.

No errors are
present in the
required code.

One or two errors
are present in the
required code.

Three or four errors
are present in the
required code.

More than four errors
are present in the
required code.

Coding Comments Comments are used
to correctly explain
the purpose and
function of all
onEvents and
functions.

Comments are used
to explain the
purpose and function
of most onEvents
and functions.

Comments are used
to explain the
purpose and function
of some onEvents
and functions.

Comments are not
present.

 Computer Science Principles 3

Unit 4 Lesson 12

Project - Decision Maker App Part 1

Resources

Name(s)___ Period ______ Date ___________________

 U4 Practice PT Rubric

Rubric

Category Convincing Evidence Approaching Evidence Limited Evidence No Evidence

App Development
Planning Guide:

Planning guide is fully
completed.

Planning guide is mostly
completed.

Planning guide is
somewhat complete.

Planning guide is not
complete.

Written Response 1: Response accurately
describes the purpose,
functionality, and
inputs/outputs of the app.

Response describes the
purpose and functionality,
or the inputs/outputs of
the app.

Response partially
describes the purpose and
functionality, or the
inputs/outputs of the app.

Response does not
describe the purpose,
functionality, and
inputs/outputs of the app.

Written Response 2: Response clearly
describes an idea or
recommendation provided
by a partner / peer and
how it improved the app.

Response describes an
idea or recommendation
provided by a partner /
peer and how it improved
the app, but there is some
confusion.

Response describes an
idea or recommendation
provided by a partner, but
does not explain how it
improved the app.

Response does not
describe an idea or
recommendation provided
by a partner.

User Interface: The User Interface is easy
to navigate and it’s clear
how the app is designed
to be used. All text is
readable.

The User Interface is
mostly easy to navigate
and it’s clear how the app
is designed to be used. All
text is readable.

The User Interface is
lacking in some readability
or it’s not clear how to use
the app.

The User Interface is
difficult to navigate and it’s
not clear how the app is
designed to be used. Text
is unreadable.

Code: Warnings & Error
Messages

No warnings or error
messages appear when
the app is run.

A few warnings or error
messages appear when
the app is run..

Many warnings or error
messages appear when
the app is run.

The app does not run at
all.

Code: Variables At least one number and
one String are each stored
in a variable and used to
make a decision.

One data type (numbers
or Strings) is stored in at
least two variables and
used to make a decision.

One variable stores either
a number or String and is
used to make a decision.

No variables are set up or
used to make a decision.

Code: Function A function is used to
update the screen. The
function is called at least
two times in the program.

A function is used to
update the screen. The
function is called one time
in the program.

A function is created to
update the screen but is
not called in the program.

A function was not created
to update the screen.

Code: Conditional A conditional is used
inside of the function to
make a decision based on
information stored in
variables. The conditional
correctly uses a logical
operator (&&, ||, or !) in
the Boolean expression.
The decision is displayed
on the screen. There are
at least three different
responses that could be
displayed.

A conditional is used
inside of the function to
make a decision based on
information stored in
variables. The conditional
does not correctly use a
logical operator (&&, ||, or
!) in the Boolean
expression. The decision
is displayed on the
screen. There are at least
two different responses
that could be displayed.

A conditional is created
inside of the function, but
does not use information
stored in variables to
make a decision or display
it on the screen.

No conditionals are
present in the function.

Code: Comments The update screen
function has a comment
which clearly explains its
purpose and functionality.

The update screen
function has a comment
which clearly explains its
purpose or functionality.

A comment is present, but
it does not clearly explain
anything about the
function.

No comments are present.

Name(s)___ Period ______ Date ___________________

 U4 Practice PT - Decision Maker App Planning Guide

Project Description
For this project you will create an app that helps a user make a decision. Your app must take in at least one number
and one string from the user that will help to make the decision. All of this information will be used as part of the
decision making process. In addition, your code must include at least one function used to update the screen.

You will submit

● Your final app
● This completed project-planning guide

App Requirements

● At least one number and one string used to make and report a decision with a conditional statement
● A function which updates the screen and is called at least twice in the program
● Conditional statement includes at least one logical operator (​&&, || ​or​ !​)
● There are at least three different possible output answers (i.e. “Yes, you can adopt a cat!”, “No, you can’t adopt

a cat”, and “Congratulations, you can adopt a kitten!).
● Every function contains a comment explaining purpose and functionality
● Clear and easy to navigate user interface
● Cleanly written code which is free of errors

Steps

● Brainstorm an app idea for making a decision
● Interview classmates for ideas on what information would be needed to make the decision
● Draft a flowchart of the decision making process
● Design your app’s user interface
● Design and program your app in App Lab
● Collect feedback from your classmates and update your app
● Submit your final app

Investigate

Step 1. Brainstorm App Ideas: ​Your app should be designed to help a user make a decision. The decision can be
small or big, like what to eat for lunch or where to apply for a job.

Idea 1:

Idea 2:

Idea 3:

Step 2. Choose One Idea: ​Talk through your ideas with a classmate. Pick the one that you are most interested in.

App Idea: ___

Step 3. Survey Your Classmates: ​To design your app you’ll need to understand your users. For this project your user
is your classmates, and you’ll need to understand what information will be needed to make the decision.

Find two classmates and talk to them about your topic for a couple minutes. Then fill in this table.

Name What information is needed to make this decision?

Step 4: Storing information: ​What variables will be used to store information?

Name Information Stored Variable Type (string, number, Boolean)

Ex: age The age of the user number

Step 5: Flowchart: ​Draft a flowchart to show the decision making process

Example:

2

Component Purpose

 Start your flowchart with a question. What decision are you trying to make?

Baggies are used to represent the variables​ ​which store information. In your flowchart,
draw a small rectangle for the variables.

A diamond represents a decision point, based on the original question. Write the
Boolean expression that will be used to determine the answer.

True and False arrows designate the paths taken, based on the result of a decision
(diamond). Note that every decision may have only 2 possible paths that result from it,
one for true and one for false.

A rectangle at the end of a decision path represents a possible result.

A ​simple arrow ​indicates that we are moving from one action to the next without
considering any decision. These will generally be used to link a set of actions to be
completed one after the other.

Flowchart

3

Design

Step 6. Design User Interface: ​In the space below draw a rough sketch of your user interface. This means you should
include all the buttons, text, and images that the user will be able to use. Write notes or draw arrows showing how
different user interface elements should work.

Note: There are no screen requirements for this app - you may use one or more screens.

Prototype

Step 7. Start Building Your App: ​Build your app. Along the way make sure you:

● Use the design you drew as a starting point, but it’s OK to update as you go.
● Reference the flow chart when setting up your conditional statements
● Use your debugging skills to check that your app is working
● Comment all functions explaining purpose (what does it do) and functionality (how does it work)

Test

Step 8. Testing: ​You will need to test your app to make sure it works as expected. To do that find at least two
classmates to use your app. While they use the app watch them to see if anything is broken or confusing. Afterwards
ask them to share any specific improvements they’d like to see.

Name Things that could be improved based on
watching them use the app

Improvements this person recommends

4

Step 9. Pick Improvements: ​Pick at least one improvement you plan to make to your app based on feedback you
collected from your classmate.

Improvement 1:

Improvement 2 (Optional):

Step 10: Complete Your App: ​Finish your app!

Reflection

Question 1:​ Provide a written response that:

● describes the overall purpose of the program
● describes the functionality of your app
● describes the input and outputs of your app

(Approx 150 words)

Question 2: ​This project was created using a development process that required you to incorporate the
ideas of your partner and feedback from your classmates. Provide a written response that describes one
part of your app that was improved through input from EITHER your partner or feedback you received from
classmates. Include:

● Who specifically provided the idea or recommendation
● What their idea or recommendation was
● The specific change you made to your app’s user interface or functionality in response to the

recommendation
● How you believe this change improved your app

(Approx 150 words)

5

Rubric

Category Convincing Evidence Approaching Evidence Limited Evidence No Evidence

App Development
Planning Guide:

Planning guide is fully
completed.

Planning guide is mostly
completed.

Planning guide is
somewhat complete.

Planning guide is not
complete.

Written Response 1: Response accurately
describes the purpose,
functionality, and
inputs/outputs of the app.

Response describes the
purpose and functionality,
or the inputs/outputs of
the app.

Response partially
describes the purpose and
functionality, or the
inputs/outputs of the app.

Response does not
describe the purpose,
functionality, and
inputs/outputs of the app.

Written Response 2: Response clearly
describes an idea or
recommendation provided
by a partner / peer and
how it improved the app.

Response describes an
idea or recommendation
provided by a partner /
peer and how it improved
the app, but there is some
confusion.

Response describes an
idea or recommendation
provided by a partner, but
does not explain how it
improved the app.

Response does not
describe an idea or
recommendation provided
by a partner.

User Interface: The User Interface is easy
to navigate and it’s clear
how the app is designed
to be used. All text is
readable.

The User Interface is
mostly easy to navigate
and it’s clear how the app
is designed to be used. All
text is readable.

The User Interface is
lacking in some readability
or it’s not clear how to use
the app.

The User Interface is
difficult to navigate and it’s
not clear how the app is
designed to be used. Text
is unreadable.

Code: Warnings & Error
Messages

No warnings or error
messages appear when
the app is run.

A few warnings or error
messages appear when
the app is run..

Many warnings or error
messages appear when
the app is run.

The app does not run at
all.

Code: Variables At least one number and
one String are each stored
in a variable and used to
make a decision.

One data type (numbers
or Strings) is stored in at
least two variables and
used to make a decision.

One variable stores either
a number or String and is
used to make a decision.

No variables are set up or
used to make a decision.

Code: Function A function is used to
update the screen. The
function is called at least
two times in the program.

A function is used to
update the screen. The
function is called one time
in the program.

A function is created to
update the screen but is
not called in the program.

A function was not created
to update the screen.

Code: Conditional A conditional is used
inside of the function to
make a decision based on
information stored in
variables. The conditional
correctly uses a logical
operator (&&, ||, or !) in
the Boolean expression.
The decision is displayed
on the screen. There are
at least three different
responses that could be
displayed.

A conditional is used
inside of the function to
make a decision based on
information stored in
variables. The conditional
does not correctly use a
logical operator (&&, ||, or
!) in the Boolean
expression. The decision
is displayed on the
screen. There are at least
two different responses
that could be displayed.

A conditional is created
inside of the function, but
does not use information
stored in variables to
make a decision or display
it on the screen.

No conditionals are
present in the function.

Code: Comments The update screen
function has a comment
which clearly explains its
purpose and functionality.

The update screen
function has a comment
which clearly explains its
purpose or functionality.

A comment is present, but
it does not clearly explain
anything about the
function.

No comments are present.

6

Unit 4 Lesson 13

Project - Decision Maker App Part 2

Resources

Name(s)___ Period ______ Date ___________________

 U4 Practice PT - Decision Maker App Planning Guide

Project Description
For this project you will create an app that helps a user make a decision. Your app must take in at least one number
and one string from the user that will help to make the decision. All of this information will be used as part of the
decision making process. In addition, your code must include at least one function used to update the screen.

You will submit

● Your final app
● This completed project-planning guide

App Requirements

● At least one number and one string used to make and report a decision with a conditional statement
● A function which updates the screen and is called at least twice in the program
● Conditional statement includes at least one logical operator (​&&, || ​or​ !​)
● There are at least three different possible output answers (i.e. “Yes, you can adopt a cat!”, “No, you can’t adopt

a cat”, and “Congratulations, you can adopt a kitten!).
● Every function contains a comment explaining purpose and functionality
● Clear and easy to navigate user interface
● Cleanly written code which is free of errors

Steps

● Brainstorm an app idea for making a decision
● Interview classmates for ideas on what information would be needed to make the decision
● Draft a flowchart of the decision making process
● Design your app’s user interface
● Design and program your app in App Lab
● Collect feedback from your classmates and update your app
● Submit your final app

Investigate

Step 1. Brainstorm App Ideas: ​Your app should be designed to help a user make a decision. The decision can be
small or big, like what to eat for lunch or where to apply for a job.

Idea 1:

Idea 2:

Idea 3:

Step 2. Choose One Idea: ​Talk through your ideas with a classmate. Pick the one that you are most interested in.

App Idea: ___

Step 3. Survey Your Classmates: ​To design your app you’ll need to understand your users. For this project your user
is your classmates, and you’ll need to understand what information will be needed to make the decision.

Find two classmates and talk to them about your topic for a couple minutes. Then fill in this table.

Name What information is needed to make this decision?

Step 4: Storing information: ​What variables will be used to store information?

Name Information Stored Variable Type (string, number, Boolean)

Ex: age The age of the user number

Step 5: Flowchart: ​Draft a flowchart to show the decision making process

Example:

2

Component Purpose

 Start your flowchart with a question. What decision are you trying to make?

Baggies are used to represent the variables​ ​which store information. In your flowchart,
draw a small rectangle for the variables.

A diamond represents a decision point, based on the original question. Write the
Boolean expression that will be used to determine the answer.

True and False arrows designate the paths taken, based on the result of a decision
(diamond). Note that every decision may have only 2 possible paths that result from it,
one for true and one for false.

A rectangle at the end of a decision path represents a possible result.

A ​simple arrow ​indicates that we are moving from one action to the next without
considering any decision. These will generally be used to link a set of actions to be
completed one after the other.

Flowchart

3

Design

Step 6. Design User Interface: ​In the space below draw a rough sketch of your user interface. This means you should
include all the buttons, text, and images that the user will be able to use. Write notes or draw arrows showing how
different user interface elements should work.

Note: There are no screen requirements for this app - you may use one or more screens.

Prototype

Step 7. Start Building Your App: ​Build your app. Along the way make sure you:

● Use the design you drew as a starting point, but it’s OK to update as you go.
● Reference the flow chart when setting up your conditional statements
● Use your debugging skills to check that your app is working
● Comment all functions explaining purpose (what does it do) and functionality (how does it work)

Test

Step 8. Testing: ​You will need to test your app to make sure it works as expected. To do that find at least two
classmates to use your app. While they use the app watch them to see if anything is broken or confusing. Afterwards
ask them to share any specific improvements they’d like to see.

Name Things that could be improved based on
watching them use the app

Improvements this person recommends

4

Step 9. Pick Improvements: ​Pick at least one improvement you plan to make to your app based on feedback you
collected from your classmate.

Improvement 1:

Improvement 2 (Optional):

Step 10: Complete Your App: ​Finish your app!

Reflection

Question 1:​ Provide a written response that:

● describes the overall purpose of the program
● describes the functionality of your app
● describes the input and outputs of your app

(Approx 150 words)

Question 2: ​This project was created using a development process that required you to incorporate the
ideas of your partner and feedback from your classmates. Provide a written response that describes one
part of your app that was improved through input from EITHER your partner or feedback you received from
classmates. Include:

● Who specifically provided the idea or recommendation
● What their idea or recommendation was
● The specific change you made to your app’s user interface or functionality in response to the

recommendation
● How you believe this change improved your app

(Approx 150 words)

5

Rubric

Category Convincing Evidence Approaching Evidence Limited Evidence No Evidence

App Development
Planning Guide:

Planning guide is fully
completed.

Planning guide is mostly
completed.

Planning guide is
somewhat complete.

Planning guide is not
complete.

Written Response 1: Response accurately
describes the purpose,
functionality, and
inputs/outputs of the app.

Response describes the
purpose and functionality,
or the inputs/outputs of
the app.

Response partially
describes the purpose and
functionality, or the
inputs/outputs of the app.

Response does not
describe the purpose,
functionality, and
inputs/outputs of the app.

Written Response 2: Response clearly
describes an idea or
recommendation provided
by a partner / peer and
how it improved the app.

Response describes an
idea or recommendation
provided by a partner /
peer and how it improved
the app, but there is some
confusion.

Response describes an
idea or recommendation
provided by a partner, but
does not explain how it
improved the app.

Response does not
describe an idea or
recommendation provided
by a partner.

User Interface: The User Interface is easy
to navigate and it’s clear
how the app is designed
to be used. All text is
readable.

The User Interface is
mostly easy to navigate
and it’s clear how the app
is designed to be used. All
text is readable.

The User Interface is
lacking in some readability
or it’s not clear how to use
the app.

The User Interface is
difficult to navigate and it’s
not clear how the app is
designed to be used. Text
is unreadable.

Code: Warnings & Error
Messages

No warnings or error
messages appear when
the app is run.

A few warnings or error
messages appear when
the app is run..

Many warnings or error
messages appear when
the app is run.

The app does not run at
all.

Code: Variables At least one number and
one String are each stored
in a variable and used to
make a decision.

One data type (numbers
or Strings) is stored in at
least two variables and
used to make a decision.

One variable stores either
a number or String and is
used to make a decision.

No variables are set up or
used to make a decision.

Code: Function A function is used to
update the screen. The
function is called at least
two times in the program.

A function is used to
update the screen. The
function is called one time
in the program.

A function is created to
update the screen but is
not called in the program.

A function was not created
to update the screen.

Code: Conditional A conditional is used
inside of the function to
make a decision based on
information stored in
variables. The conditional
correctly uses a logical
operator (&&, ||, or !) in
the Boolean expression.
The decision is displayed
on the screen. There are
at least three different
responses that could be
displayed.

A conditional is used
inside of the function to
make a decision based on
information stored in
variables. The conditional
does not correctly use a
logical operator (&&, ||, or
!) in the Boolean
expression. The decision
is displayed on the
screen. There are at least
two different responses
that could be displayed.

A conditional is created
inside of the function, but
does not use information
stored in variables to
make a decision or display
it on the screen.

No conditionals are
present in the function.

Code: Comments The update screen
function has a comment
which clearly explains its
purpose and functionality.

The update screen
function has a comment
which clearly explains its
purpose or functionality.

A comment is present, but
it does not clearly explain
anything about the
function.

No comments are present.

6

Name(s)___ Period ______ Date ___________________

 U4 Practice PT Rubric

Rubric

Category Convincing Evidence Approaching Evidence Limited Evidence No Evidence

App Development
Planning Guide:

Planning guide is fully
completed.

Planning guide is mostly
completed.

Planning guide is
somewhat complete.

Planning guide is not
complete.

Written Response 1: Response accurately
describes the purpose,
functionality, and
inputs/outputs of the app.

Response describes the
purpose and functionality,
or the inputs/outputs of
the app.

Response partially
describes the purpose and
functionality, or the
inputs/outputs of the app.

Response does not
describe the purpose,
functionality, and
inputs/outputs of the app.

Written Response 2: Response clearly
describes an idea or
recommendation provided
by a partner / peer and
how it improved the app.

Response describes an
idea or recommendation
provided by a partner /
peer and how it improved
the app, but there is some
confusion.

Response describes an
idea or recommendation
provided by a partner, but
does not explain how it
improved the app.

Response does not
describe an idea or
recommendation provided
by a partner.

User Interface: The User Interface is easy
to navigate and it’s clear
how the app is designed
to be used. All text is
readable.

The User Interface is
mostly easy to navigate
and it’s clear how the app
is designed to be used. All
text is readable.

The User Interface is
lacking in some readability
or it’s not clear how to use
the app.

The User Interface is
difficult to navigate and it’s
not clear how the app is
designed to be used. Text
is unreadable.

Code: Warnings & Error
Messages

No warnings or error
messages appear when
the app is run.

A few warnings or error
messages appear when
the app is run..

Many warnings or error
messages appear when
the app is run.

The app does not run at
all.

Code: Variables At least one number and
one String are each stored
in a variable and used to
make a decision.

One data type (numbers
or Strings) is stored in at
least two variables and
used to make a decision.

One variable stores either
a number or String and is
used to make a decision.

No variables are set up or
used to make a decision.

Code: Function A function is used to
update the screen. The
function is called at least
two times in the program.

A function is used to
update the screen. The
function is called one time
in the program.

A function is created to
update the screen but is
not called in the program.

A function was not created
to update the screen.

Code: Conditional A conditional is used
inside of the function to
make a decision based on
information stored in
variables. The conditional
correctly uses a logical
operator (&&, ||, or !) in
the Boolean expression.
The decision is displayed
on the screen. There are
at least three different
responses that could be
displayed.

A conditional is used
inside of the function to
make a decision based on
information stored in
variables. The conditional
does not correctly use a
logical operator (&&, ||, or
!) in the Boolean
expression. The decision
is displayed on the
screen. There are at least
two different responses
that could be displayed.

A conditional is created
inside of the function, but
does not use information
stored in variables to
make a decision or display
it on the screen.

No conditionals are
present in the function.

Code: Comments The update screen
function has a comment
which clearly explains its
purpose and functionality.

The update screen
function has a comment
which clearly explains its
purpose or functionality.

A comment is present, but
it does not clearly explain
anything about the
function.

No comments are present.

Unit 4 Lesson 14

Project - Decision Maker App Part 3

Resources

Name(s)___ Period ______ Date ___________________

 U4 Practice PT - Decision Maker App Planning Guide

Project Description
For this project you will create an app that helps a user make a decision. Your app must take in at least one number
and one string from the user that will help to make the decision. All of this information will be used as part of the
decision making process. In addition, your code must include at least one function used to update the screen.

You will submit

● Your final app
● This completed project-planning guide

App Requirements

● At least one number and one string used to make and report a decision with a conditional statement
● A function which updates the screen and is called at least twice in the program
● Conditional statement includes at least one logical operator (​&&, || ​or​ !​)
● There are at least three different possible output answers (i.e. “Yes, you can adopt a cat!”, “No, you can’t adopt

a cat”, and “Congratulations, you can adopt a kitten!).
● Every function contains a comment explaining purpose and functionality
● Clear and easy to navigate user interface
● Cleanly written code which is free of errors

Steps

● Brainstorm an app idea for making a decision
● Interview classmates for ideas on what information would be needed to make the decision
● Draft a flowchart of the decision making process
● Design your app’s user interface
● Design and program your app in App Lab
● Collect feedback from your classmates and update your app
● Submit your final app

Investigate

Step 1. Brainstorm App Ideas: ​Your app should be designed to help a user make a decision. The decision can be
small or big, like what to eat for lunch or where to apply for a job.

Idea 1:

Idea 2:

Idea 3:

Step 2. Choose One Idea: ​Talk through your ideas with a classmate. Pick the one that you are most interested in.

App Idea: ___

Step 3. Survey Your Classmates: ​To design your app you’ll need to understand your users. For this project your user
is your classmates, and you’ll need to understand what information will be needed to make the decision.

Find two classmates and talk to them about your topic for a couple minutes. Then fill in this table.

Name What information is needed to make this decision?

Step 4: Storing information: ​What variables will be used to store information?

Name Information Stored Variable Type (string, number, Boolean)

Ex: age The age of the user number

Step 5: Flowchart: ​Draft a flowchart to show the decision making process

Example:

2

Component Purpose

 Start your flowchart with a question. What decision are you trying to make?

Baggies are used to represent the variables​ ​which store information. In your flowchart,
draw a small rectangle for the variables.

A diamond represents a decision point, based on the original question. Write the
Boolean expression that will be used to determine the answer.

True and False arrows designate the paths taken, based on the result of a decision
(diamond). Note that every decision may have only 2 possible paths that result from it,
one for true and one for false.

A rectangle at the end of a decision path represents a possible result.

A ​simple arrow ​indicates that we are moving from one action to the next without
considering any decision. These will generally be used to link a set of actions to be
completed one after the other.

Flowchart

3

Design

Step 6. Design User Interface: ​In the space below draw a rough sketch of your user interface. This means you should
include all the buttons, text, and images that the user will be able to use. Write notes or draw arrows showing how
different user interface elements should work.

Note: There are no screen requirements for this app - you may use one or more screens.

Prototype

Step 7. Start Building Your App: ​Build your app. Along the way make sure you:

● Use the design you drew as a starting point, but it’s OK to update as you go.
● Reference the flow chart when setting up your conditional statements
● Use your debugging skills to check that your app is working
● Comment all functions explaining purpose (what does it do) and functionality (how does it work)

Test

Step 8. Testing: ​You will need to test your app to make sure it works as expected. To do that find at least two
classmates to use your app. While they use the app watch them to see if anything is broken or confusing. Afterwards
ask them to share any specific improvements they’d like to see.

Name Things that could be improved based on
watching them use the app

Improvements this person recommends

4

Step 9. Pick Improvements: ​Pick at least one improvement you plan to make to your app based on feedback you
collected from your classmate.

Improvement 1:

Improvement 2 (Optional):

Step 10: Complete Your App: ​Finish your app!

Reflection

Question 1:​ Provide a written response that:

● describes the overall purpose of the program
● describes the functionality of your app
● describes the input and outputs of your app

(Approx 150 words)

Question 2: ​This project was created using a development process that required you to incorporate the
ideas of your partner and feedback from your classmates. Provide a written response that describes one
part of your app that was improved through input from EITHER your partner or feedback you received from
classmates. Include:

● Who specifically provided the idea or recommendation
● What their idea or recommendation was
● The specific change you made to your app’s user interface or functionality in response to the

recommendation
● How you believe this change improved your app

(Approx 150 words)

5

Rubric

Category Convincing Evidence Approaching Evidence Limited Evidence No Evidence

App Development
Planning Guide:

Planning guide is fully
completed.

Planning guide is mostly
completed.

Planning guide is
somewhat complete.

Planning guide is not
complete.

Written Response 1: Response accurately
describes the purpose,
functionality, and
inputs/outputs of the app.

Response describes the
purpose and functionality,
or the inputs/outputs of
the app.

Response partially
describes the purpose and
functionality, or the
inputs/outputs of the app.

Response does not
describe the purpose,
functionality, and
inputs/outputs of the app.

Written Response 2: Response clearly
describes an idea or
recommendation provided
by a partner / peer and
how it improved the app.

Response describes an
idea or recommendation
provided by a partner /
peer and how it improved
the app, but there is some
confusion.

Response describes an
idea or recommendation
provided by a partner, but
does not explain how it
improved the app.

Response does not
describe an idea or
recommendation provided
by a partner.

User Interface: The User Interface is easy
to navigate and it’s clear
how the app is designed
to be used. All text is
readable.

The User Interface is
mostly easy to navigate
and it’s clear how the app
is designed to be used. All
text is readable.

The User Interface is
lacking in some readability
or it’s not clear how to use
the app.

The User Interface is
difficult to navigate and it’s
not clear how the app is
designed to be used. Text
is unreadable.

Code: Warnings & Error
Messages

No warnings or error
messages appear when
the app is run.

A few warnings or error
messages appear when
the app is run..

Many warnings or error
messages appear when
the app is run.

The app does not run at
all.

Code: Variables At least one number and
one String are each stored
in a variable and used to
make a decision.

One data type (numbers
or Strings) is stored in at
least two variables and
used to make a decision.

One variable stores either
a number or String and is
used to make a decision.

No variables are set up or
used to make a decision.

Code: Function A function is used to
update the screen. The
function is called at least
two times in the program.

A function is used to
update the screen. The
function is called one time
in the program.

A function is created to
update the screen but is
not called in the program.

A function was not created
to update the screen.

Code: Conditional A conditional is used
inside of the function to
make a decision based on
information stored in
variables. The conditional
correctly uses a logical
operator (&&, ||, or !) in
the Boolean expression.
The decision is displayed
on the screen. There are
at least three different
responses that could be
displayed.

A conditional is used
inside of the function to
make a decision based on
information stored in
variables. The conditional
does not correctly use a
logical operator (&&, ||, or
!) in the Boolean
expression. The decision
is displayed on the
screen. There are at least
two different responses
that could be displayed.

A conditional is created
inside of the function, but
does not use information
stored in variables to
make a decision or display
it on the screen.

No conditionals are
present in the function.

Code: Comments The update screen
function has a comment
which clearly explains its
purpose and functionality.

The update screen
function has a comment
which clearly explains its
purpose or functionality.

A comment is present, but
it does not clearly explain
anything about the
function.

No comments are present.

6

Name(s)___ Period ______ Date ___________________

 U4 Practice PT Rubric

Rubric

Category Convincing Evidence Approaching Evidence Limited Evidence No Evidence

App Development
Planning Guide:

Planning guide is fully
completed.

Planning guide is mostly
completed.

Planning guide is
somewhat complete.

Planning guide is not
complete.

Written Response 1: Response accurately
describes the purpose,
functionality, and
inputs/outputs of the app.

Response describes the
purpose and functionality,
or the inputs/outputs of
the app.

Response partially
describes the purpose and
functionality, or the
inputs/outputs of the app.

Response does not
describe the purpose,
functionality, and
inputs/outputs of the app.

Written Response 2: Response clearly
describes an idea or
recommendation provided
by a partner / peer and
how it improved the app.

Response describes an
idea or recommendation
provided by a partner /
peer and how it improved
the app, but there is some
confusion.

Response describes an
idea or recommendation
provided by a partner, but
does not explain how it
improved the app.

Response does not
describe an idea or
recommendation provided
by a partner.

User Interface: The User Interface is easy
to navigate and it’s clear
how the app is designed
to be used. All text is
readable.

The User Interface is
mostly easy to navigate
and it’s clear how the app
is designed to be used. All
text is readable.

The User Interface is
lacking in some readability
or it’s not clear how to use
the app.

The User Interface is
difficult to navigate and it’s
not clear how the app is
designed to be used. Text
is unreadable.

Code: Warnings & Error
Messages

No warnings or error
messages appear when
the app is run.

A few warnings or error
messages appear when
the app is run..

Many warnings or error
messages appear when
the app is run.

The app does not run at
all.

Code: Variables At least one number and
one String are each stored
in a variable and used to
make a decision.

One data type (numbers
or Strings) is stored in at
least two variables and
used to make a decision.

One variable stores either
a number or String and is
used to make a decision.

No variables are set up or
used to make a decision.

Code: Function A function is used to
update the screen. The
function is called at least
two times in the program.

A function is used to
update the screen. The
function is called one time
in the program.

A function is created to
update the screen but is
not called in the program.

A function was not created
to update the screen.

Code: Conditional A conditional is used
inside of the function to
make a decision based on
information stored in
variables. The conditional
correctly uses a logical
operator (&&, ||, or !) in
the Boolean expression.
The decision is displayed
on the screen. There are
at least three different
responses that could be
displayed.

A conditional is used
inside of the function to
make a decision based on
information stored in
variables. The conditional
does not correctly use a
logical operator (&&, ||, or
!) in the Boolean
expression. The decision
is displayed on the
screen. There are at least
two different responses
that could be displayed.

A conditional is created
inside of the function, but
does not use information
stored in variables to
make a decision or display
it on the screen.

No conditionals are
present in the function.

Code: Comments The update screen
function has a comment
which clearly explains its
purpose and functionality.

The update screen
function has a comment
which clearly explains its
purpose or functionality.

A comment is present, but
it does not clearly explain
anything about the
function.

No comments are present.

Unit 4 Lesson 15

Assessment Day

Resources

