

UNIT

4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Unit 4 - Variables, Conditionals, and
Functions
Unit Overview

Students expand the types of apps they can create as they learn how to store information (variables), make

decisions (conditionals), and better organize code (functions). Each programming topic is covered in a specific

sequence of lessons that ask students to ‘Explore’ ideas through hands-on activities, ‘Investigate’ these ideas

through guided code reading, ‘Practice’ with sample problems, and apply their understanding as they ‘Make’ a one-

day scoped project. The entire unit concludes with a three-day open-ended project in which students must build an

app that makes a recommendation about any topic they wish.

Unit Philosophy and Pedagogy

Intro to EIPM: This unit is students' first experience with the Explore, Investigate, Practice, Make lesson

sequence, or EIPM. This structured approach to teaching programming is covered in detail in the curriculum

guide and we highly recommend that you watch the accompanying video series to better understand what EIPM

should look like in the classroom. When used effectively, it supports deep learning of content and helps maintain

a collaborative classroom culture, even as you move into more complex programming concepts.

Scaffolding Towards Independent Projects: A major goal of this course is to empower students to design and

build projects independently. The Create PT in Unit 8 offers students enormous freedoms to scope and build

projects, and even this unit begins scaffolding towards that goal. Individual EIPM sequences of lessons gradually

prepare students for scoped, independent Make projects. The unit project has a few requirements, but students

are largely free to choose the design, topic, and implementation of their ideas. As you teach the unit, look for the

opportunities to scaffold the skills and knowledge students will need to creatively and independently tackle the

unit project.

Major Assessment and Projects

The unit project asks students to design an app that makes a recommendation based on input information frmo the

user. Students are given a great deal of freedom to choose their topic, design their user interface, and decide how

to actually program their app's behavior. Students submit their app, project guide, and written responses to

reflection questions about how the app is designed and the development process they used to make it. Students

will also complete an end-of-unit assessment aligned with CS Principles framework objectives covered in this unit.

AP Connections

This unit and unit project helps build towards the enduring understandings listed below. For a detailed mapping of

units to Learning Objectives and EKs please see the "Standards" page for this unit.

CRD-2: Developers create and innovate using an iterative design process that is user-focused, that incorporates

implementation/feedback cycles, and that leaves ample room for experimentation and risk-taking.

AAP-1: To find specific solutions to generalizable problems, programmers represent and organize data in multiple

ways.

AAP-2: The way statements are sequenced and combined in a program determines the computed result.

Programs incorporate iteration and selection constructs to represent repetition and make decisions to handle

varied input values.

AAP-3: Programmers break down problems into smaller and more manageable pieces. By creating procedures

and leveraging parameters, programmers generalize processes that can be reused. Procedures allow

programmers to draw upon existing code that has already been tested, allowing them to write programs more

quickly and with more confidence.

This unit includes content from the following topics from the AP CS Principles Framework. For more detailed

information on topic coverage in the course review Code.org CSP Topic Coverage.

1.4 Identifying and Correcting Errors

3.1 Variables and Assignment

3.3 Mathematical Expressions

3.5 Boolean Expressions

3.6 Conditionals

3.7 Nested Conditionals

3.15 Random Values

The College Board has supplied formative Create PT questions to help prepare students to complete the Create

Task. We recommend that students complete the following prompts with the unit project. More information can be

found in Code.org CS Principles Topic Coverage.

3.a.i.

3.a.ii.

3.a.iii

Week 1

Lesson 1: Variables Explore
Develop a mental model for how information is stored and processed by programs.

Lesson 2: Variables Investigate
App Lab

Investigate and modify sample apps that use variables and learn common programming

patterns with variables.

Lesson 3: Variables Practice
App Lab

Practice programming with variables through a set of programming puzzles.

Lesson 4: Variables Make
App Lab

Practice making an app that uses variables and programming patterns with variables.

Lesson 5: Conditionals Explore
Develop a mental model for how computers make decisions.

Week 2

Lesson 6: Conditionals Investigate
App Lab

Investigate and modify sample apps that use conditionals and learn common programming

patterns with conditionals.

Lesson 7: Conditionals Practice
App Lab

Practice programming with conditionals through a set of programming puzzles.

https://docs.google.com/document/d/1dqYF5u0AULjw049gaCwAP34ZSe0VuEWbAjWoH1-YMW0/edit?usp=sharing

Lesson 8: Conditionals Make
App Lab

Practice making an app that uses conditionals and programming patterns with conditionals.

Lesson 9: Functions Explore / Investigate
App Lab

Develop a mental model for using functions to replace repeated code. Investigate and

modify sample apps that use functions.

Lesson 10: Functions Practice
App Lab

Practice programming with functions through a set of programming puzzles.

Week 3

Lesson 11: Functions Make
App Lab

Practice making an app that uses functions and programming patterns with functions.

Lesson 12: Project - Decision Maker App Part 1
Project

Create an app from scratch that uses variables, conditionals, and functions to help a user

make a decision.

Lesson 13: Project - Decision Maker App Part 2
Project | App Lab

Create an app from scratch that uses variables, conditionals, and functions to help a user

make a decision.

Lesson 14: Project - Decision Maker App Part 3
Project | App Lab

Create an app from scratch that uses variables, conditionals, and functions to help a user

make a decision.

Lesson 15: Assessment Day
Project

Assessment day to conclude the unit.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lesson 1: Variables Explore

Overview

To begin the lesson students explore sample apps similar to the

ones they'll be able to build by the end of the unit. Then students

complete an unplugged activity with plastic baggies and sticky

notes to build a mental model of how variables are used to move

and store information. The lesson ends with a synthesizing

discussion and students adding key vocabulary to their journal.

Purpose

The warm up activity is designed to provide context for the

coming unit and motivate the reasons students will want to learn

the concepts covered in Unit 4. The subsequent activity provides

students a physical mental model they will be able to use when

they start programming with variables in the subsequent lessons.

Agenda
Warm Up (5 mins)

Explore Lessons:

Explore Sample Apps

Preview the Unit

Activity (30 mins)

Variables

Wrap Up (10 mins)

Assessment: Check For Understanding

View on Code Studio

Objectives
Students will be able to:

Use appropriate vocabulary to describe

variables, expressions, and variable

assignment.

Evaluate expressions that include numbers,

strings, and arithmetic operators.

Trace simple programs that use variables,

expressions, and variable assignment.

Preparation

Collect for each pair of students:

3 sandwich baggies

packs of red and yellow stickies

pens / pencils

1 dry erase marker per four students

(pairs can share)

Review the sample apps shown in the

warm up

Review the rules and vocabulary used in

the slides

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

CSP Unit 4 - Variables, Conditionals, and

Functions - Presentation

EIPM: A Short Introduction - Resource

Make a Copy

https://curriculum.code.org/csp-20/unit4/
https://studio.code.org/s/csp4-pilot/stage/1/puzzle/1/
https://docs.google.com/presentation/d/1GhpZOh2589s9MuKsll7YkQ3xv6nwcpmtAnTCgJPIXC0/edit?usp=view
https://docs.google.com/document/d/1ncil5b0yWAN4LCyOeXwYuNrNKEHtN4nmAd2o-_K5Psw/edit?usp=sharing

 Teaching Tip

This is the first official "Explore" lesson in the EIPM

model. Review the EIPM model in the EIPM: A Short

Introduction - Resource .

Explore Lessons:

Overview: Students explore the new concept through

a teacher-led hands-on group activity.

Typically uses physical manipulatives

Teacher leads with support of slides and activity

guides

Goal: Students begin to develop a shared mental

model and understand the main ideas of the new

concept.

 Discussion Goal

Goal: Have volunteers share what they noticed with

the room. Some ideas include:

The Pet Rock App keeps track of clicks and uses it to

decide when the pet rock will "evolve"

The Poem App keeps track of the poem as you write

it

The Thermostat App keeps track of temperature and

uses it to change the color of the text

Teaching Guide

Warm Up (5 mins)

Explore Sample Apps

 Group: Place students in pairs

 Do This: Give students 3-5 minutes to explore

sample apps that they'll find on Code.org at the

beginning of this lesson (in Levels 2-4). Students can

explore one or more depending on time.

  Prompt: These are samples of the kinds of apps

you'll be able to build by the end of this unit. As you

go through them, write down at least two examples

where the app seems to be keeping track of a piece

of information or using it to make decisions.

Preview the Unit

 Remarks

Last unit we built apps that mostly focus on input

and output. For example

When button clicked → show picture

When button clicked → change screen

When button clicked → play a sound

But we all want our programs to do more than that!

In this unit we’re going to learn how to build apps

that keep track of information and use to make

decisions and perform calculations. This is going to

let us build much more powerful apps! So let's get

started by diving in deep on what's involved with

programming with information.

Activity (30 mins)

Variables

Group: Group students in pairs.

 Distribute: Give each pair of students

A small stack of red and yellow sticky notes

A pen / pencil

3 plastic baggies

A dry erase marker to share with another group

  Display: Use the activity slides for this lesson to guide the unplugged activity on Variables.

Slides Speaker Notes

https://docs.google.com/document/d/1ncil5b0yWAN4LCyOeXwYuNrNKEHtN4nmAd2o-_K5Psw/edit?usp=sharing
https://curriculum.code.org/media/uploads/explore.png

Slides Speaker Notes

Say: Today we are going to explore Variables.

Say: We're going to be thinking about how computers work with

information. We're going to call one "piece" of information a

"value". Right now there are two different types of values:

numbers and strings. There are a few ways to tell them apart.

Numbers work the way you normally think of numbers. They are

made of the digits 0 through 9. We are going to put numbers on

yellow sticky notes. When we write numbers you don't need

quotes. Strings are made of any characters you can see on the

keyboard which means all these examples count as strings.

Strings go inside double quotes. You can see how it would be

important to tell the number 123 apart from the string "123".

Do This: Make one string and one number and hold it up at your

table.

Say: Operator is just a fancy name for the plus, minus, multiply,

and divide symbols. An expression is a combination of two sticky

notes and an operator. When I ask you "what's 2 plus 3" you say

"5"! You just "evaluated" the expression 2+3, or figure out what

the value is. Since 5 is a number, we put it on a yellow sticky.

When evaluating an expression, we follow order of operations -

just like in math class.

Do This: Evaluate the expression 5-1 and make a sticky note.

Make sure you pick the correct color and decide if you need

quotes or not!

Say: This table shows the different ways we can create

expressions. We can use all four operators with numbers the

normal way. When you want to use strings, you can only use the

+ operator and it connects the two words together. If you're

connecting a number and a string, the number first gets

converted to a string.

Do This: With your partner make a sticky note for each of these 5

expressions and we'll share as a class.

 Click for animation: Click through to see the answers.

https://curriculum.code.org/media/uploads/CSP-Unit-4---Variables,-Conditionals,-and-Functionsvariables1.svg
https://curriculum.code.org/media/uploads/CSPVariables2.svg
https://curriculum.code.org/media/uploads/CSPVariables3.svg
https://curriculum.code.org/media/uploads/CSPVariables4.svg
https://curriculum.code.org/media/uploads/animation.png

Slides Speaker Notes

Say: We're going to call the plastic baggies on your table

"variables". Variables can hold at most one value, or sticky note.

They have names that use no quotes, include no spaces, and

must start with a letter. For now just practice making a variable

with your partner.

Do This: Make one variable with any name you like. Share it with

another group. Make sure you use a whiteboard marker so we

can reuse the baggies later.

Say: We can evaluate expressions that include variable names. To

do that, first make a copy of the sticky note inside the variable.

Then evaluate the expression the way you normally would. These

two examples show you how.

 Click for animation: Click through to see the answers.

Do This: Evaluate these expressions. Make sure to pay attention

to whether it evaluates to a string or a number.

Note: Have students share their answers by holding up the sticky

notes for each solution.

 Click for animation: Click through to see the answers.

Say: Now let's write programs. We're going to stop using sticky

notes, but will highlight strings and numbers to help you

remember the difference.

Say: Here's what a program looks like. The var command tells the

computer to create a variable.

Say: The left arrow is called the "assignment operator". That's

just a fancy word for "put this value in the baggy". If we wanted

to read line 01 we would say "pow gets 3". We know that

variables can only hold one sticky note or value. So if we try to

assign a variable that already has a value in it, we just throw the

old one away.

 Click for animation: Click through to run the program.

Say: In a computer you don't actually put the old number in a

trash can, it's totally deleted! The numbers are stored as

electrical charges somewhere in your computer's memory. When

you assign a new number to a variable it actually erases the old

number, and stores the new number in its place.

https://curriculum.code.org/media/uploads/CSPVariables5.svg
https://curriculum.code.org/media/uploads/CSPVariables6.svg
https://curriculum.code.org/media/uploads/animation.png
https://curriculum.code.org/media/uploads/CSPVariables7.svg
https://curriculum.code.org/media/uploads/animation.png
https://curriculum.code.org/media/uploads/CSPVariables8.svg
https://curriculum.code.org/media/uploads/CSPVariables9.svg
https://curriculum.code.org/media/uploads/CSPVariables10.svg
https://curriculum.code.org/media/uploads/animation.png

Slides Speaker Notes

Do This: Run this program. Compare your results with another

group.

Note: Walk around the room making sure students are following

the rules correctly. No baggies should have more than one sticky

note in them.

 Click for animation: Click through to see the answers.

Say: Now let's combine what we've learned. You can use

assignment with expressions. In order for this to work you need

to evaluate first, then assign. This makes sense because we know

we can only put one sticky note in the variable baggy.

Do This: Run the program. Compare your results with another

group.

Note: Walk around the room making sure students are evaluating

before they assign. Reinforce the language "gets" for the

assignment operator. For example, line 02 would read "fly gets

two plus day".

 Click for animation: Click through to see the answers.

Say: We're not going to highlight our strings and numbers

anymore. We can just use double quotes around the strings to

tell the difference.

Do This: Run through this program together as a class.

Note: Reinforce:

Evaluate, then assign

As shown on line 04, there's no special "connection" made

between variables. All we're doing is moving information around.

Variables only hold one value, the old one is "thrown away"

(again, what's happening is that assignment replaces the electric

charges somewhere inside the computer so the old value is

actually "erased" or "deleted")

 Click for animation: Click through to run the program.

https://curriculum.code.org/media/uploads/CSPVariables11.svg
https://curriculum.code.org/media/uploads/animation.png
https://curriculum.code.org/media/uploads/CSPVariables12.svg
https://curriculum.code.org/media/uploads/CSPVariables13.svg
https://curriculum.code.org/media/uploads/animation.png
https://curriculum.code.org/media/uploads/CSPVariables14.svg
https://curriculum.code.org/media/uploads/CSPVariables15.svg
https://curriculum.code.org/media/uploads/animation.png

 Teaching Tip

Supplies Substitutions: There's no need to use stickie

notes if you have other scraps of colored paper. Also

consider cutting stickies in 4 to make them go further.

If you don't have dry erase markers handy consider

using pieces of masking tape on the baggies.

Slides Speaker Notes

Do This: Run this program. Compare your results with another

group.

Note: Have students hold up their two baggies when they're

done. Make sure students are evaluating and then assigning. Call

out that last three lines which can be a little nutty to think about.

You're using a variable's value as part of the assignment. This

lets it "count up by one".

 Click for animation: Click through to see the answers.

Do This: Review the key takeaways with students.

Say: In some programming languages the assignment operator is

not written with an arrow but is written as an equal sign.

Say: Here's how the assignment operator looks in Javascript. We'll

see more of this in the next lesson!

Note: In math = means "are equal forever". In programming =

means "put this value in this variable".

Wrap Up (10 mins)

 Journal: Have students add the following words to

their journals: Expression, Variable, Assignment

Operator.

Expression: a combination of operators and values

that evaluates to a single value.

Variable an abstraction inside the program that can hold a value. Each variable has associated data storage that

represents one value at a time.

Assignment operator: allows a program to change the value represented by a variable.

 Remarks

This isn't the last time we'll look at these definitions and it's fine to update them as you get more experience. In

fact, I'm sure you'll have a lot more to add once we see all of these concepts used inside of apps when we meet

next time!

Assessment: Check For Understanding

Check For Understanding Question(s) and solutions can be found in each lesson on Code Studio. These questions

can be used for an exit ticket.

https://curriculum.code.org/media/uploads/CSP-Unit-4---Variables,-Conditionals,-and-Functions_slide22.svg
https://curriculum.code.org/media/uploads/animation.png
https://curriculum.code.org/media/uploads/CSPVariables17.svg
https://curriculum.code.org/media/uploads/CSPVariables18.svg
https://curriculum.code.org/media/uploads/CSPVariables19.svg

 Teaching Tip

Running the Activity: This activity asks students to

follow along as a number of core concepts for

programming are introduced. The model is typically

that a term or concept is introduced and modeled and

then afterwards students are encouraged to try it out

on their own. Trying it out typically means they are

writing information on a sticky note and sharing it with

another group before discussing the results with the

whole class.

Slides with animations have an icon in the bottom left

corner to let you know you need to click to reveal

more of the slide's content.

To help you more easily prepare the activity and keep

track of your instructions, detailed instructions have

been included as speaker notes in the presentation.

Here are some tips to help you throughout the

presentation.

There are opportunities throughout the presentation

for students to actively engage. At these moments

students should be making things with their

manipulatives or using them to answer questions.

Use these opportunities to check progress.

There is a fair amount of new vocabulary introduced

but it is introduced gradually and with intentional

repetition. Make a point of actively modeling the

use of new terms.

The most important goal here is building a mental

model. It is ok if students have some open

questions that will get resolved over the subsequent

conditional lessons.

Both you and students can use the "Key Takeaways"

to check your understanding at the end.

Question: What will the value of score be at the end

of the program?

var score

score <- 3

score <- score + 1

score <- "The score is: " + score

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CSP2021

AAP-1 - To find specific solutions to generalizable problems, programmers represent and organize data in multiple ways

AAP-2 - The way statements are sequenced and combined in a program determines the computed result

DAT-1 - The way that the computer represents data is different from the way that the data are interpreted and displayed for the user

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lesson 2: Variables Investigate

Overview

In this lesson students work with partners to investigate several

versions of the "Thermostat App" to understand how variables

store and update information. To begin, students examine a

version of the app where the temperature displayed changes

each time a button is clicked. The next two versions of the app

demonstrate how variables can store strings. Students learn

about the patterns they are observing, specifically "Counter

Pattern with Event" and "Variables with String Concatenation

Pattern". To conclude the lesson, students review and discuss the

programming patterns that they will make use of in the programs

they write.

Purpose

After building a conceptual model for variables in the previous

lesson, students investigate three working examples of apps that

make use of variables. This lesson also introduces common

programming patterns when using variables. Students will have

some opportunities to modify working code in this lesson, but the

most significant practice with variables will come in the following

lesson.

Agenda
Warm Up (5 mins)

Investigate Lessons:

Preview the Lesson

Activity (35 mins)

Investigation #1: Thermostat App v.1 (Levels 2 - 3) - 10 mins

Investigation #2: Thermostat App v.2 (Level 4) - 10 mins

Investigation #3: Thermostat App v.3 (Levels 5 - 6) - 8

mins

Patterns - 7 mins

Wrap Up (5 mins)

Assessment: Check For Understanding

View on Code Studio

Objectives
Students will be able to:

Identify common programming patterns

when using variables as part of an app

Explain the purpose of those programming

patterns with variables both in terms of

how they work and what they accomplish

Modify apps that make use of common

programming patterns with variables to

adjust their functionality

Preparation

Review the example apps and the

prompts that students will be asked to

respond to for each

Review the information covered in the

slides

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

EIPM: A Short Introduction - Resource

CSP Unit 4 - Variables, Conditionals, and

Functions - Presentation

Make a Copy

https://curriculum.code.org/csp-20/unit4/
https://studio.code.org/s/csp4-pilot/stage/2/puzzle/1/
https://docs.google.com/document/d/1ncil5b0yWAN4LCyOeXwYuNrNKEHtN4nmAd2o-_K5Psw/edit?usp=sharing
https://docs.google.com/presentation/d/1GhpZOh2589s9MuKsll7YkQ3xv6nwcpmtAnTCgJPIXC0/edit?usp=view

 Teaching Tip

This is the first official "Investigate" lesson in the EIPM

model. Review the EIPM model in the EIPM: A Short

Introduction - Resource .

Investigate Lessons:

Overview: Students investigate two or three sample

programs that use the new concept.

Close-reading of working programs

Teacher-led discussions

Tasks to modify apps

Goal: Students become comfortable reading and

modifying programs that use the new concept.

 Discussion Goal

The baggy represents a variable by storing one item: a

value on a sticky note placed in a named baggy. The

value in the baggy can be changed at any time, just

like a variable's value can change.

Teaching Guide

Warm Up (5 mins)

Preview the Lesson

 Remarks

Yesterday we explored storing information like a

computer. Computers store each piece of

information in a variable. In Javascript, we name or

declare a variable with the keyword var . Today we

are going to look at a new app that stores

information in variables.

  Prompt: Let's do a quick review. How does a

baggy represent a variable?

Activity (35 mins)

 Group: Place students in pairs. One student per

group should navigate to the lesson on Code Studio.

Investigation #1: Thermostat App v.1
(Levels 2 - 3) - 10 mins

 Level 2: Thermostat App v.1: This level introduces a

new app for students to investigate. It represents a

Thermostat App where the temperature can be

changed up and down.

Run the app: Let students run the app for a few

minutes.

Predict: Students predict the information that is

being stored in variables.

 Level 3: Thermostat App v.1 Code:

Assign Code Sections: Assign half the pairs to investigate the first section on lines 1-12. The other half

investigates the second half on lines 14-21.

Read Code: Groups should carefully read the code for their section making sure they understand how it works.

Give them 3 minutes to do so.

Explain Your Section: Have partners make a group with members of the other section and carefully explain how

their section works line by line.

 Class Discussion: Ask a few members of each section to quickly share out how their section works. Display the

code at the front so you can talk through it together.

 Display: Display the slide showing students how to add a watcher in the debugging panel to track the value a

variable stores.

 Modify: have groups return to their original seats. Give them a couple of minutes to work on modifying the app

to change the degrees by two when the up and down arrows are clicked.

Investigation #2: Thermostat App v.2 (Level 4) - 10 mins

 Level 4: This program is an updated version of the Thermostat app. This time students should continue to work in

partners but do not need to work with other groups. They will need to:

https://docs.google.com/document/d/1ncil5b0yWAN4LCyOeXwYuNrNKEHtN4nmAd2o-_K5Psw/edit?usp=sharing
https://curriculum.code.org/media/uploads/investigate.png

 Discussion Goal

Here are some points that students are likely to bring

up while discussing their code:

Lines 1-12:

Two variables are created: temp and tempF . temp

gets the value 70 and TempF is set to an empty

string, which is represented with empty quotation

marks.

On line 7, an onEvent is created for when the

downButton is clicked.

When the down button is clicked, the temp variable

decreases by one.

Then the tempF variable is updated with the current

value of temp joined with the letter F .

The text on the screen is set to dispay the value

stored in the variable tempF

A sound is played.

Lines 14-21

On line 16, an onEvent is created for when the

upButton is clicked.

When the up button is clicked, the temp variable is

increased by one.

Then the tempF variable is updated with the current

value of temp joined with the letter F .

The text on the screen is set to dispay the value

stored in the variable tempF

A sound is played

 Discussion Goal

On line 3, the Fahrenheit temperature is converted to

Celsius. Math.round rounds a given value to the

nearest integer.

 Discussion Goal

getText gets the string of text that is found in the

element with the given id. In this case, the id is

"nameInput" . In our app, the name written in the

"nameInput" element is concatenated with "Hi" and

then stored in the variable myName .

Run the app: Let students run the app for a few

minutes.

Discuss Changes: Talk through how the app is

different than the first version.

Find the Math.round command: Discuss with a

partner how this command might work. Try deleting

Math.round in lines 3, 15, and 28. What happens?

Add it back in.

 Class Discussion: Ask a few students to explain

what's happening on line 3 with Math.round .

Modify the Code: Change the code so that no space

displays between the temperature and the unit

description ("F" or "C").

Investigation #3: Thermostat App
v.3 (Levels 5 - 6) - 8 mins

 Level 5: This program is again an updated version

of the Thermostat app with a login screen.

Run the app: Let students run the app for a few

minutes.

Predict: Students predict the information that is

being stored in variables.

 Level 6: The code for Thermostat App v.3 is

displayed.

Read Code: Give students a few minutes to read

and discuss the code with their partners. What has

changed? What has stayed the same?

 Class Discussion: Look at line 40. How does

getText() work? What is it doing?

Modify the Code: Add an explanation point "!" to

the end of the string stored in userName .

Patterns - 7 mins

 Remarks

We are learning two patterns here:

Counter Pattern with Event

Variables with String Concatenation Pattern

The Counter Pattern with Event is a common

pattern for updating variables that you will use in

making many different apps. We call it the Counter

Pattern with Event.

 Display: Talk through the pattern with students.

 Prompt: With a partner, discuss the following:

The "Counter Pattern with Event" should look familiar! How would you explain this pattern to another person?

When might you want to use the "Counter Pattern with Event"?

 Remarks

Variables can store many different types of information including numbers and Strings. Anything placed inside of

the quotation marks becomes a String.

https://studio.code.org/docs/applab/onEvent/
https://studio.code.org/docs/applab/onEvent/
https://studio.code.org/docs/applab/mathRound/
https://studio.code.org/docs/applab/getText/
https://studio.code.org/docs/applab/mathRound/
https://studio.code.org/docs/applab/mathRound/
https://studio.code.org/docs/applab/mathRound/
https://studio.code.org/docs/applab/getText/

 Discussion Goal

Students should step through each line of the pattern,

explaining what's happening.

Counter Pattern with Event:

myVar gets the value 0

When the event is triggered, myVar is updated

getting the current value of myVar and adding 1.

The Counter Pattern with Event might be used to

update a score in a game when an item is clicked.

 Discussion Goal

Students should be able to verbally explain how the

Variable with String Concatenation Pattern works.

myString gets the value "rock"

myOtherStrings gets the value "roll"

myStory gets the value that is stored in myString

("rock") and combines that with a string "and" and

the value stored in myOtherString ("roll")

myStory now stores the value: "rock and roll"

 Discussion Goal

Answers: What can be stored in a variable? * At this

point, students should know that these two things can

be stored in variables. Students will learn about other

data types that can be stored in variables in later

lessons. * Numbers * Strings * Including concatenated

strings (temp + " F")

Why is using a meaningful name for the variable

important? When you write code, you are not just

writing for the computer, you are also writing for

people. Using meaningful names help people be able to

read your code easier. It also helps readers predict

what values may be stored in the variables.

Guess what! There's a pattern for working with

Strings. When we want to combine Strings with

other Strings, numbers, or even with another

variable we call that concatenation.

  Display: Talk through the pattern with students.

Prompt: Explain to a partner how the "Variable with

String Concatenation Pattern" works.

Wrap Up (5 mins)

 Remarks

The patterns we learned today are present in many

different kinds of apps. As we learn new patterns,

they will show up in the "Help & Tips" tab at the top

of your screen on programming levels.

  Prompt: Let's review. What can be stored in a

variable? Why is using a meaningful name for the

variable important?

 Journal: Add to your journal the definition for

variable.

 Remarks

Today we've learned a lot about how variables work

in actual programs.

Assessment: Check For
Understanding

Check For Understanding Question(s) and solutions

can be found in each lesson on Code Studio. These

questions can be used for an exit ticket.

Question: Explain in your own words the process of

creating and updating a variable. How does the

Counter Pattern with Event work?

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CSP2021

AAP-1 - To find specific solutions to generalizable problems, programmers represent and organize data in multiple ways

AAP-2 - The way statements are sequenced and combined in a program determines the computed result

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lesson 3: Variables Practice

Overview

In this lesson students spend most of their time practicing using

the skills and processes they have learned about variables. At the

conclusion of the lesson students discuss the main things they

realized and still have questions about at the conclusion of this

lesson.

Purpose

This lesson is students primary opportunity to get hands on with

variables in code prior to the Make activity in the following

lesson. Give students as much class time as you can to work

through these. For this lesson it's recommended that you place

students in pairs as a support and to encourage discussion about

the challenges or concepts they're seeing. In the following lesson

students are encouraged to work independently.

Agenda
Warm Up (0 mins)

Practice Lessons:

Quick Warm Up

Activity (40 mins)

Practice Time

Wrap Up (5 mins)

Synthesizing Discussion

Assessment: Check For Understanding: AP Practice

View on Code Studio

Objectives
Students will be able to:

Write programs that use variables and

expressions with the support of sample

code.

Debug programs that use variables and

expressions

Preparation

Review the video in the level progression

that covers global vs. local variables. This

is a tricky topic.

Review other programming levels to be

better prepared to support students

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

EIPM: A Short Introduction - Resource

CSP Unit 4 - Variables, Conditionals, and

Functions - Presentation

Make a Copy

https://curriculum.code.org/csp-20/unit4/
https://studio.code.org/s/csp4-pilot/stage/3/puzzle/1/
https://docs.google.com/document/d/1ncil5b0yWAN4LCyOeXwYuNrNKEHtN4nmAd2o-_K5Psw/edit?usp=sharing
https://docs.google.com/presentation/d/1GhpZOh2589s9MuKsll7YkQ3xv6nwcpmtAnTCgJPIXC0/edit?usp=view

 Teaching Tip

Providing Support: Circulate around the room through

the lesson encouraging students to use the strategies

introduced at the beginning of the lesson. Students

have a number of supports at their fingertips, so a big

part of your role is helping build their independence in

using those resources.

 Teaching Tip

This is the first official "Practice" lesson in the EIPM

model. Review the EIPM model in the EIPM: A Short

Introduction - Resource .

Practice Lessons:

Overview: Students practice using the new concept

through a scaffolded series of programming activities.

Students work independently or in pairs

Teacher introduces debugging practices that the

beginning of the Activity and circulates the room

during the lesson to provide targeted support.

Goal: Students gain confidence in writing and

debugging programs that use the new concept.

 Teaching Tip

Move Quickly to the Activity: There's a lot in the main

activity of today's lesson. You may optionally wish to

do a quick vocabulary review or address any questions

that came up in the last lesson. Otherwise, give

students more time to get hands on with some code.

Teaching Guide

Warm Up (0 mins)

Quick Warm Up

 Remarks

 Today we're going to have a chance to practice

programming with a lot of the concepts and

patterns we've explored over the last two lessons. I

encourage you to go through these with a partner,

but pay close attention to what each other is doing.

In our next lesson you're going to have to use a lot

of these on an independent project, and these

activities are good practice for what you'll find

there! Alright, let's get to it!

Activity (40 mins)

Practice Time

Group: It is recommended that students work in pairs

for this lesson and a number of the activities feature

discussion prompts. Consider using pair

programming, having drivers and navigators switch

every 3 minutes, not every level.

Distribute: Optionally pass out a plastic cup or other

manipulative they can place on their computer when

they are stuck as a signal that they need support.

 Remarks

Today you're mostly going to practice what we've

learned about programming with variables. As

always you should be using the debugging process

to help you as you work on issues.

 Let's review the debugging process first.

Debugging is the process of finding and fixing problems in code. We previously talked about these four steps:

Describe, Hunt, Try, and Document.

 Today we're going to also focus on three particular debugging skills

1. Slowing down code with the speed slider

2. Using console.log to get output

3. Using the Watch area to watch your variables change values

  Do This: Direct students to Code Studio, Lesson 3

Level 2.

Levels 2-3 Assigning Numbers and Strings: These

levels only use the console.log() command which

prints commands in the debug console. Some key

points in these levels.

Students should practice using the "Watch" area to

track how variables change over a program

Students are asked to discuss what they see with a partner

These levels heavily reinforce language around assigning and creating variables

https://docs.google.com/document/d/1ncil5b0yWAN4LCyOeXwYuNrNKEHtN4nmAd2o-_K5Psw/edit?usp=sharing
https://curriculum.code.org/media/uploads/practice.png

 Teaching Tip

 Reviewing a Map Level: Level 9 is a Map Level,

which contains a review of variable scope. It is highly

recommended that you watch the video in Level 9

prior to the lesson. Slides are available for this lesson

if you would like to optinally review as a class.

 Discussion Goal

Goal: Use this opportunity to address any lingering

questions or misconceptions in the room. You can also

use this as a source of discussion topics to kick off the

following lesson. As you lead the discussion, call out

the many resources students have access to help

when they're getting stuck.

Level 3 is a debugging-heavy level which introduces more rules about syntax.

Levels 4-8 Variables and Operators: These levels have students practice writing more complex expressions and

using operators. A few tricky things to look out for

These levels transition from using only console.log to using full apps with user interfaces.

Level 6 introduces \n , the new line character

Students continue to be encouraged to discuss what they are learning with a neighbor

Levels 7 and 8 introduce the use of the counter pattern with numbers and strings. Students may need to consult

the Help and Tips tab for support.

 Regroup: Bring the class back together to watch the

Scope Practice Video.

 Display: Scope Practice video. This video is located

on the slides and on Level 9. You may opt to have

students watch it alone or as a class.

 Do This: Discuss debugging scope issues with the

next three slides before directing students back to

Code Studio.

 Levels 9-10 Debugging Scope Issues: These levels identify a common bug that can come up when working with

variables. While students should be aware of this bug, they don't quite have the background they'd need to fully

understand it. For now support students in following the three main takeaways.

Create variables once

Create variables at the top of your program

Don't create variables inside onEvent() or function() blocks

 Level 11 Putting It All Together: This level asks students to put together many of the concepts they've seen so

far. This is an opportunity to have a bit more of a "blank screen moment" while still being able to use some starter

code as a guide.

Wrap Up (5 mins)

Synthesizing Discussion

  Prompt: What aspects of working with variables

do you feel like clicked today? What do you still feel

like you have trouble with?

Discuss: Have students share with one another before

sharing with the whole class.

 Remarks

Variables can be a little bit tricky, but I saw a lot of

good progress today in nailing down this concept.

We may have a few lingering questions, but you also have a lot of resources available. Next time you'll have a

chance to put all this together by programming an app that starts with "the blank screen"!

Assessment: Check For Understanding: AP Practice

Check For Understanding Question(s) and solutions can be found in each lesson on Code Studio. These questions

can be used for an exit ticket.

Question: What will be displayed after this code segment is run?

https://studio.code.org/docs/applab/console.log/
https://studio.code.org/docs/applab/onEvent/

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CSP2021

AAP-1 - To find specific solutions to generalizable problems, programmers represent and organize data in multiple ways

AAP-2 - The way statements are sequenced and combined in a program determines the computed result

AAP-3 - Programmers break down problems into smaller and more manageable pieces

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://images.code.org/7a23b0d66914dccc07c0818a5b459599-image-1568057423164.30.17%20PM.png
https://creativecommons.org/
https://code.org/contact

UNIT

4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lesson 4: Variables Make

Overview

Using Programming Patterns and a step-by-step approach

students make their own version of a Photo Liker app. At the

beginning of the lesson students are able to explore a working

version of the app. They are then given the design elements of

the app but begin with a blank screen. A progression of levels

guides students on the high level steps they should use to

develop their app but leaves it to them to decide how to write the

code. At the end students submit their apps which can be

assessed using a provided rubric.

Purpose

This lesson is an opportunity for students to take on the "blank

screen" and build the code that runs an app entirely from scratch.

Guidance provided throughout the lesson helps students break

down the large task of "building an app" into more incremental

steps that they can use on future projects, including this unit's

final project and the Create PT.

Agenda
Warm Up (2 mins)

Make Lessons:

Intro the Project

Activity (38 mins)

Build the Photo Liker

Wrap Up (5 mins)

Assessment: Make Project

View on Code Studio

Objectives
Students will be able to:

Recognize the need for programming

patterns with variables as part of

developing a functioning app

Implement programming patterns with

variables to develop a functioning app

Write comments to clearly explain both the

purpose and function of different segments

of code within an app

Use debugging skills as part of developing

an app

Preparation

Review the different steps students will

be asked to complete as they build the

app

Review the information covered in the

slides

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

CSP Unit 4 - Variables, Conditionals, and

Functions - Presentation

For the Students

CSP Variables Make - Photo Liker App -

Activity Guide Make a Copy

https://curriculum.code.org/csp-20/unit4/
https://studio.code.org/s/csp4-pilot/stage/4/puzzle/1/
https://docs.google.com/presentation/d/1GhpZOh2589s9MuKsll7YkQ3xv6nwcpmtAnTCgJPIXC0/edit?usp=view
https://docs.google.com/document/d/1q13ZBiTwSUuE2zG5nSIvYv7QASLS784LjmpJis9vzQY/edit

 Discussion Goal

What does this app do?

It lets a user "like" an image and add comments to

it.

What are the inputs?

The thumbs up and thumbs down button, the text

input for adding a new comment, and the button to

add the comment.

What are the outputs?

The number showing how many thumbs up the

image has.

What's one piece of information that might be

stored in a variable?

The number of likes and all the comments added so

far.

 Teaching Tip

This is the first official "Make" lesson in the EIPM

model. Review the EIPM model in the EIPM: A Short

Introduction - Resource .

Make Lessons:

Overview: Students make a

target app for which they are

given the screen elements but

little to no starter code.

Students are provided high-

level steps to break down the

project

Teacher supports students by

directing them towards notes, previous work, and

debugging strategies practiced in earlier lessons.

Goal: Students are able to independently decide when

and how to use the new concept in the context of a

larger project.

 Teaching Tip

Short Intro: The Warm Up today is short and light.

Students should spend the maximum amount of time

working on their projects.

Teaching Guide

Warm Up (2 mins)



Intro the Project

 Remarks

For the past few days, we've learned a lot about

storing and updating information in variables. Today

you are going to have an opportunity to

demonstrate your learning by making an app.

Activity (38 mins)

Build the Photo Liker

Group: Make a determination as to whether this

project will be completed in pairs or individually. You

may even choose to let students decide.

 Do This: Have students explore the working Photo

Maker App in Level 2.



 Prompt: If students are not working in pairs they

should still discuss the prompts with a neighbor.

What does this app do?

What are the inputs?

What are the outputs?

What's one piece of information that might be

stored in a variable?



 Remarks

Now let's build the this app. The screen has been

set up for you - it's your job to add the code!

Distribute: Give students copies of CSP Variables

Make - Photo Liker App - Activity Guide if you will be

using it during the class.

 Do This: Direct students to level three where they

complete the Photo Liker App. Given this is students

first Make project, it is highly recommended that

students practice with this guide the first time. In

future Make lessons they may opt not to use this

guide. For students who need more detailed guidance

once they've started programming, Step 3 includes

step by step instructions that the student can follow.

Based on the needs of your classroom decide whether you will collectively go through the activity guide or have

students complete it individually.

 Submit: Encourage students to check the rubric on the last page of the Activity Guide before submitting.

https://docs.google.com/document/d/1ncil5b0yWAN4LCyOeXwYuNrNKEHtN4nmAd2o-_K5Psw/edit?usp=sharing
https://curriculum.code.org/media/uploads/make.png
https://curriculum.code.org/media/uploads/singleslide.svg
https://curriculum.code.org/media/uploads/singleslide.svg
https://docs.google.com/document/d/1q13ZBiTwSUuE2zG5nSIvYv7QASLS784LjmpJis9vzQY/edit
https://curriculum.code.org/media/uploads/singleslide.svg
https://curriculum.code.org/media/uploads/singleslide.svg

 Teaching Tip

Supporting Students: While students are working on

their apps, circulate the room and check in with

students who need a little help. Encourage students to

collaborate and discuss bugs with each other.

Debugging: Review with students steps they can use

to debug if they get stuck:

Run the code on turtle mode

Add the variables to the watcher

Use console.log() to get output from the app

Explain the code to a friend

Read the code carefully line by line, trying to decide

which one is causing the error.

 Teaching Tip

Maximize Work Time: The wrap up is short to allow the

maximum amount of time for students to complete

the activity.

Wrap Up (5 mins)

 Remarks

  Awesome work today! Make sure to submit your

project when you're done with it!

Assessment: Make Project

Use the rubric provided with the project to assess

student projects.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lesson 5: Conditionals Explore

Overview

Students learn the basics of conditionals through an unplugged

activity using the sticky notes and plastic baggies from the

Variables Explore lesson. Flowcharts are introduced as a way to

understand how computers make decisions using Boolean

expressions.

Purpose

The warm up activity is designed to provide context for the

Conditionals progression. The subsequent activity provides

students a physical mental model they will be able to use when

they start programming with conditionals in the subsequent

lessons.

Agenda
Warm Up (5 mins)

Preview Conditionals

Activity (30 mins)

Conditionals

Wrap Up (10 mins)

Assessment: Check For Understanding

View on Code Studio

Objectives
Students will be able to:

Use appropriate vocabulary to describe

Boolean expressions and conditional

statements

Evaluate expressions that include Boolean

values, comparison operators, and logical

operators

Trace simple programs that use Boolean

expressions and conditional statements

Preparation

3 sandwich baggies per pair of students

packs of red, yellow, and blue stickies

pens / pencils

1 dry erase marker per four students

(pairs can share)

Review the slides and click through all

animations

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

CSP Unit 4 - Variables, Conditionals, and

Functions - Presentation

For the Students

CS Principles: Conditionals - Part 1

Boolean Expressions - Video

https://curriculum.code.org/csp-20/unit4/
https://studio.code.org/s/csp4-pilot/stage/5/puzzle/1/
https://docs.google.com/presentation/d/1GhpZOh2589s9MuKsll7YkQ3xv6nwcpmtAnTCgJPIXC0/edit?usp=view
https://www.youtube.com/watch?v=y3rCKJNOwpA&t=6s

 Teaching Tip

Supplies Substitutions: There's no need to use stickie

notes if you have other scraps of colored paper. Also

consider cutting stickies in 4 to make them go further.

If you don't have dry erase markers handy consider

using pieces of masking tape on the baggies.

Teaching Guide

Warm Up (5 mins)

Preview Conditionals

 Prompt: Imagine you want to make a decision about what to wear to an event. Name two pieces of information

you'd want. How would you use them in your decision?

Activity (30 mins)

Conditionals

Group: Group students in pairs.

 Distribute: Give each pair of students:

A small stack of red, yellow, and blue sticky notes

A pen/pencil

3 plastic baggies

A dry erase marker to share with another group

  Display: Use the activity slides for this lesson to

guide the unplugged activity on Conditionals.

Slides Speaker Notes

Say: Today we are going to explore Conditionals.

Say: Previously, we learned that information can be stored as

numbers or strings in variables. These are two different types of

data. Numbers and strings can be combined together using

operators to make expressions. Expressions are evaluated before

storing in variables.

Say: Boolean values are another type of data. They can store the

values “true” or “false”. Why would we want that information?

Booleans are used to make decisions. If something is true, do

this. If something is false, do that.

 Click for animation

Do This: You only need two blue sticky notes today. Write down

“true” on one and “false” on the other.

https://curriculum.code.org/media/uploads/CSP-Unit-4---Variables,-Conditionals,-and-Functionsconditionals1.svg
https://curriculum.code.org/media/uploads/CSP-Unit-4---Variables,-Conditionals,-and-Functions1.svg
https://curriculum.code.org/media/uploads/CSP-Unit-4---Variables,-Conditionals,-and-Functions2.svg
https://curriculum.code.org/media/uploads/animation.png

Slides Speaker Notes

Say: Let’s look at this expression. Take a guess as to what

Boolean value this evaluates to.

Do This: Hold up the sticky note with the correct value.

 Click for animation

Say: The expression evaluates to true, because 3 is less than 8.

 Click for animation

Say: The less than symbol is a comparison operator. When we

see a comparison operator, we need to stop and evaluate for a

Boolean value. There are six different comparison operators - you

may be familiar with some of them from math class. Notice the

double equal signs for "equal to". Here we are distinguishing from

a single equal sign that is used to assign value to a variable. We

read a single equal sign as “gets the value”. A double equal sign

can be read as "equal to”.

Say: Both sides of the relational operator should be reduced to a

single value before we can compare. Think of it in terms of sticky

notes. You should have only one sticky note on each side.

Do This: What does 3 + 9 equate to?

 Click for animation

Say: Right: 9! Now we can compare 9 and 8 using the relational

operator: less than.

Do This: Does this evaluate to true or false? Hold up the correct

sticky note.

 Click for animation

Say: Let’s evaluate these expressions line by line. It may be

helpful to use your sticky notes here.

Do This: Reduce each side of the relational operator to one sticky

note. Then evaluate for a Boolean value. Compare your answers

with a partner.

 Click for animation: When the class is finished, click through

to view the answers. The third line may be a little tricky. Remind

students to evaluate the information in the parenthesis first. In

the fourth line, draw attention to the double equal signs and

remind the class double equal signs are a signal to compare if

both sides are the same.

https://curriculum.code.org/media/uploads/CSP-Unit-4---Variables,-Conditionals,-and-Functions3.svg
https://curriculum.code.org/media/uploads/animation.png
https://curriculum.code.org/media/uploads/animation.png
https://curriculum.code.org/media/uploads/CSP-Unit-4---Variables,-Conditionals,-and-Functions4.svg
https://curriculum.code.org/media/uploads/animation.png
https://curriculum.code.org/media/uploads/animation.png
https://curriculum.code.org/media/uploads/CSP-Unit-4---Variables,-Conditionals,-and-Functions-5.svg
https://curriculum.code.org/media/uploads/animation.png

Slides Speaker Notes

Say: The expressions that we evaluate can also contain variables.

Remember, variables store information. This information can be

different data types like numbers, strings, or even Boolean values

themselves. For now, we are going to stick with numbers.

Do This: With a partner, reduce both sides of the relational

operator. Then evaluate for a Boolean value.

 Click for animation: When the class is finished, click through

for the answer. Draw attention to the note: any expression that

can be evaluated for true or false is known as a Boolean

Expression.

Say: At the beginning of class, we talked about how Booleans are

used to make decisions. Let’s see that in action. Consider the

following question: Can I go to the movies? I’m allowed to if it’s

before 8 o’clock. This may seem like a simple decision! But let’s

think about this like a computer.

Do This: What information would the computer need to know in

order to answer the question. Create a baggie variable to store

the information. Give it a name.

Say: This is a flowchart. It’s an organized way to make a decision

or come to a conclusion. Creating a flowchart helps us think like a

computer. At the top, we are listing the variables that are

needed. Your variable might be called time or clock or really

anything. It doesn’t matter as long as you use the same name

every time you refer to the variable. For this example, I’m

naming my variable “time”. Let’s step through the flowchart with

an example to see how it works.

https://curriculum.code.org/media/uploads/CSP-Unit-4---Variables,-Conditionals,-and-Functions-6.svg
https://curriculum.code.org/media/uploads/animation.png
https://curriculum.code.org/media/uploads/CSP-Unit-4---Variables,-Conditionals,-and-Functions7.svg
https://curriculum.code.org/media/uploads/CSP-Unit-4---Variables,-Conditionals,-and-Functions8.svg

Slides Speaker Notes

 Click for animation

Say: It’s 9 o’clock. Can I go to the movies?

 Click for animation

Say: First I assign 9 to the variable time, then I move on to the

diamond section.

 Click for animation

Say: I see a comparison operator, which let’s me know that we

need to stop and evaluate the Boolean expression.

 Click for animation

Say: First reduce both sides to a single value. Then evaluate for a

Boolean value. In this case, The Boolean expression evaluates to

false.

 Click for animation

Say: Follow the “false” path, and we arrive at the result: “I can’t

go to the movies.”

Note: If students are confused, return back to the previous slide

and try running some examples together as a class. Students can

hold up true or false when evaluating the Boolean expression.

Once students get the hang of using a flowchart, continue on to

the next slide.

Say: Here’s another decision that needs to be made. I’m not sure

if I have won the game I’m playing. I have won it if my score *

(times) my lives is greater than 10.

Do This: Direct students to create baggie variables for the

information that needs to be stored and write down the Boolean

expression on a spare sticky note or scrap paper. Groups then

compare their Boolean expressions.

Say: Take a look at the Boolean expression in the decision section

of the flowchart. Is this similar to what you and your partner

wrote? Are there other ways we could construct this? (score and

lives might have different names, score and lives might be in

opposite order, you could write it as 10 < score * lives).

 Click for animation

Do This: With a partner, try following the flowchart with a few

different inputs.

https://curriculum.code.org/media/uploads/CSP-Unit-4---Variables,-Conditionals,-and-Functions9.svg
https://curriculum.code.org/media/uploads/animation.png
https://curriculum.code.org/media/uploads/animation.png
https://curriculum.code.org/media/uploads/animation.png
https://curriculum.code.org/media/uploads/animation.png
https://curriculum.code.org/media/uploads/animation.png
https://curriculum.code.org/media/uploads/CSP-Unit-4---Variables,-Conditionals,-and-Functions10.svg
https://curriculum.code.org/media/uploads/CSP-Unit-4---Variables,-Conditionals,-and-Functions11.svg
https://curriculum.code.org/media/uploads/animation.png

Slides Speaker Notes

Say: Here's a new decision we need to make.

Do This: With a partner walk through the steps on the screen.

Think about what the Boolean expression will look like.

Say: Here's a flowchart for the question we just considered.

Do This: With your partner, step through the flowchart with a few

different inputs.

Note: After students have practice on their own, call on one

group to give input values for dogAge and myAge and step

through the flowchart as a class.

Say: What happens if my decision requires several steps? I want

to adopt a cat, but I have to have both 40 dollars and be over 14

years old.

Note: Emphasize precise language here. The Boolean is checking

if I have 40 dollars - that's exactly 40, not one cent more! In the

Conditional Practice lesson, students will return to this flowchart

and edit it to account for having more than 40 dollars.

Say: Let's get setup for stepping through the decision making

process for this question.

Do This: Set up your baggies, and discuss with a partner how the

flowchart might be set up.

Say: This flowchart looks a little different from the previous one.

There are two stopping points where a Boolean expression is

evaluated. Let’s try this out with an example.

 Click for animation: Click through, one step at a time with the

class. When you get to a decision point, before clicking to the

next animation have students evaluate the expression and hold

up a blue sticky note.

Say: Notice in question box, I’ve stated that I can adopt the cat if

I have 40 dollars AND (emphasize) I am over 14 years old. I am

checking two things. Let’s look at a way to simplify that process.

Say: In the previous example, we had two Boolean expressions to

evaluate. We can use logical operators to compare the results of

those Boolean expressions. The logical operators we will look at

are && (AND),

https://curriculum.code.org/media/uploads/CSP-Unit-4---Variables,-Conditionals,-and-Functions12.svg
https://curriculum.code.org/media/uploads/CSP-Unit-4---Variables,-Conditionals,-and-Functions13.svg
https://curriculum.code.org/media/uploads/CSP-Unit-4---Variables,-Conditionals,-and-Functions14.svg
https://curriculum.code.org/media/uploads/CSP-Unit-4---Variables,-Conditionals,-and-Functions15.svg
https://curriculum.code.org/media/uploads/CSP-Unit-4---Variables,-Conditionals,-and-Functions16.svg
https://curriculum.code.org/media/uploads/animation.png
https://curriculum.code.org/media/uploads/CSP-Unit-4---Variables,-Conditionals,-and-Functions17.svg

Slides Speaker Notes

Say: Now we're going to take a look at something called a Truth

Table. We are going to change the color of the sticky notes a little

bit. Boolean values will still be on blue stickies, but true will be a

dark blue, and false a light blue.

Note: there is no need to supply two different colors of blue sticky

notes for these slides. Students can follow along.

Say: This is a Truth Table. It demonstrates all the possible

combinations of true and false and what they would evaluate to if

combined with the logical operator && (AND). The first one

seems obvious to us - if something is true and another thing is

true, then the whole thing is true!. Read through each row, and

consider what is being stated. In rows 2 and 3, if one value is

false, the whole thing evaluates to false. This is what happened

with the cat example. On the final line, if both values are false,

the final evaluation is false.

 Click for animation

Say: What's the takeway? In evaluating two Boolean expressions

with the AND operator, both must be true in order for the whole

expression to evaluate as true.

Say: Now let's consider a Truth Table for OR.

Do This: With a partner, evaluate each row. For example, if the

first sticky is True or the second sticky is True what do you think

the whole expression will evaluate to: true or false?

 Click for animation: Stop line by line and allow time for groups

to make their predictions.

 Click for animation

Say: For the OR Truth Table, if either sticky note is True the

expression evaluates to true.

Say: The ! NOT table is simple because it reverses the value.

 Click for animation: As a class quickly state what the opposite

values are and click through the animations.

https://curriculum.code.org/media/uploads/CSP-Unit-4---Variables,-Conditionals,-and-Functions18.svg
https://curriculum.code.org/media/uploads/CSP-Unit-4---Variables,-Conditionals,-and-Functions19.svg
https://curriculum.code.org/media/uploads/animation.png
https://curriculum.code.org/media/uploads/CSP-Unit-4---Variables,-Conditionals,-and-Functions20.svg
https://curriculum.code.org/media/uploads/animation.png
https://curriculum.code.org/media/uploads/animation.png
https://curriculum.code.org/media/uploads/CSP-Unit-4---Variables,-Conditionals,-and-Functions21.svg
https://curriculum.code.org/media/uploads/animation.png

Slides Speaker Notes

Say: Let’s return to the cat example. How can we write a single

expression that accounts for all the information that needs to be

checked?

Do This: With a partner, create the expression using logical

operators.

Note: It’s ok if students struggle with this activity. After a few

minutes, move on to the next slide and reveal the answer. This

will help students make the connection.

 Click for animation: Click through the animation step by step

and follow along as a class. Allow time to predict at decision

points. When the truth table (yellow box) appears on the screen,

take a moment to remind students what this is and what it

demonstrates. If a value is true and another value is true, it

evaluates to true. It’s not expected that students will memorize

the truth tables, but they should be familiar with how they work.

Note: If you have extra time, try running this flowchart with other

inputs. Try changing the conditions and then running the

flowchart (i.e. I can adopt the cat if I have 40 dollars OR I am

over 14 years old)

Say: Today we used flowcharts to demonstrate how computers

make decisions. In the next class, we will investigate how

decisions are made in code.

Do This: Give students a few minutes to craft their own

flowcharts and test on each other following the instructions on

the screen.

Note: Simple flowcharts are fine, or students can build more

complex models. Students are ready to move on when the

majority of the class has made and tested a flowchart.

 Click for animation: Review the key takeaways on the screen

with students.

 Click for animation: Review the key takeaways with students.

Wrap Up (10 mins)

https://curriculum.code.org/media/uploads/CSP-Unit-4---Variables,-Conditionals,-and-Functions22.svg
https://curriculum.code.org/media/uploads/CSP-Unit-4---Variables,-Conditionals,-and-Functions23.svg
https://curriculum.code.org/media/uploads/animation.png
https://curriculum.code.org/media/uploads/CSP-Unit-4---Variables,-Conditionals,-and-Functions24.svg
https://curriculum.code.org/media/uploads/CSP-Unit-4---Variables,-Conditionals,-and-Functions25.svg
https://curriculum.code.org/media/uploads/animation.png
https://curriculum.code.org/media/uploads/CSP-Unit-4---Variables,-Conditionals,-and-Functions-26.svg
https://curriculum.code.org/media/uploads/animation.png

 Teaching Tip

Running the Activity: This activity asks students to

follow along as a number of core concepts for

programming are introduced. The model is typically

that a term or concept is introduced and modeled and

then afterwards students are encouraged to try it out

on their own. Trying it out typically means they are

writing information on a sticky note and sharing it with

another group before discussing the results with the

whole class.

Slides with animations have an icon in the bottom left

corner to let you know you need to click to reveal

more of the slide's content.

To help you more easily prepare the activity and keep

track of your instructions, detailed instructions have

been included as speaker notes in the presentation.

Here are some tips to help you throughout the

presentation.

There are opportunities throughout the presentation

for students to actively engage. At these moments

students should be making things with their

manipulatives or using them to answer questions.

Use these opportunities to check progress.

There is a fair amount of new vocabulary introduced

but it is introduced gradually and with intentional

repetition. Make a point of actively modeling the

use of new terms.

The most important goal here is building a mental

model. It is ok if students have some open

questions that will get resolved over the subsequent

conditional lessons.

Both you and students can use the "Key Takeaways"

to check your understanding at the end.

 Video: CS Principles: Conditionals - Part 1 Boolean

Expressions - Video As a class watch the video on

Boolean expressions.

 Journal: Have students add the following words

and definitions to their journals: Boolean Value and

Boolean Expression.

Assessment: Check For
Understanding

Check For Understanding Question(s) and solutions

can be found in each lesson on Code Studio. These

questions can be used for an exit ticket.

Question: Can a computer evaluate an expression to

something between true and false? Can you write an

expression to deal with a "maybe" answer?

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CSP2021

AAP-2 - The way statements are sequenced and combined in a program determines the computed result

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://www.youtube.com/watch?v=y3rCKJNOwpA&t=6s
https://creativecommons.org/
https://code.org/contact

UNIT

4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lesson 6: Conditionals Investigate

Overview

In this lesson students work with partners to investigate three

versions of the "Thermostat App" to understand how boolean

expressions and conditional statements allow programs to make

decisions. In each guided investigation students first watch a

short video on a concept, then use a working app to predict how

new features work, then investigate the code to see how those

features are implemented, and finally modify the code to add

expanded features. To conclude the lesson, students review and

discuss common programming patterns with conditionals.

Purpose

After building a conceptual model for boolean expressions and

conditional statements in the previous lesson, this lesson allows

students to see how they are actually implemented in code. This

lesson also introduces common programming patterns when

using variables. Students will have some opportunities to modify

working code in this lesson, but the most significant practice with

conditional statements and boolean expressions will come in the

following lesson.

Agenda
Warm Up (5 mins)

Preview the Lesson

Activity (35 mins)

Investigation 1: If-Statements (Levels 2-3) - 15 mins

Investigation 2: If-Else Statements (Levels 4-6) - 10 mins

Investigation 3: Logical Operators AND OR (Levels 7-8) -

10 mins

Wrap Up (5 mins)

Assessment: Check For Understanding

View on Code Studio

Objectives
Students will be able to:

Identify common programming patterns

using boolean expressions and conditional

statements

Explain the purpose of those programming

patterns with boolean expressions and

conditional statements both in terms of

how they work and what they accomplish

Modify apps that make use of common

programming patterns with boolean

expressions and conditional statements to

adjust their functionality

Preparation

Review the example apps and the

prompts that students will be asked to

respond to for each

Review the information covered in the

slides

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

CSP Unit 4 - Variables, Conditionals, and

Functions - Presentation

https://curriculum.code.org/csp-20/unit4/
https://studio.code.org/s/csp4-pilot/stage/6/puzzle/1/
https://docs.google.com/presentation/d/1GhpZOh2589s9MuKsll7YkQ3xv6nwcpmtAnTCgJPIXC0/edit?usp=view

 Discussion Goal

Optional Warmup Prompt: This prompt is optional and

helpful further synthesize key points from the previous

lesson. If you are able to quickly move to the main

activity and believe your class does not need this

revew consider skipping this prompt.

 Teaching Tip

Show the Video at the Front: In order to better keep

the group together we recommend you show the

videos at the front of the room.

Reinforce When vs. If: As you make your way through

these examples model using "when" and "if" as

described in the warm up. For example, "when" the

buttons are clicked the app is deciding "if" the

temperature can change.

Teaching Guide

Warm Up (5 mins)

Preview the Lesson

  Prompt: A water park will let a visitor on a ride if

they are 48 or more inches tall OR they are 14 years

old or older. Make a flowchart for this decision. Make

sure to use comparison operators (< , > , == , etc.)

and logical operators (&& , || , !) when you write

your Boolean expression.

Discuss: Have partners share their responses at their

tables. Then discuss answers briefly as a class.

 Remarks

 In everyday conversation it is common to switch between using the words "when" and "if". Here's some

examples of what this looks like

"When the user clicks the button..."

"If the user clicks the button..."

"When the user has more than 100 points..."

"If the user has more than 100 points..."

Today we want to be careful about how we use these words. To make things simple, we're going to use the

following rules.

"when": Means there is an onEvent to respond to user input. The app does something "when" the user clicks.

"if": Means there is a conditional statement that decides what pieces of code to run. The app does something

"if" a boolean expression evaluates to true.

We'll talk more about this later but for now keep an eye out for the difference between "when" and "if".

Activity (35 mins)

Group: Place students in pairs. One student per group should navigate to the lesson on Code Studio.

Investigation 1: If-Statements (Levels
2-3) - 15 mins

  Level 2 - Video - Conditionals: If Statements As a

class watch the video on if-statements.

  Level 3 - Lemon Squeeze App Pt 1: This code

investigation includes a number of steps to help

students get familiar with a new app.

Form Pairs: Place students in pairs

Play the Game: Let students play the game for a

couple minutes

Assign Code Sections: Count off pairs by three and assign them to one of the three code sections.

Read Code: Groups should carefully read the code for their section making sure they understand how it works.

Give them 3 minutes to do so.

Explain Your Section: Have groups find members of the other two sections and carefully explain how their section

works. Give each group 1-2 minutes to do so.

Class Discussion: Ask a few members of each section to quickly share out how their section works. Display the

code at the front so you can talk through it together.

https://studio.code.org/docs/applab/onEvent/

 Teaching Tip

Running the First Investigation: This first investigation

is supposed to get students moving around the room

while also motivating them to carefully read a new

program. As you circulate the room encourage them to

read carefully, ask good questions, and be comfortable

asking where they don't understand something.

 Teaching Tip

Running the Second Investigation: This second

investigation remains focused on reading code, but

students are more responsible than last time for

showing their work. Students will need to create a

flowchart for the new if-else-if statement and make

more significant modfications to the code. Continue to

emphasize open discussion and collaboration between

partners.

 Teaching Tip

Running the Third Investigtaion: In this final

investigation students are primarily working

independently to design their flowchart and modify the

code. While you should quickly have students share

out what they noticed about how the app changed,

spend most of your time circulating answering

questions students have as they modify the programs

or draw their flowcharts.

Modify: Have groups return to their original seats.

Give them a couple minutes to work on the modify

the app so that the game ends once a user has 0

lives remaining.

Investigation 2: If-Else Statements
(Levels 4-6) - 10 mins

 Level 4 - Video - Conditionals: If-Else Statements

As a class watch the video on if-else statements.

 Level 5 - Video - Conditionals: If-Else-If Statements As a class watch the video on if-else statements.

  Level 6 - Lemon Squeeze App Pt 2 This program

is an updated version of the Lemon Squeeze app. This

time students should continue to work in partners but

do not need to work with other groups. They will need

to

Play the Game: Have students play the game

Discuss Changes: Talk through how the game plays

differently now

Find the if-else-if command: Have students find

the command

Draw a flowchart: Students should draw a flow chart for the if-else-if command in their journals

Modify the code: Modify the program to make the lemon even smaller when the player has more than 15 points.

Investigation 3: Logical Operators AND OR (Levels 7-8) - 10 mins

 Level 7 - Video - Conditionals: If-Else Statements As a class watch the video on if-else statements.

  Level 8 - Lemon Squeeze App Pt 3: This program

is a final version of the Lemon Squeeze app. Again

students should work with partners.

Play the Game: Have students play the game

Discuss Changes: Talk through how the game plays

differently now

Find the if-else-if command: Have students find

the if-else-if command that was added

Draw a Flowchart: Students should draw a

flowchart of this new if-else-if command

Modify the code: Modify the program to add a new username and password. Students will have to modify the

code as well as the user interface.

Wrap Up (5 mins)

 Prompt: What is the difference between an if-statement, an if-else statement, and an if-else-if statement? How

are they similar?

 Review Patterns: Have students read the pattern introduced in Level 9. This pattern appears frequently with if-

else-if statements. Students' understanding of this pattern is assessed in the Check Your Understanding Question.

Assessment: Check For Understanding

Check For Understanding Question(s) and solutions can be found in each lesson on Code Studio. These questions

can be used for an exit ticket.

 Discussion Goal

Goal: Some key points to call out in this discussion.

These statements are more the same than different.

They all use boolean expressions to decide whether

to run certain pieces of code.

if-statements check if one boolean expression is

true. If it is, a piece of code is run. Otherwise the

code runs as normally.

if-else statements add the functionality that if the

condition is false it can still run some code before

returning to running the program as normal

if-else-if statements can check more than one

boolean expression. They will only run the code for

the first boolean expression that evaluates to true.

Question: When creating an if-else-if statement you

should always make your first condition the most

specific. Write a short paragraph responding to the

questions below.

What does it mean to put the most specific case

first?

Why is it important to put the most specific case

first? What types of errors does it help avoid?

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CSP2021

AAP-2 - The way statements are sequenced and combined in a program determines the computed result

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lesson 7: Conditionals Practice

Overview

In this lesson students spend most of their time practicing using

the skills and processes they have learned about conditionals. At

the conclusion of the lesson students discuss the main things

they realized and still have questions about at the conclusion of

this lesson.

Purpose

This lesson is students primary opportunity to get hands on with

conditionals in code prior to the Make activity in the following

lesson. Give students as much class time as you can to work

through these. For this lesson it's recommended that you place

students in pairs as a support and to encourage discussion about

the challenges or concepts they're seeing. In the following lesson

students are encouraged to work independently.

Agenda
Warm Up (5 mins)

Quick Warm Up

Activity (35 mins)

Practice Time

Wrap Up (5 mins)

Assessment: Check For Understanding: AP Practice

View on Code Studio

Objectives
Students will be able to:

Write programs that use boolean

expressions and conditional statements

with the support of sample code.

Debug programs that use boolean

expressions and conditional statements

Preparation

Review the programming challenges

students will be completing

Review the Debugging Guide for ideas

on how to support your students during

the lesson

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

CSP Unit 4 - Variables, Conditionals, and

Functions - Presentation

CSP Debugging Guide Make a Copy

https://curriculum.code.org/csp-20/unit4/
https://studio.code.org/s/csp4-pilot/stage/7/puzzle/1/
https://docs.google.com/presentation/d/1GhpZOh2589s9MuKsll7YkQ3xv6nwcpmtAnTCgJPIXC0/edit?usp=view
https://docs.google.com/document/d/13wipr2CpR3kHY2_pLoiUtVPqt2prMaTASYr5XaRoy-Q/edit?usp=sharing

 Teaching Tip

Move Quickly to the Activity: There's a lot in the main

activity of today's lesson. You may optionally wish to

do a quick vocabulary review or address any questions

that came up in the last lesson. Otherwise, give

students more time to get hands on with some code.

 Teaching Tip

Providing Support: Circulate around the room through

the lesson encouraging students to use the strategies

introduced at the beginning of the lesson. Students

have a number of supports at their fingertips, so a big

part of your role is helping build their independence in

using those resources.

Teaching Guide

Warm Up (5 mins)

Quick Warm Up

 Remarks

 Today we're going to have a chance to practice

programming with a lot of the concepts and

patterns we've explored over the last two lessons. I

encourage you to go through these with a partner,

but pay close attention to what each other is doing.

In our next lesson you're going to have to use a lot

of these on an independent project, and these

activities are good practice for what you'll find

there! Alright, let's get to it!

Activity (35 mins)

Practice Time

Group: It is recommended that students work in pairs for this lesson and a number of the activities feature

discussion prompts. Consider using pair programming, having drivers and navigators switch every 3 minutes, not

every level.

 Do This: Direct students to Code Studio, Lesson 3 Level 2. Then briefly remind students about debugging skills

that they will be using in today's activity.

 Remarks

Today you're mostly going to practice what we've learned about programming with conditionals. As always you

should be using the debugging process to help you as you work on issues. Today we're also going to be working

on finding two types of errors

1. Syntax errors show up when you type code that breaks the rules of the programming language. You can check

for errors and warnings

2. Logic errors show up when you type valid code but it works incorrectly. Today you're going to focus on testing

your code to make sure you don't have logic errors.

Other errors you may encounter include:

Run-time error - a mistake in the program that shows when running the program. These are defined by the

programming language.

Overflow error - an error that occurs when a computer tries to handle a number outside of the defined range of

values.

 Levels 2-4: These levels only use the console.log()

command which prints commands in the debug

console. Here are a few things to keep an eye out for

Levels 2-3 ask students to write Boolean

expressions using comparison operators. Students

may need to quickly review the comparison

operators < , > , <= , >= , == , !=

Level 4 asks students to write Boolean expressions

with logical operators && , || , !

Levels 5-9: These levels practice if-statements while working with a star color-changing app.

Levels 5-6 involve setting up an if-statement that becomes an if-else statement.

https://studio.code.org/docs/gamelab/console.log/

 Discussion Goal

Goal: Use this opportunity to address any lingering

questions or misconceptions in the room. You can also

use this as a source of discussion topics to kick off the

following lesson. As you lead the discussion, call out

the many resources students have access to help

when they're getting stuck.

In Level 7 students follow a pattern to create a lengthy if-else-if statement.

For Level 8, make sure students slow down the running of the code to understand what's happening. It's

suggested that students use the slider to slow down the code.

Level 9 demonstrates that Boolean expressions can be written as conditional statements, and vice versa

Levels 10-11: The levels return to the "Can I Adopt a Cat?" flowchart from the Conditionals Explore activity. Students

will use the flowchart to work out the logic of the if-statements in a their program.

A new block appears in these levels: getNumber() . This is different than getText() . getNumber() gets a number

from a user input that can be used mathematically.

Level 11 can be completed many different ways. There are different combinations of Boolean expressions using

&& and || . Students should regularly test their apps to see if their Boolean expressions are working properly.

Extension Opportunities:

Level 4: Students can add more variables and create complex Boolean expressions. One challenge might be to

assign a String to a variable and compare that string to another.

Level 10: There are multiple solutions. If students build their if-statement using only && encourage them to figure

out how to build it using only || . They many need to switch the content of the if and else branches.

Level 11: Create another input (i.e. How many cats do you already own?). Students use this information to craft

more complex if-statements.

Wrap Up (5 mins)

  Prompt: What aspects of working with

conditionals do you feel like clicked today? What do

you still feel like you have trouble with?

 Remarks

Conditionals can be a little bit tricky, but I saw a lot

of good progress today in nailing down this concept.

We may have a few lingering questions, but you

also have a lot of resources available. Next time

you'll have a chance to put all this together by

programming an app that starts with "the blank screen"!

Assessment: Check For Understanding: AP Practice

Check For Understanding Question(s) and solutions can be found in each lesson on Code Studio. These questions

can be used for an exit ticket.

Question: What will be displayed after this code segment is run?

Question: The program below asks a user to type in a number and then will output a message. What number will a

user need to input for the message "COLD" to be displayed?

https://studio.code.org/docs/applab/getNumber/
https://studio.code.org/docs/applab/getText/
https://studio.code.org/docs/applab/getNumber/
https://images.code.org/83c829d8942524414e0b5b2cb5151917-image-1567706962530.png

number <- INPUT()

IF (number >= 10)

{

 IF (number <= 20)

 {

 DISPLAY("MEDIUM")

 }

 ELSE

 {

 DISPLAY("HOT")

 }

}

ELSE

{

 DISPLAY("COLD")

}

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CSP2021

AAP-2 - The way statements are sequenced and combined in a program determines the computed result

CRD-2 - Developers create and innovate using an iterative design process

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lesson 8: Conditionals Make

Overview

Using Programming Patterns and a step-by-step approach

students make their own version of a Museum Ticket Generator

app. At the beginning of the lesson students are able to explore a

working version of the app. They are then given the design

elements of the app but begin with a blank screen. A progression

of levels guides students on the high level steps they should use

to develop their app but leaves it to them to decide how to write

the code. At the end students submit their apps which can be

assessed using a provided rubric.

Purpose

This lesson is an opportunity for students to take on the "blank

screen" and build the code that runs an app entirely from scratch.

Guidance provided throughout the lesson helps students break

down the large task of "building an app" into more incremental

steps that they can use on future projects, including this unit's

final project and the Create PT.

Agenda
Warm Up (2 mins)

Intro the Project

Activity (38 mins)

Build the Museum Ticket Generator

Wrap Up (5 mins)

Assessment: Make Project

View on Code Studio

Objectives
Students will be able to:

Recognize the need for programming

patterns with Boolean expressions and

conditional statements as part of

developing a functioning app

Implement programming patterns with

boolean expressions and conditionals

statements to develop a functioning app

Write comments to clearly explain both the

purpose and function of different segments

of code within an app

Use debugging skills as part of developing

an app

Preparation

Review the different steps students will

be asked to complete as they build the

app

Review the information covered in the

slides

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

CSP Unit 4 - Variables, Conditionals, and

Functions - Presentation

For the Students

CSP Conditionals Make - Museum Ticket

Generator App - Activity Guide

Make a Copy

https://curriculum.code.org/csp-20/unit4/
https://studio.code.org/s/csp4-pilot/stage/8/puzzle/1/
https://docs.google.com/presentation/d/1GhpZOh2589s9MuKsll7YkQ3xv6nwcpmtAnTCgJPIXC0/edit?usp=view
https://docs.google.com/document/d/1Xl34LDzK2GB2x46Bo8Mx6RI1K-deRG_vHO1oQqZlfsA/edit

 Teaching Tip

Short Intro: The Warm Up today is short and light.

Students should spend the maximum amount of time

working on their projects.

 Discussion Goal

What does this app do?

Generates a ticket to a museum based on input

data from the user.

What are the inputs?

The dropdowns for age and day of the week

The discount code text field

The button to generate the ticket

What are the outputs?

The ticket generated at the bottom of the screen

What variables do you think would be necessary for

this app to work?

The input information listed above will all need

variables (age, day, discountCode), but they may

want variables for other information calculated

during the app.

What kinds of conditional logic do you think are

necessary to make it work?

The pricing rules help you know what to write.

They'll definitely need to use if-else-if statements

and AND / OR operators in order to implement

these rules since they include multiple conditions

to check.

Teaching Guide

Warm Up (2 mins)



Intro the Project

 Remarks

For the past few days, we've learned a lot about

using conditional statements to help apps make

decisions. In today's Make Project you'll be

practicing both making flow charts and writing

complex conditionals statements as you build a Museum Ticket Generator app.

Activity (38 mins)

Build the Museum Ticket Generator

Group: Make a determination as to whether this project will be completed in pairs or individually. You may even

choose to let students decide.

Distribute: Make sure students have access to scrap paper and pencils / paper for drawing flow charts.

 Level 2 - Explore: Have students explore the working Museum Ticket Generator App in Level 2. If students are

not working in pairs they should still discuss the prompts with a neighbor.



 Prompt:

What does this app do?

What are the inputs?

What are the outputs?

What variables do you think would be necessary for

this app to work?

What kinds of conditional logic do you think are

necessary to make it work?



 Remarks

Now let's build the this app. The screen has been

set up for you - it's your job to add the code!

Distribute: Give students copies of CSP Conditionals

Make - Museum Ticket Generator App - Activity Guide

if you will be using it during the class.

 Do This: Direct students to level three where they

complete the Museum Ticket Generator App. Based

on the needs of your classroom decide whether you

will collectively go through the activity guide or have

students complete it individually. Afterwards give

them time to work on their projects and circulate the

room to offer support. Students who finish early can

work on the extensions suggested in the activity

guide.

https://curriculum.code.org/media/uploads/singleslide.svg
https://curriculum.code.org/media/uploads/singleslide.svg
https://docs.google.com/document/d/1Xl34LDzK2GB2x46Bo8Mx6RI1K-deRG_vHO1oQqZlfsA/edit
https://curriculum.code.org/media/uploads/singleslide.svg

 Teaching Tip

Supporting Students: While students are working on

their apps, circulate the room and check in with

students who need a little help. Encourage students to

collaborate and discuss bugs with each other.

Debugging: Review with students steps they can use

to debug if they get stuck:

Run the code on turtle mode

Add the variables to the watcher

Explain the code to a friend

 Teaching Tip

Maximize Work Time: The wrap up is short to allow the

maximum amount of time for students to complete

the activity.

 Submit: Encourage students to check the rubric on

the last page of the Activity Guide before submitting.

Wrap Up (5 mins)

 Remarks

  Awesome work today! Make sure to submit your

project when you're done with it!

Assessment: Make Project

Use the rubric provided with the project to assess

student projects.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://curriculum.code.org/media/uploads/singleslide.svg
https://creativecommons.org/
https://code.org/contact

UNIT

4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lesson 9: Functions Explore / Investigate

Overview

Students begin the lesson by considering two ways to write out

the lyrics of a song, one that includes a lot of repeated text and

one that does not. After exploring this example students

complete a series of investigate activities in which functions have

been used to remove repeated code from a program. At the

conclusion of the lesson students discuss the concept of a

function to synthesize their learning and add definitions to their

journal.

Purpose

This lesson is both the Explore and Investigate components of the

EIPM sequence for functions. Functions are best understood by

actually using them in a program, and so while the Explore

component is relatively shorter, students actually are given many

opportunities to observe how functions are used in programs.

There is a heavy emphasis on running programs slowly to see

how functions change the order in which programs run.

If you are a teacher with more experience with the concept of

functions you may be wondering where other related concepts

like parameters, arguments, and return values, will be introduced.

In this unit these additional concepts are not learning objectives,

and they will not be discussed in detail until later units. For now,

it is fine for students to think of functions simply as a way to

name a collection of commands so that they can be used in

multiple places within your code.

Agenda
Warm Up (5 mins)

Explore Song Lyrics

Activity (30 mins)

Investigate

Wrap Up (10 mins)

Synthesizing Discussion

Assessment: Check For Understanding

View on Code Studio

Objectives
Students will be able to:

Use appropriate vocabulary to describe the

declaring and calling of functions

Trace the flow of execution in programs

that declare and call functions

Describe the way a function call interrupts

the normal flow of execution within a

program

Modify programs that declare and call

functions to adjust their functionality

Preparation

Print copies of the activity guide of song

lyrics used in the warm up or determine

how you'll project it to the class.

Review the apps that students will

investigate in the app

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

CSP Unit 4 - Variables, Conditionals, and

Functions - Presentation

For the Students

Song Lyrics - Activity Guide

Make a Copy

https://curriculum.code.org/csp-20/unit4/
https://studio.code.org/s/csp4-pilot/stage/9/puzzle/1/
https://docs.google.com/presentation/d/1GhpZOh2589s9MuKsll7YkQ3xv6nwcpmtAnTCgJPIXC0/edit?usp=view
https://docs.google.com/document/d/1Kf0x84kHyOPXsEVp3LnXEYGiGybKXqqL86a4xgKHBLI/edit?usp=sharing

 Discussion Goal

Goal: This lesson does not feature a large hands-on

explore segment, but students should still get a quick

introduction to the concept of a function before

jumping in the code to try it out. Run this discussion to

help motivate the ideas underlying functions. Here are

the main points to bring out.

In Style 1 you read line 10 after line 09. This is a the

normal order we're used to.

In Style 2 you sing the lyrics “out of order”. After

line 09 you’re going to sing line 35

It’s shorter to write the song but it’s the same song

and will take the same time / lyrics to sing.

Style 2 removes repetition and it also makes it a

little easier to understand the overall structure of

the song

Teaching Guide

Warm Up (5 mins)

Explore Song Lyrics

Distribute: Share print copies of Song Lyrics - Activity

Guide or project the activity guide where all can see

it.

  Prompt:

In Style 1, what line of the song do you sing after

line 09? What about in Style 2?

Style 2 uses fewer lines to write. Are there fewer

lyrics to sing?

What are the benefits of writing a song in Style 2?

 Remarks

This second song is written in a style that we're

going to use to write some of our programs. In fact,

we're going to start off by looking at a program that

"sings" this exact same song.

Activity (30 mins)

Investigate

Group: Group students in pairs.

 Do This: Direct students to Level 2 for the lesson on Code Studio.

Level 2 - Explore Song Lyrics: This level is a continuation of the Explore activity in the warmup. Students should

watch the code run slowly to see how the code that is running will jump down to the bottom of the program (the

function declaration) when the name of the function is used (the function call).

 Remarks

This concept that we just explored in both text and a program is called a "function". We're going to watch a short

video that explains it in more detail.

 Level 3 - Video: Watch the video as a class. The most important two takeaways are that

Functions are declared in your program in order to give a group of commands a name

Functions are called to run those commands.

A function is only declared once but is called as many times as you wish.

 Level 4 - Investigate Score Clicker

Discuss: Once students have had a chance to run the code ask them to explore it and be ready to share

responses to the questions provided.

The function is declared on line 22 but called three times, on lines 5, 11, and 18.

This way of writing the program makes the code in each of the buttons much simpler to read. It also removes

repeated code.

Modify: Have students modify the program as instructed. All of the modifications should be made from within the

function. Afterwards call out the following points.

If you change the function you can use those changes every place the function is called.

These changes make it easier to debug your program since you are not writing redundant code. You only need

to rewrite and debug the code once.

https://docs.google.com/document/d/1Kf0x84kHyOPXsEVp3LnXEYGiGybKXqqL86a4xgKHBLI/edit?usp=sharing

 Discussion Goal

Goal: Use this quick discussion to identify any open

questions that students have at the conclusion of the

lesson. These can help you know where to focus

attention in the next lesson.

 Level 5 - Investigate Lemon Squeeze App with Functions

Modify: Students in this level are asked to create a function themselves by identifying repeated code. They'll

need to create a single function for this repeated code.

Discuss: After creating their function lead a short discussion on the benefits of creating a function to remove

repeated code.

Wrap Up (10 mins)

Synthesizing Discussion

 Journal: Review the updateScreen pattern with students. Afterwards have them add to their journal definition for

a function and a function call.

  Prompt: Reflecting on today's lesson about

functions:

What did you learn?

What are you uncertain about?

Assessment: Check For
Understanding

Check For Understanding Question(s) and solutions can be found in each lesson on Code Studio. These questions

can be used for an exit ticket.

Question: In your own words describe the benefits of creating functions in your code.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CSP2021

AAP-3 - Programmers break down problems into smaller and more manageable pieces

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lesson 10: Functions Practice

Overview

In this lesson students spend most of their time practicing using

the skills and processes they have learned about functions. At the

conclusion of the lesson students discuss remaining questions in

anticipation of their Make project in the following lesson.

Purpose

This lesson is students primary opportunity to get hands on with

conditionals in code prior to the Make activity in the following

lesson. Give students as much class time as you can to work

through these. For this lesson it's recommended that you place

students in pairs as a support and to encourage discussion about

the challenges or concepts they're seeing. In the following lesson

students are encouraged to work independently.

Agenda
Warm Up (5 mins)

Quick Warm Up

Activity (35 mins)

Practice Time

Wrap Up (5 mins)

Assessment: Check For Understanding: AP Practice

View on Code Studio

Objectives
Students will be able to:

Write programs that use functions with the

support of sample code

Debug programs that use functions

Identify opportunities to use functions to

reduce repeated code within a program

Preparation

Review the video in the level progression

that covers the topic of global vs. local

variables

Review the map level about "When to

make a function?"

Review other programming levels to be

better prepared to support students

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

CSP Unit 4 - Variables, Conditionals, and

Functions - Presentation

https://curriculum.code.org/csp-20/unit4/
https://studio.code.org/s/csp4-pilot/stage/10/puzzle/1/
https://docs.google.com/presentation/d/1GhpZOh2589s9MuKsll7YkQ3xv6nwcpmtAnTCgJPIXC0/edit?usp=view

 Teaching Tip

Move Quickly to the Activity: There's a lot in the main

activity of today's lesson. You may optionally wish to

do a quick vocabulary review or address any questions

that came up in the last lesson. Otherwise, give

students more time to get hands on with some code.

 Teaching Tip

Providing Support: Circulate around the room through

the lesson encouraging students to use the strategies

introduced at the beginning of the lesson. Students

have a number of supports at their fingertips, so a big

part of your role is helping build their independence in

using those resources.

Teaching Guide

Warm Up (5 mins)

Quick Warm Up

 Remarks

 Today we're going to have a chance to practice

programming with a lot of the concepts and

patterns we've explored over the last two lessons. I

encourage you to go through these with a partner,

but pay close attention to what each other is doing.

In our next lesson you're going to have to use a lot

of these on an independent project, and these

activities are good practice for what you'll find

there! Alright, let's get to it!

Activity (35 mins)

Practice Time

Group: It is recommended that students work in pairs for this lesson and a number of the activities feature

discussion prompts. Consider using pair programming, having drivers and navigators switch every 3 minutes, not

every level.

Distribute: Optionally pass out a plastic cup or other manipulative they can place on their computer when they are

stuck as a signal that they need support.

 Do This: Direct students to Code Studio, Lesson 10 Level 2

 Remarks

Today you're mostly going to practice what we've

learned about programming with conditionals. I'm

here to help you when you need, and you can put

this cup on your computer when you need help.

However, I first want to remind you of the following:

Use your debugging skills. Try to zoom in on

precisely where you're getting stuck.

Talk to your partner! That's what they're there

for!

Hover over blocks to read the documentation about how they work.

Read the resources in the Help & Tips tab

Talk to the group next to you. If another group asks for help make sure to take some time to talk it through with

them.

 Levels 2 - 6 Declare and Call Functions: In these levels students practice declaring and calling functions. At first

students practice calling functions that have already been declared for them. Students can focus their energy on

the syntax of calling a function and how using functions changes the order in which lines of code run. Later in the

progression they practice finding repeated code and are guided through how to create a function in its place.

 Display: Scope Practice video. This video is located on the slides and on Level 7. You may opt to have students

watch it alone or as a class.

  Levels 7 - 8 Function Scope: These two levels return to a topic that was covered in the variables lessons as

well: variable scope. While students do not need a deep understanding of scope at this point, they will in some

instances encounter debugging challenges that arise because of it.

 Discussion Goal

Goal: Use this opportunity to address any lingering

questions or misconceptions in the room. You can also

use this as a source of discussion topics to kick off the

following lesson. As you lead the discussion, call out

the many resources students have access to help

when they're getting stuck.

 Teaching Tip

Never - After - During - Before: In the map level

students are introduced to a framework for thinking

about their development with using functions. The

primary question is "when should I make a function".

In general, you want students to make their functions

earlier, as this both improves the process of writing

code and reflects deeper understanding of code

structure. Throughout this course, you want to see

them moving along the "never - after - during - before"

scale.

At this point students are still learning to identify

repeated code and replace it with a function. This

would align with the "after" level. In the Functions

Make project and the Unit 4 project they are

encouraged to anticipate the need for functions in

advance. Rather than write code twice and then

remove the duplicate code by creating a function later,

they should begin deciding early that they'll need a

function. The "updateScreen() pattern" helps reinforce

this point.

Reinforce this language in the classroom, though

remember it's only a guide. Not every student will

immediately be able to move on to "during" or

"before". Different approaches also work better in

different contexts, and many experienced

programmers will typically operate in the "during"

mode unless they're building a large and complex

project.

 Teaching Tip

Level 7 is a Map Level, which contains a review of

variable scope. It is highly recommended that you

watch the video in Level 7 prior to the lesson. Slides

are available for this lesson if you would like to

optinally review as a class.

 Level 9 - 10 Creating Functions: In these levels

students revisit the Movie Ticket app and are

challenged to think through the process of declaring a

function with code that they anticipate could be

repeated. Level 9 is a map level about when students

should decide to create functions.

Wrap Up (5 mins)

  Prompt: What aspects of working with functions

clicked today? What do you still feel like you have

trouble with?

Assessment: Check For
Understanding: AP Practice

Check For Understanding Question(s) and solutions

can be found in each lesson on Code Studio. These

questions can be used for an exit ticket.

Question: What will be displayed after this code

segment is run?

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://images.code.org/08e4ffae55a2fef1a62e963e0369dd87-image-1567714572167.png
https://creativecommons.org/
https://code.org/contact

UNIT

4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lesson 11: Functions Make

Overview

Using Programming Patterns and a step-by-step approach

students make their own version of a Quote Maker app. At the

beginning of the lesson students are able to explore a working

version of the app. They are then given the design elements of

the app but begin with a blank screen. Students use an Activity

Guide to go through the high level steps they should use to

develop their app but leaves it to them to decide how to write the

code. At the end students submit their apps which can be

assessed using a provided rubric.

Purpose

This lesson is an opportunity for students to take on the "blank

screen" and build the code that runs an app entirely from scratch.

Guidance provided throughout the lesson helps students break

down the large task of "building an app" into more incremental

steps that they can use on future projects, including this unit's

final project and the Create PT.

Agenda
Warm Up (2 mins)

Anticipating Functions

Activity (38 mins)

Build the Quote Maker App

Wrap Up (5 mins)

Assessment: Make Project

View on Code Studio

Objectives
Students will be able to:

Recognize the need for a function to

reduce repeated code while developing a

functional app

Implement a function using programming

patterns while developing a functional app

Write comments to clearly explain both the

purpose and function of different segments

of code within an app

Use debugging skills as part of developing

an app

Preparation

Review the Activity Guide to decide if

you will use it with your students

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

CSP Unit 4 - Variables, Conditionals, and

Functions - Presentation

For the Students

CSP Functions Make - Quote Maker App -

Activity Guide Make a Copy

https://curriculum.code.org/csp-20/unit4/
https://studio.code.org/s/csp4-pilot/stage/11/puzzle/1/
https://docs.google.com/presentation/d/1GhpZOh2589s9MuKsll7YkQ3xv6nwcpmtAnTCgJPIXC0/edit?usp=view
https://docs.google.com/document/d/1K_0TbgCTNsO52Nm4rzy_o3P0X80SI8nx0KwHhHpFfrk/edit?usp=sharing

 Teaching Tip

When to Make Functions: The end of the previous

lesson and the beginning of this lesson both

emphasize a transition students will go through in

making functions. Early on they are likely to either not

use functions or only realize the need one after

they've already written duplicate code. As they get

more experienced as programmers, however, they will

likely realize sooner and sooner in the process that a

function will be necessary. As students grow more

experienced they should actually be able to anticipate

and write their functions from the beginning of

designing their program. Use this brief introduction to

reinforce that language.

Teaching Guide

Warm Up (2 mins)



Anticipating Functions

 Remarks

For the past few days, we've learned a lot about

using functions to simplify code and make it easy to

edit. So far we have learned how to use functions to

remove repeated code in our programs. Early on it's

common to realize you need a function only after

you've completely written the same chunk of code

in two places. As you get better, however, you'll

realize sooner and sooner in the process that you're

likely going to need a function, and will be able

avoid writing repeated code before putting it inside

a function. Eventually you'll want to anticipate what

your functions are going to be even before you start

programming. These are the "during" and "before"

levels we read about yesterday.

In today's Make lesson and the following project you'll have a chance to practice this. See if sometimes you can

work that "during" or "before" category.

Activity (38 mins)

Build the Quote Maker App

Group: Make a determination as to whether this project will be completed in pairs or individually. You may even

choose to let students decide.

 Do This: Have students explore the working Quote Maker App in Level 1.



 Prompt: If students are not working in pairs they should still discuss the prompts with a neighbor.

What does this app do?

What are the inputs?

What are the outputs?

How could a function be used in this app?



 Remarks

Now let's build the this app. The screen has been set up for you - it's your job to add the code!

 Do This: Direct students to level three where they complete the Quote Maker App. An optional Activity Guide is

provided if students would like guidance in creating the app. The most relevant programming pattern is displayed

on a slide. Review this pattern quickly with students, if needed.

 Submit: Encourage students to check the rubric on the last page of the Activity Guide before submitting.

Wrap Up (5 mins)

 Remarks

https://curriculum.code.org/media/uploads/singleslide.svg
https://curriculum.code.org/media/uploads/singleslide.svg
https://curriculum.code.org/media/uploads/singleslide.svg
https://curriculum.code.org/media/uploads/singleslide.svg

 Discussion Goal

What does this app do?

Display a quote with user-defined fonts and

background colors.

What are the inputs?

The dropdowns for background color and font

family.

The quote text field

The slider to generate the font size

What are the outputs?

The fully designed quote displayed at the bottom

of the screen

How could a function be used in this app?

Students may struggle with this question, and it's

ok to not have it fully answered before beginning

the project.

A function can be used to update the screen.

The function contains the conditional that is

checked everytime the user interacts with the

screen.

 Teaching Tip

Supporting Students: While students are working on

their apps, circulate the room and check in with

students who need a little help. Encourage students to

collaborate and discuss bugs with each other.

Debugging: Review with students steps they can use

to debug if they get stuck:

Run the code on turtle mode

Add the variables to the watcher

Explain the code to a friend

 Teaching Tip

Maximize Work Time: The wrap up is short to allow the

maximum amount of time for students to complete

the activity.

  Awesome work today! Make sure to submit your

project when you're done with it!

Assessment: Make Project

Use the rubric provided with the project to assess

student projects.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lesson 12: Project - Decision Maker App Part
1

Overview

Using a Project Planning Guide, students work through the stages

of creating an app from scratch. This is the first day of a three-

day project. This lesson is devoted to the planning phase.

Purpose

The Practice PT gives students the opportunity to design and

program an app from scratch. Welcome to The Decision Maker

App! Students demonstrate mastery of variables, conditionals,

and functions by combining these elements into a useful program

designed to solve the problem of making a decision.

Agenda
Warm Up (5 mins)

Intro the Project

Activity (40 mins)

Plan the Decision Maker App

Wrap Up (0 mins)

View on Code Studio

Objectives
Students will be able to:

See rubric for guidance in measuring

student learning

Preparation

Review the project guide and make sure

students have access to copies

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

CSP Unit 4 - Variables, Conditionals, and

Functions - Presentation

For the Students

CSP U4 Practice PT Rubric - Rubric

CSP U4 Practice PT Planning Guide -

Planning Guide

Make a Copy

Make a Copy

https://curriculum.code.org/csp-20/unit4/
https://studio.code.org/s/csp4-pilot/stage/12/puzzle/1/
https://docs.google.com/presentation/d/1GhpZOh2589s9MuKsll7YkQ3xv6nwcpmtAnTCgJPIXC0/edit?usp=view
https://docs.google.com/document/d/1mldgFK3CJbsWnTS8WYVDtEY1e7V4c0_V0sv63dYUkG8/edit?usp=sharing
https://docs.google.com/document/d/1IojBJ1NQPDz4SajskdWq_6LSstg3_9EgpTAwQf63M5g/edit?usp=sharing

 Teaching Tip

Short Intro: The Warm Up today is short and light.

Students should spend the maximum amount of time

working on their projects.

 Discussion Goal

Sample App #1: Where Should I Eat?

Recommends a restaurant to the user.

Inputs: text box for user name, drop down menu for

restaurant type, up and down buttons to control the

amount of dollars the user wants to spend.

Outputs: Text box at the bottom of the screen which

displays the recommendation and sound that plays

when the user interacts with the app.

Variables: username, type of restaurant, dollar

amount, output text

Conditional Logic: If the dollar amount within certain

amounts, recommend different restaurants

Function: Update the screen every time the user

changes an input.

Sample App #2: Activity Finder

Recommends an activity to the user.

Inputs: text box for user name, drop down menu for

time of day, drop down menu for activity level.

Outputs: Text box at the bottom of the screen which

displays the recommendation and sound that plays

when the user interacts with the app.

Variables: username, time of day, activity level,

output text

Conditional Logic: If the user selects certain times of

day and activity levels, make targeted

recommendations.

Function: Update the screen every time the user

changes an input.

Teaching Guide

Warm Up (5 mins)

Intro the Project

 Remarks

 Have you ever been stuck trying to make a

decision? What movie should we watch? Where

should we go for lunch? How many chocolate bars

can I buy? For the next three days you will build an

app to help people make a decision.

Activity (40 mins)

Plan the Decision Maker App

Level 1-2 - Explore: Have students explore the two sample apps in levels 1 and 2. These apps should spark ideas in

what the students can create for this project.

  Prompt: For each app, discuss the following:

What does this app do?

What are the inputs?

What are the outputs?

What variables do you think would be necessary for

this app to work?

What kinds of conditional logic do you think are

necessary to make it work?

How could a function be used in this app?

 Distribute: Each student should have a copy of the

Practice PT Decision Maker App Planning Guide.

 Remarks

For this project you will create an app that helps a

user make a decision. Your app must take in at

least one number and one string from the user

that will help to make the decision. All of this

information will be used as part of the decision

making process. In addition, your code must

include at least one function used to update the

screen.

 Discuss: Review the app requirements in the

Planning Guide.

  Display: Show the steps students will complete

today in the Planning Guide.

Step 1: Brainstorm App Ideas

Students come up with three distinct ideas

Step 2: Choose one Idea

Step 3: Survey Your Classmates

 Teaching Tip

Supporting students in Practice PT Lessons

The teacher plays the role of a guide throughout the

Practice PT lessons. In preparation, you may want to

set aside some time to complete the project yourself

to identify potential points of confusion for your

classroom.

In this first lesson, the classroom progresses together

through steps 1-3, and then students work at the own

pace for steps 4-6. Circulate the room and check in

with students as needed to make sure instructions

are clear and students understand expectations.

What should you expect?

Students writing and sketching in the Planning

Guide

Active discussion around project ideas

Students should only be on Code Studio if they

have finished Steps 1-6 early and are ready to work

in Design Mode in App Lab. If this is true, they can

move on to the first level in Lesson 13.

Students discuss with two classmates the decision

their app will help the user make and decide what

information is needed to make this decision.

Step 4: Storing Information

Variables needed for storing information are listed

in this section.

Step 5: Flowchart

Students create a flowchart, following the "Can I

adopt a cat?" sample flowchart from the

Conditionals Explore lesson.

Step 6: Design User Interface

There is space for students to design up to three

screens. There are no screen requirements for the

app, so students may use only one screen.

Wrap Up (0 mins)

No wrap up today. All time should be spent on the

project.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lesson 13: Project - Decision Maker App Part
2

Overview

Students translate the plans they documented in Part 1 of the

Practice PT to a working program in App Lab through a series of

steps.

Purpose

The Practice PT gives students the opportunity to design and

program an app from scratch. Welcome to The Decision Maker

App! Students demonstrate mastery of variables, conditionals,

and functions by combining these elements into a useful program

designed to solve the problem of making a decision.

Agenda
Warm Up (2 mins)

Intro the Project

Activity (38 mins)

Build the Decision Maker App

Wrap Up (5 mins)

View on Code Studio

Objectives
Students will be able to:

See rubric for guidance in measuring

student learning

Preparation

Make sure students will have access to

their project guides

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

CSP Unit 4 - Variables, Conditionals, and

Functions - Presentation

For the Students

CSP U4 Practice PT Planning Guide -

Planning Guide

CSP U4 Practice PT Rubric - Rubric

Make a Copy

Make a Copy

https://curriculum.code.org/csp-20/unit4/
https://studio.code.org/s/csp4-pilot/stage/13/puzzle/1/
https://docs.google.com/presentation/d/1GhpZOh2589s9MuKsll7YkQ3xv6nwcpmtAnTCgJPIXC0/edit?usp=view
https://docs.google.com/document/d/1IojBJ1NQPDz4SajskdWq_6LSstg3_9EgpTAwQf63M5g/edit?usp=sharing
https://docs.google.com/document/d/1mldgFK3CJbsWnTS8WYVDtEY1e7V4c0_V0sv63dYUkG8/edit?usp=sharing

 Teaching Tip

Supporting students in Practice PT Lessons

At this point in the project attention shifts to App Lab

where students design and program their app.

Continue to circulate the room and check in with

students as needed to make sure instructions are clear

and students understand expectations.

What should you expect?

Planning Guides out on desks or tables so students

can reference them while setting up their apps

A healthy buzz in the classroom as students

collaboratively debug

There may be some student confusion on the steps

to take in building their app. Direct students back to

the instructions, and make sure they haven't

skipped any of the levels where the steps are

delineated.

 Teaching Tip

Short Intro: The Warm Up today is short and light.

Students should spend the maximum amount of time

working on their projects.

Teaching Guide

Warm Up (2 mins)

Intro the Project

 Remarks

 Today we are continuing work on the Decision

Maker App. Each level in Code Studio contains a

step to think through while constructing your app.

Activity (38 mins)

Build the Decision Maker App

 Do This: Students now transition to Code Studio where they will build their app.

  Display: Display the steps for today along with the debugging steps on the board while students work.

Level 2: Design Mode

Students create the screens they designed in Step

6 in the Planning Guide.

Encourage students to use templates where

appropriate to speed the process along.

Level 3: Create the Variables

Using the list of variables from Step 4 in the

Planning Guide students create their variables.

Level 4: Create the Function

This is most likely the trickiest step.

Students create an updateScreen() function with a

conditional statement

Students should reference the flowchart in Step 5

of the Planning Guide to help craft the Boolean

expression(s) for the conditional statement.

A comment is added to explain what it does

(purpose) and how it does that (functionality)

Level 5: Add onEvents

For each item that can be interacted with on the screen, students add an onEvent block where they update the

appropriate variable and add a call to the updateScreen() function.

Wrap Up (5 mins)

No wrap-up today. All time is spent on the project.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

https://studio.code.org/docs/applab/onEvent/

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lesson 14: Project - Decision Maker App Part
3

Overview

The final lesson in the Practice PT progression is devoted to

feedback and improvements to the Decision Maker App. Students

work with classmates to review and update the functionality of

their apps before submitting the final project.

Purpose

The Practice PT gives students the opportunity to design and

program an app from scratch. Welcome to The Decision Maker

App! Students demonstrate mastery of variables, conditionals,

and functions by combining these elements into a useful program

designed to solve the problem of making a decision.

Agenda
Warm Up (2 mins)

Intro the Project

Activity (38 mins)

Test the Decision Maker App

Wrap Up (10 mins)

Assessment: Practice PT Decision Maker Project

View on Code Studio

Objectives
Students will be able to:

See rubric for guidance in measuring

student learning

Preparation

Make sure students will have access to

their project guides

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

CSP Unit 4 - Variables, Conditionals, and

Functions - Presentation

For the Students

CSP U4 Practice PT Planning Guide -

Planning Guide

CSP U4 Practice PT Rubric - Rubric

Make a Copy

Make a Copy

https://curriculum.code.org/csp-20/unit4/
https://studio.code.org/s/csp4-pilot/stage/14/puzzle/1/
https://docs.google.com/presentation/d/1GhpZOh2589s9MuKsll7YkQ3xv6nwcpmtAnTCgJPIXC0/edit?usp=view
https://docs.google.com/document/d/1IojBJ1NQPDz4SajskdWq_6LSstg3_9EgpTAwQf63M5g/edit?usp=sharing
https://docs.google.com/document/d/1mldgFK3CJbsWnTS8WYVDtEY1e7V4c0_V0sv63dYUkG8/edit?usp=sharing

 Teaching Tip

Short Intro: The Warm Up today is short and light.

Students should spend the maximum amount of time

working on their projects.

 Teaching Tip

Supporting students in Practice PT Lessons

This is the final lesson where students complete their

projects. The classroom energy will likely increase

when students begin Step 8 and collect feedback

from classmates. Encourage students to work

productively during the testing phase so they have

enough time to finish their projects.

What should you expect?

It's ok to start the testing phase even if the apps

aren't finished. Students should be able to explain

to each other what they want their app to do when

fully operational.

Students should have their Planning Guides out

again to record feedback and plans for

implementing changes

Frustration may be higher today if students feel

rushed to debug and fix their projects for final

submission. Make sure students have debugging

partners and are actively making use of their

debugging skills.

If students are inspired to continue working on

their projects or add additional features, you may

need to extend the project an extra day or allow

students to work outside of class.

Teaching Guide

Warm Up (2 mins)

Intro the Project

 Remarks

 For the past few days we've been working on an

app to help users make a decision. Now you will

share that app with others, get feedback, make

improvements, and submit for your final project.

Activity (38 mins)

Test the Decision Maker App

 Group: Put students in groups of 3-4.

  Do This: Direct students to Level 2 in Code Studio. They should pull out their Planning Guides and with their

group complete Step 8: Testing.

 Step 8: Testing

Each app is tested by at least two students.

The creator of the app watches these students use

the app and records feedback from the testers and

things the creator noticed while observing

someone else using the app. For example, the

creator may notice that the user has difficulty

figuring out which button to click on the app to

make it run. The creator notes this down in the

Planning Guide.

 Step 9: Pick Improvements

In the Planning Guide, students pick at least one

improvement that they can make based on

feedback from their peers.

Step 10: Complete Your app

Students use the feedback to update their app on

Level 2.

Submit: Students complete a final check of their

completed projects on Level 3. The rubric is displayed

in the instruction box.

Wrap Up (10 mins)

 Remarks

Congratulations! You built an app completely from scratch.

 Reflection: Complete the two reflection questions in the Planning Guide

Question 1: Provide a written response that:

describes the overall purpose of the program

describes the functionality of your app

describes the input and outputs of your app (Approx 150 words)

Question 2: This project was created using a development process that required you to incorporate the ideas of

your partner and feedback from your classmates. Provide a written response that describes one part of your app

that was improved through input from EITHER your partner or feedback you received from classmates. Include:

Who specifically provided the idea or recommendation

What their idea or recommendation was

The specific change you made to your app’s user interface or functionality in response to the recommendation

How you believe this change improved your app (Approx 150 words)

Assessment: Practice PT Decision Maker Project

Use the CSP U4 Practice PT Rubric - Rubric provided with the project to assess student work.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://docs.google.com/document/d/1mldgFK3CJbsWnTS8WYVDtEY1e7V4c0_V0sv63dYUkG8/edit?usp=sharing
https://creativecommons.org/
https://code.org/contact

UNIT

4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lesson 15: Assessment Day

Overview

Students complete a multiple choice assessment which covers

the unit topics.

Agenda
Assessment (25 mins)

Topic Coverage

Assessment Review (20 mins)

View on Code Studio

Preparation

Preview the assessment questions

https://curriculum.code.org/csp-20/unit4/
https://studio.code.org/s/csp4-pilot/stage/15/puzzle/1/

 Teaching Tip

Topic Coverage

The College Board has provided a bank of questions to

help formatively assess student understanding of the

content in the framework. These questions are

mapped to topics with each topic having a handful of

questions available.

The College Board has a few strict guidelines about

how topic questions can be used. In particular,

students may not receive a grade based on

performance on topic questions nor can they be used

for teacher evaluation. Beyond these requirements,

however, they are primarily intended to formatively

assess student progress and learning as they prepare

for the end of course exam.

Within our own course we recommend that you use

them in a variety of ways:

Throughout the unit assign topic questions to

students related to the topics students are learning

about that day or that week

Prior to the unit assessment assign topic questions

to help students practice and prepare for the

summative assessment

After the unit assessment use these topic questions

to help students track their progress towards

preparation for the AP assessment

Click for more info: Code.org CSP Topic Coverage

Teaching Guide

Assessment (25 mins)

  Administer the Unit 4 Assessment, found on Code

Studio. Make sure to unlock the assessment following

instructions here.

Assessment Review (20
mins)

Review the answers to the assessment with the class.

Discuss any questions that come up and take note of

topics where students may need extra review.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://curriculum.code.org/media/uploads/topics4_exilLPP.png
https://docs.google.com/document/d/1dqYF5u0AULjw049gaCwAP34ZSe0VuEWbAjWoH1-YMW0/edit?usp=sharing
https://support.code.org/hc/en-us/articles/115001331951-Using-lock-settings-for-assessments-and-surveys
https://creativecommons.org/
https://code.org/contact

