
 

UNIT

3
1 2 3 4 5 6 7 8 9 10 11

Unit 3 - Intro to App Design
Unit Overview

Students design their first app while learning both fundamental programming concepts and collaborative software

development processes. Students work with partners to develop a simple app that teaches classmates about a

topic of personal interest. Throughout the unit, they learn how to use Code.org’s programming environment, App

Lab, to design user interfaces and write simple event-driven programs. Along the way, students learn practices like

debugging, pair programming, and collecting and responding to feedback, which they will be able to use

throughout the course as they build ever more complex projects. The unit concludes with students sharing the apps

they develop with their classmates.

Unit Philosophy and Pedagogy

New Topics, Same Classroom Culture: This unit is students' first experience with programming but it is designed

to maintain the collaborative and inclusive classroom environment developed in the previous two units. The

collaborative project, fun unplugged activities, and the focus on experimenting should help keep your whole class

working together and trying out ideas.

Emphasizing Skills: Since this is the first of many programming units, it emphasizes attitudes and skills that will

serve your students well for the remainder of the year. The project that runs through this unit emphasizes that

programming is a creative and collaborative endeavor that can be used to help others. Key practices like pair

programming and debugging help normalize working with a partner, asking for help, and making mistakes. While

students have a lot to learn about programming and App Lab, there is just as much emphasis on establishing

these positive habits and mindsets.

Empowering "Creators": This unit empowers students to be creators with a major emphasis on making projects

that are personally meaningful. Students have a lot to learn about programming, but the goal is that they come

away from this unit seeing programming as a powerful form of personal expression that allows them to draw on

their innate talents and interests to help solve problems in their community.

Major Assessment and Projects

The unit project asks students to collaborate with a classmate to design an app that can teach others about a topic

of shared interest. Students practice interviewing classmates to identify the goals of the project, mock up designs,

collaboratively program the app, and run simple user tests. The app itself must include at least three screens and

demonstrate what students have learned about user interface design and event-driven programming. Students

submit their app, project guide, and written responses to reflection questions about how the app is designed and

the development process used to make it. Students will also complete an end-of-unit assessment aligned with CS

Principles framework objectives covered in this unit.

AP Connections

This unit and unit project helps build towards the enduring understandings listed below. For a detailed mapping of

units to Learning Objectives and EKs please see the "Standards" page for this unit.

CRD-1: incorporating multiple perspectives through collaboration improves computing innovations as they are

developed.

CRD-2: developers create and innovate using an iterative design process that is user-focused, that incorporates

implementation/feedback cycles, and that leaves ample room for experimentation and risk-taking.

AAP-2: The way statements are sequenced and combined in a program determines the computed result.

Programs incorporate iteration and selection constructs to represent repetition and make decisions to handle



varied input values.

AAP-3: Programmers break down problems into smaller and more manageable pieces. By creating procedures

and leveraging parameters, programmers generalize processes that can be reused. Procedures allow

programmers to draw upon existing code that has already been tested, allowing them to write programs more

quickly and with more confidence.

This unit includes content from the following topics from the AP CS Principles Framework. For more detailed

information on topic coverage in the course review Code.org CSP Topic Coverage.

1.1 Collaboration

1.2 Program Function and Purpose

1.3 Program Design and Development

The College Board has supplied formative Create PT questions to help prepare students to complete the Create

Task. We recommend that students complete the following prompts with the unit project. More information can be

found in Code.org CS Principles Topic Coverage.

3.a.i.

3.a.ii.

3.a.iii

Week 1

Lesson 1: Introduction to Apps
App Lab

Welcome to the Introduction to App Development! We begin this unit by examining the

basics of an app.

Lesson 2: Introduction to Design Mode
App Lab

Learn how to create screens, buttons, images, text, and more inside of App Lab.

Lesson 3: Project - Designing an App Part 1
Project

This is the first in a series of lessons where students will make progress on building their

own functional app.

Lesson 4: Project - Designing an App Part 2
Project | App Lab

Students continue working on the unit projects in this lesson that is primarily designed to be

work time. Students continue to follow the app development process outlined in their App

Development Guide by transferring their user interfaces designs from their planning guides

over to App Lab

Lesson 5: The Need for Programming Languages
This is the first in a series of lessons where students will make progress on building their

own functional app.

Week 2

https://docs.google.com/document/d/1dqYF5u0AULjw049gaCwAP34ZSe0VuEWbAjWoH1-YMW0/edit?usp=sharing


Lesson 6: Intro to Programming
App Lab

Get familiar with what programs are and how they run by using and modifying several

working apps.

Lesson 7: Debugging
App Lab

Learn how to identify and fix problems in your code through the debugging process. Then

practice using it with a classmate.

Lesson 8: Project - Designing an App Part 3
Project | App Lab

Start programming your app and learn how to effectively use pair programming to

collaborate while writing code.

Lesson 9: Project - Designing an App Part 4
Project | App Lab

Continue working on your app and get feedback to make sure you're on the right track.

Lesson 10: Project - Designing an App Part 5
Project | App Lab

Complete your app and share it with classmates before reflecting on the overall process of

designing the app.

Week 3

Lesson 11: Assessment Day
Project

Complete your app and share it with classmates before reflecting on the overall process of

designing the app.



If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact


UNIT

3
1 2 3 4 5 6 7 8 9 10 11

Lesson 1: Introduction to Apps

Overview

Students explore and investigate what makes an app an app.

They begin by looking at and discussing five different apps.

Following this, students watch a video explaining the basics of

how computers work. Finally students return to the apps and

consider the various inputs and outputs.

Purpose

This lesson is an introduction to a unit that introduces

programming through the broader context of designing apps that

help people. This lesson is designed to build excitement about

the skills that students will develop throughout the unit and get

them thinking early about the ways programming can help

others. This lesson also establishes shared vocabulary for talking

about apps in a generic sense, for example its inputs, outputs,

and overall user interface.

Agenda
Warm Up (5 mins)

Preview the Unit

Activity (30 mins)

App Exploration

Input & Output

App Investigation

Wrap Up (10 mins)

Assessment: Check For Understanding

View on Code Studio

Objectives
Students will be able to:

Identify the inputs of an app

Identify the outputs of an app

Identify the purpose of an app

Preparation

Preview the How Computers Work Video

Explore the apps used in this lesson

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

CSP Unit 3 - Intro to App Design -

Presentation

For the Students

How Computers Work - What Makes a

Computer, a Computer - Video

https://curriculum.code.org/csp-20/unit3/
https://studio.code.org/s/csp3-2020/stage/1/puzzle/1/
https://docs.google.com/presentation/d/1aCM_jM8YIi7NIouM60w9IJ3JKSBvrdDN61HjaJk5nyI/edit?usp=sharing
https://www.youtube.com/watch?v=mCq8-xTH7jA&feature=youtu.be


 Discussion Goal

Apps are designed to solve a problem by providing a

service

Entertaiment: images, movies, tv shows, etc.

Social: social media, chatting

Commerce: marketplaces

Finding Information: search engines, maps

Apps have screens or User Interfaces to display and

collect information to and from users

These things collect information: Buttons, sliders,

text boxes, etc.

This is the type of information that can be

displayed: Sounds, images, video, text

Teaching Guide

Warm Up (5 mins)

Preview the Unit

 Remarks

Now that we've learned how to represent

information digitally and how the Internet works, it's

time to think about creating digital content for

others to interact with.

  Prompt: What are apps? How do we interact with

them? What kinds of things do apps do?

Activity (30 mins)

App Exploration

 Remarks

Today we are going to be looking at some sample

apps to explore their purpose and function.

 Group: Organize students in groups of two. Students should navigate to the App Exploration starting on level 2.

Levels 2-6: There are five different sample apps. Depending on time, students can explore 3-5 different apps.

  Prompt: With a partner, discuss the following and note down in your journal:

How does the user interact with the app?

What is the overall purpose of this app?

Who is the target audience?

Share Out: As a class, discuss student answers to the discussion questions.

 Remarks

In developing apps, which are a kind of computing innovation, it's important to understand both their purpose and

function. The purpose helps the developer focus on creating an app with specific goals in mind.

Now let's dig in to how the user interacts with the apps.

Input & Output

 Display: How Computers Work How Computers Work - What Makes a Computer, a Computer - Video

 Remarks

The video explained Input, Storage, Processing, and Output. Today we are going to focus on input and output. An

app on a phone gets input in may different ways from a user or from another program and displays (or in the case

of sound: plays) output. The output of a program is usually based on inputs or the initial way the program was set

up. For example, you could program an app to play a song as soon as it runs.

App Investigation

  Levels 8-12: With your partner, take another look at the sample apps you explored before by navigating to the

App Investigations starting at level 7. Consider what the inputs and outputs are for the apps. Note these down in

your journal.

Wrap Up (10 mins)

https://www.youtube.com/watch?v=mCq8-xTH7jA&feature=youtu.be


 Discussion Goal

App #1: Water Conservation Tips

The user clicks through the different screens and

makes choices about the correct ways to conserve

water. When the user makes choices, images or

sounds are played to indicate if a choice is the right

one.

The purpose of the app is to teach people about

ways to conserve water.

The target audience is young people who are

interested in the topic

App #2: Bird Quiz

The user answers trivia questions about birds. If the

answer is correct, they go to the next question. If

wrong, they are taken to a losing screen, and then

start the quiz again. If three questions are answered

correctly the user is taken to the winning screen.

The purpose of the app is to teach users different

facts about birds

The target audience is anyone interested in birds

App #3: Hamilton Township

The user clicks through a few different screens to

learn about township efforts to beautify the town

The purpose of the app is to educate users on steps

the town is taking to improve the town

The target audience is people who live in Hamilton

Township

App #4: Four Square Instructions

The user navigates through different screens that

explain how to play four square. On one screen, the

user is quizzed on how many people are needed to

play four square.

The purpose of the app is to instruct the user on the

rules of four square.

The target audience is people who would like to play

four square.

App #5: Monarch Butterflies

The user clicks on different screens and pictures of

monarch butterflies to explore the life stages of the

butterfly

The purpose of the app is to educate users on the

life cycle of the monarch butterfly

The target audience is young people, most likely

children or teenagers who are interested in life

science and butterflies

 Remarks

Apps solve a problem for a target audience. Apps

take in input from users and output information in

various ways. Users interact with apps through the

user interface.

  Prompt: Think of your favorite app. Discuss with

a partner what the user interface looks like and the

inputs and outputs.

 Journal Add to your journal the following terms

along with your own definitions:

User Interface

Input

Output

Assessment: Check For
Understanding

Check For Understanding Question(s) and solutions

can be found in each lesson on Code Studio. These

questions can be used for an exit ticket.

Question: Match term with the example.



 Teaching Tip

After students are finished writing in their journals,

discuss as a class or collect the journals to review

student answers.

An input could be a user clicking a button or tapping

the screen

An output could be an image displayed or a sound

played

 Discussion Goal

After students have shared with a partner, bring the

class back together and discuss a few examples.

Standards Alignment

CSP2021

CRD-2 - Developers create and innovate using an iterative design process

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact


UNIT

3
1 2 3 4 5 6 7 8 9 10 11

Lesson 2: Introduction to Design Mode

Overview

Students work through a progression of levels to build an

understanding of how to use Design Mode to layout an app. The

final level has students setting up the screen of an app by

attempting to copy an image of an app.

Purpose

This lesson introduces students to Design Mode in App Lab and

the different kinds of screen elements and properties at their

disposal in this tool. This lesson not only builds up skills in

designing a user interface but also sets students up to begin

designing an app of their own in the following lesson.

Agenda
Warm Up (5 mins)

Activity (30 mins)

Wrap Up (10 mins)

Assessment: Check For Understanding

View on Code Studio

Objectives
Students will be able to:

Use meaningful names to for element ids

Set up the User Interface of an app

including buttons, text, and images

Preparation

Review the programming levels to

ensure you understand the fundamentals

of Design Mode in App Lab and how

elements are created and their properties

are modified.

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

CSP Unit 3 - Intro to App Design -

Presentation

https://curriculum.code.org/csp-20/unit3/
https://studio.code.org/s/csp3-2020/stage/2/puzzle/1/
https://docs.google.com/presentation/d/1aCM_jM8YIi7NIouM60w9IJ3JKSBvrdDN61HjaJk5nyI/edit?usp=sharing


 Discussion Goal

Goal: This prompt is designed to bring out students'

prior experiences working with apps. If students aren't

sure what app to choose, you can even ask them to

pick to Code.org website. This discussion can pull out

the fact that most apps contain images, buttons, and

text that help users find and interact with information

and content.

 Teaching Tip

Regrouping: You may want to pull the class back

together after Level 2 to discuss their findings.

Teaching Guide

Warm Up (5 mins)

  Prompt: What is a common app that you use?

Take a minute to sketch the User Interface of the main

screen. Note how the user interacts with the app.

Compare your sketch with a partner and discuss

common elements that both of your apps share

 Remarks

Yesterday we took a look at a few different apps and

talked about input and output. We also discussed

the User Interface. Today we are going to learn how

to build the User Interface in App Lab.

Activity (30 mins)

  Do This: Direct students to Code Studio.

Level 2: Students examine an app from the previous

lesson. They should feel free to move around and

change any elements they'd like. Encourage students

to spend a good amount of time on this level

discovering how things work. Here are a few things they should notice:

The screen can be changed by clicking the dropdown at the top of the app screen

Each element has different properties that can be changed depending on the type of element. For example, a

label element has choices like "text alignment" and "font family" while an image has choices like "fit image".

Levels 3-7: In these levels, students will learn how specific elements are set up and edited. Level 3 introduces the

concept of themes, which control the overall "look" of an app. No matter what theme is chosen, students have the

ability to override any element's design.

Level 8: Students work from a given image to recreate the user interface for an app. It's ok if their design does not

exactly match the sample. The goal is for students to become comfortable setting up a User Interface before the

sketch out plans for their own apps in the next lesson.

Wrap Up (10 mins)

  Prompt: Have students answer the following

What elements collect input?

What elements display output?

Do you think there are elements that can do both?

Assessment: Check For Understanding

Check For Understanding Question(s) and solutions can be found in each lesson on Code Studio. These questions

can be used for an exit ticket.

Question: Why is it important for element IDs to have meaningful names?



 Discussion Goal

What elements collect input?

Buttons

Text Input

Check Boxes & Radio Buttons

Dropdown

What elements display output?

Images

Text

Do you think there are any elements that can do both?

This is a tricky question! Most element can do both,

because they can all be clicked and can change

their content. Students will see this in action in the

next few lessons.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact


UNIT

3
1 2 3 4 5 6 7 8 9 10 11

Lesson 3: Project - Designing an App Part 1

Overview

This is the first in a series of lessons where students will make

progress on building their own functional app. In this lesson,

students brainstorm app ideas and sketch out user interfaces in

preporation for the next lesson where they will return to App Lab.

Purpose

This lesson kicks off a project that students will complete

throughout the unit. The framing of this project is also important

for how programming is presented overall. Students are

encouraged to collaboratively design their projects, choose topics

of personal interest, and build an app to meet the needs of other

people. All of this is important as part of framing programming as

a collaborative, creative, and socially situated pursuit.

Agenda
Warm Up (5 mins)

Activity (30 mins)

Wrap Up (10 mins)

Assessment: Check For Understanding

View on Code Studio

Objectives
Students will be able to:

Brainstorm and choose a topic to develop

into an app

Use feedback to help guide the design of

an app

Design the user interface of an app

Preparation

Read over the App Development

Planning Guide - Activity Guide

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

CSP Unit 3 - Intro to App Design -

Presentation

For the Students

App Development Planning Guide - Activity

Guide Make a Copy 

https://curriculum.code.org/csp-20/unit3/
https://studio.code.org/s/csp3-2020/stage/3/puzzle/1/
https://docs.google.com/document/d/1JXIaQGRKzsw9UvZh58yLfkriV2QH7fTE51Omr8OJ1aM/edit?usp=sharing
https://docs.google.com/presentation/d/1aCM_jM8YIi7NIouM60w9IJ3JKSBvrdDN61HjaJk5nyI/edit?usp=sharing
https://docs.google.com/document/d/1JXIaQGRKzsw9UvZh58yLfkriV2QH7fTE51Omr8OJ1aM/edit?usp=sharing


 Discussion Goal

Goal: The goal here is to help students understand the

importance of considering the end user when

designing an app.

Some points that may come up:

Some apps have too much guidance on how to use

them, and others too little.

An app may be designed for a phone, but the user

wants to use it on a tablet.

Apps that are designed for teenagers may make

assumptions about language usage or interests that

aren't accurate.

Teaching Guide

Warm Up (5 mins)

  Prompt: People design user interfaces to meet a

user's needs, but they don't always get it right.

Have you ever used an app where the user

interface didn't actually meet your needs?

What was the problem?

What do you think the designers didn't understand

about you or your needs?

Activity (30 mins)

 Remarks

Yesterday we learned all about Design Mode. Today

you're going to start developing your own app that

educates a user on a topic. This is a project that will

continue through the rest of the unit.

 Distribute: App Development Planning Guide - Activity Guide. Students will be using the Planning Guide for the

rest of the unit. Read the Project Description together and make sure students understand the requirements. Direct

students to the "Investigate" section.

 Step 1: Brainstorm Topic Ideas

Students have a lot of freedom in choosing their topics. If they are struggling with ideas, they could create an

app for another class, for example: an overview of the periodic table for science class.

 Group: Organize students into pairs.

 Remarks

  You will work with a partner on this project. Collaboration is a big part of app development. Your team's

diverse ideas will help make your app even better, because each partner can keep a lookout for bias.

Here's an example: A team member puts in their app the phrase: "All teenagers work after school to earn

spending money" because this is their experience - they work after school themselves. However, the other

team member may not have an after school job, and because of this can point out the bias in that statement.

Collaboration is key to catching bias in your work!

Here's another example, this time in the design of an app. A team wants to make an app to encourage girls to

sign up for a summer camp. One team member assumes that because this app is aimed at girls, the

background should be pink. A girl on the team points out that she does not like pink, and using that color in the

design may represent bias.

As you think about your topics and start designing your apps, remember to keep an eye out for bias and use

your team mates to keep you accountable!

 Step 2: Choose One Topic

Working with a partner students narrow down their ideas to one topic and explain what would be covered in

their app.

 Step 3: Survey Your Classmates

The goal in this step is for students to understand the needs of their users. This will help inform the overall

design of the app.

  Step 4: Design the User Interface

https://docs.google.com/document/d/1JXIaQGRKzsw9UvZh58yLfkriV2QH7fTE51Omr8OJ1aM/edit?usp=sharing


 Teaching Tip

After Step 4, you may want to check in with student

groups to make sure their apps are doable and can be

completed within the scope of the project.

Student use the screen templates to sketch out

the design of their app, including arrows or notes

to show how different elements are connected.

Steps 5+ will be completed later on in the unit.

Wrap Up (10 mins)

 Prompt: How did talking with the users of your app impact your design decisions?

 Remarks

In the following lessons, you will continue to plan and create you apps. What are we doing here? We are following

a development process, which is similar to what developers use in the real world when creating their own apps. A

development process breaks down the steps into small pieces - we've completed the first few today.

There are many different version sof the development process. Most use some combination of investigating and

reflecting, designing, prototyping and testing. Development processes can be ordered like we have layed out in

the Activity Guide or more exploratory in nature. As we continue on through this project, reflect on the steps and

consider how they help organize the process.

Assessment: Check For Understanding

Check For Understanding Question(s) and solutions can be found in each lesson on Code Studio. These questions

can be used for an exit ticket.

Question: Match the term with the examples.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CSP2021

CRD-1 - Incorporating multiple perspectives

CRD-2 - Developers create and innovate using an iterative design process

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact


UNIT

3
1 2 3 4 5 6 7 8 9 10 11

Lesson 4: Project - Designing an App Part 2

Overview

Students continue working on the unit projects in this lesson that

is primarily designed to be work time. Students continue to follow

the app development process outlined in their App Development

Guide by transferring their user interfaces designs from their

planning guides over to App Lab

Agenda
Warm Up (5 mins)

Activity (30 mins)

Wrap Up (10 mins)

Assessment: Planning Guide

View on Code Studio

Objectives
Students will be able to:

Create a user interface based on a

prototype

Preparation

Make sure students have access to their

App Development Planning Guides

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

CSP Unit 3 - Intro to App Design -

Presentation

For the Students

App Development Planning Guide - Activity

Guide Make a Copy 

https://curriculum.code.org/csp-20/unit3/
https://studio.code.org/s/csp3-2020/stage/4/puzzle/1/
https://docs.google.com/presentation/d/1aCM_jM8YIi7NIouM60w9IJ3JKSBvrdDN61HjaJk5nyI/edit?usp=sharing
https://docs.google.com/document/d/1JXIaQGRKzsw9UvZh58yLfkriV2QH7fTE51Omr8OJ1aM/edit?usp=sharing


 Teaching Tip

Students should explore the app and the prototype for

a few minutes, noting how different elements are

represented on the prototype.

Encourage Collaboration: Reinforce a collaborative

classroom environment in which students share

responsibilities for designing screens and discuss with

one another the choices they're making. Students

should be communicating their ideas with one another

as they build.

Waiting for Programming: Some students may be

eager to start programming their apps rather than

simply build screens. Let students know that they'll be

able to start programming their apps in the coming

lessons and that the first half of the unit focuses more

heavily on design.

 Teaching Tip

The Wrap-up is short today to allow students the

maximum amount of time to work on their apps.

Often times students will discover that their design is

too complicated on paper and simplify it when they

transfer it to the screen. This is ok! Sometimes the

best designs are simple designs.

 Discussion Goal

Planning can save time so the developers don't

spend time designing faulty user interfaces

Planning can help the developers talk through and

test out ideas with the users of the app

Teaching Guide

Warm Up (5 mins)

 Remarks

In the last lesson, you developed a prototype of an

app with a partner. It's important to remember that

other people will be using your app and need to

understand how to use it!

  Prompt: Why is it important to plan out the

design of an app?

Activity (30 mins)

 Remarks

The design you sketched out is a prototype of your app. A prototype helps you plan the looks and features of your

app before you program it."

 Do This: Direct students to Code Studio.

  Level 2: On this level, student see a sample app

they've looked at before along with the sketches for

the screens. Students run the app and compare the

screens to the original design.

 Remarks

After looking at this app and the prototype, you may

want to make a few adjustmants to your own

prototypes. Take a few minutes to update your

design.

When you are finished, move on to Level 3 where

you will start creating your user interfaces in App

Lab!

 Level 3: Here students will work on transferring

their prototypes to screens in App Lab. Partners can

work together sharing a computer, or they can divide

the screens between themselves and work

individually. After they are done, the individual

screens can be shared to create a complete project.

Wrap Up (10 mins)

  Prompt: Were there any changes you had to

make to your original design once you transferred it

to a screen?

Assessment: Planning Guide

This is a good opportunity to look over students work

in the App Development Planning Guide - Activity

Guide as a formative assessment.

https://docs.google.com/document/d/1JXIaQGRKzsw9UvZh58yLfkriV2QH7fTE51Omr8OJ1aM/edit?usp=sharing


Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact


UNIT

3
1 2 3 4 5 6 7 8 9 10 11

Lesson 5: The Need for Programming
Languages

Overview

In this lesson students explore the challenges of clearly

communicating instructions. They build a small arrangement of

blocks (LEGO® pieces or paper cutouts) and then create text

instructions a classmate could follow to construct the same

arrangement. Groups then trade instructions to see if they were

clear enough to allow reconstruction of the original arrangement.

The wrap-up discussion is used to highlight the inherent

ambiguities of human language and call out the need for the

creation of a programming language which leaves no room for

interpretation.

Purpose

This lesson is students' first introduction to the concept of a

programming language. It helps them understand why

programming languages exist by giving them a first-hand

experience with the problems that programming languages are

designed to address. Natural language is usually too ambiguous

for giving precise instructions that can be followed correctly

100% of the time. We need to create more structured and precise

programming languages in order to accomplish this.

Agenda
Warm Up (5 mins)

Activity (30 mins)

Wrap Up (10 mins)

Assessment: Check For Understanding

View on Code Studio

Objectives
Students will be able to:

Justify the existence of programming

languages to precisely communicate

instructions

Explain the qualities that differentiate

natural languages and programming

languages

Preparation

Prepare either a small set of LEGO blocks

or paper cutouts for each pair of students

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

The Need for Programming Languages -

Presentation

https://curriculum.code.org/csp-20/unit3/
https://studio.code.org/s/csp3-2020/stage/5/puzzle/1/
https://docs.google.com/presentation/d/13wBtDf2pUl74mdhMae6Fqm5k0oarrGL2vuQhefvsV_o/edit?usp=sharing


 Discussion Goal

Goal: Aim to hear a few different students share

reasons that instructions are "bad". The point here is

just to get students thinking and there's no specific

answer you're driving towards. Some possible ideas,

however, might include:

Instructions are not clear on what to do

Instructions use confusing words

Instructions don't actually accomplish what they're

supposed to

 Teaching Tip

Make it a Gallery Walk: Depending on your room set-

up you may be able to have students run this activity

in a more open-ended way. Students should leave their

unconstructed blocks and instructions at their table

with the target image face down. They can then make

their way to a few different groups' instructions over

the course of 10-15 minutes.

Mark What's Confusing: You may optionally have

students leave suggestions on instructions when they

use them explaining where they were confused or

wanted more detail. This is a good way to practice

giving and receiving feedback. It also forces groups to

think more clearly about what is causing their

confusion since they'll have to leave it in writing.

Teaching Guide

Warm Up (5 mins)

 Remarks

Today we're going to look at what it takes to write

"good" instructions. We all use instructions all the

time, whether it's directions to get somewhere,

instructions to fill out a form, or even instructions

from teachers. To help us get started, let's

brainstorm what "bad" instructions" look like.

  Prompt: Write down three different reasons you

would call a set of instructions "bad". Be ready to

share with a neighbor.

 Remarks

Alright, so we have an idea of what "bad"

instructions look like. Let's see if we can use this brainstorm to help us write good instructions in the next activity!

Activity (30 mins)

Group: Place students in groups of two, optionally forming a group of three.

 Distribute: Give each group a small set of blocks (either LEGO or paper cutouts). Also have each group use a

blank sheet of paper or a blank page in a journal.

Display: Use the lesson slides to guide this activity.

  Step 1: Design: Give students a couple minutes to

create their design. Keep this quick since the bigger

focus should be on the instructions.

Step 2: Record: Either have students sketch their

design or take a picture. Make sure the image is on a

separate piece of paper or the back side of a sheet of

paper.

Step 3: Write Instructions: This is the most important

step and should be given about 5 minutes. Encourage

students to be as clear as possible while only using

words. Encourage them to think about their

brainstorm of "bad" instructions this morning to see if

it can inspire them to make "good" ones.

 Step 4: Trade: Have students take apart their

design, and then trade instructions with another

group. Make sure they keep their recording of the design hidden.

Step 5: Build: Give students 3 minutes to follow the instructions from another group.

Step 6: Compare: Give students 2 minutes to compare what they built with the picture of the actual target. In their

groups they should discuss what they think went wrong or anything they're surprised worked out.

Step 7: Repeat: Depending on how much time you have, encourage students to trade with one or two other groups.

Make sure to save time for the wrap up.

Wrap Up (10 mins)



 Discussion Goal

Goal: This wrap up includes two sets of prompts and

should be run as back-to-back discussions. The first

set helps students synthesize the challenges they

encountered during the main activity. The second set

prompts students to think about how they might

design a new language that avoids these challenges.

When running the first discussion ask students to

share specific experiences during the lesson and

prompt them to think about what went wrong. They

might say things like "if we'd just been more clear" or

"we just need to include more detail". This might be

true, but eventually you should point out that human

language is often ambiguous. In other words, it's not

their fault! It's hard to do a good job with bad tools!

When running the second discussion push students to

think about what a language designed for giving

instructions would look like. While specific answers

aren't important, you should push them to build on

their experiences in the main activity. For example, if

they saw that words having two meanings was

confusing in the main activity, they should suggest

redesigning the language so each word has a single

well-understood meaning.

 Prompt: When you or your classmates made mistakes following instructions today what "went wrong"? Try to be

as specific as possible.

 Remarks

Even trying to be as clear as possible we struggled

to write clear instructions. There are things we

could do to improve, but the core challenge here is

that everyday human language is bad for giving

clear instructions. Words can have two or three

meanings! Instructions that seem clear turn out to

be vague when we actually go follow them. If we

want to give clear instructions, we need to

fundamentally change the language we use. We

need to create a new kind of language.

 Prompt: Imagine we were going to redesign human

language to be really good for giving clear

instructions. What types of changes would we need to

make?

 Remarks

Today we talked a lot about instructions because

soon we're going to be start programming your

apps. When you write a program you're just giving

instructions to a computer for what it should do to

run your app. As you'll see, the programming

languages we use to give these instructions

sometimes looks like English, but then has a lot of

weird (and sometimes confusing) differences. This is

because it needs to be more precise and unambiguous than normal human language. We'll dive into this more

next time we meet!

Assessment: Check For Understanding

Check For Understanding Question(s) and solutions can be found in each lesson on Code Studio. These questions

can be used for an exit ticket.

Question: What is the difference between a programming language and natural (every-day) language?

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact


UNIT

3
1 2 3 4 5 6 7 8 9 10 11

Lesson 6: Intro to Programming

Overview

Students use and modify a series of simple apps to get familiar

with a small set of programming commands. They observe the

way the code runs by slowing down the code and compare

programs that run all at once to those that respond to user

actions like buttons cliks. At the end of the lesson students

discuss what they observed and are introduced to some key

vocabulary for describing the running of programs.

Purpose

This lesson is written in an Investigate style, a common format of

lesson that will be used in the remainder of the programming

units. In this kind of lesson students are encouraged to

investigate working code and make simple modifications to

understand how it works.

This lesson introduces a number of concepts and vocabulary

around what programs are and how they run that will need to be

reinforced in future lessons.

Agenda
Warm Up (0 mins)

Get to the Activity

Activity (30 mins)

Wrap Up (15 mins)

Assessment: Check For Understanding

View on Code Studio

Objectives
Students will be able to:

Define a program as a sequence of

commands that are executed or run by a

computer

Explain the differences between how

sequential and event-driven programs

execute

Define comments as notes or

documentation into a program that do not

affect how the program executes

Preparation

Review the example apps and the

prompts that students will be asked to

respond to for each

Review the information covered in the

slides at the conclusion of the lesson

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

CSP Unit 3 - Intro to App Design -

Presentation

https://curriculum.code.org/csp-20/unit3/
https://studio.code.org/s/csp3-2020/stage/6/puzzle/1/
https://docs.google.com/presentation/d/1aCM_jM8YIi7NIouM60w9IJ3JKSBvrdDN61HjaJk5nyI/edit?usp=sharing


 Teaching Tip

Prepping for Investigate Lessons: The best way to

prepare for this lesson is to go through the experience

yourself. Check out the three apps in Code Studio to

get a sense for how they work. Then move on to the

Code Investigation and actually try to answer all the

questions for each app. To help you out, however,

answers are provided on the bottom of the instructions

area for verified teachers.

Show Code at the Front: If your room allows it, display

the code at the front of the room. When students

mentions specific lines of code actually scroll to that

line and read through it together.

Discuss specific lines of code: As you run discussions,

model talking about programs by specifically calling

out lines of code, as in "I can see that when the

playSound block on line 2 is highlighted the sound

plays...."

Save Modifications for the End: This lesson can be

tight on time. Rather than have students modify the

code all at once, you can save modifications for the

end of the Code Investigation and have students pick

a single app they wish to modify.

OK to Break Things: When using the widgets in Units 1

and 2 it's not really possible to "break things". That's a

little different than how things work in App Lab where

it is possible to write code that may not run at all.

Encourage students that this is ok. Using blocks makes

it easier to avoid errors, and if students need to they

can use the version history to set the code back to its

original state.

 Teaching Tip

Get to the Activity: There's a lot to do in this lesson.

Get to the main activity as quickly as you can.

Prompt Ideas: If you need a prompt for when students

come in consider asking them to list 2-3 differences

between a natural language and programming

language and why those differences need to exist.

Teaching Guide

Warm Up (0 mins)

Get to the Activity

 Remarks

  Yesterday we learned that we need to create a

new kind of language, a programming language, in

order to clearly communicate instructions. Today is

a big day. We're going to get our first taste of what

programming looks like, and we'll see different ways

we can use these tools to communicate our

instructions to a computer.

Activity (30 mins)

  Group: Place students in pairs. One student per

group should navigate to the lesson on Code Studio.

Display: If possible in your room, display the Code

Studio levels at the front of the class.

Level 2: Have students work on the three tasks for a

few minutes. Circulate the room making sure that

pairs are actually discussing the prompt and are

collaborating to modify the program. Once it seems

all groups have had a chance to do this bring the

class together.

Discuss: Have students share the results of their

discussions with the class. You do not need to use

formal vocabulary yet, but make sure all students are

seeing the same things.

Code is running one line at a time.

Strings need to go in quotes. Numbers do not need

to.

Yellow highlighting shows you which line of code is

running in either block or text mode.

The turtle slider changes the speed at which the

code runs. At full speed (all the way to the right)

there is no longer any highlighting.

Level 3: Run this level in the same way. Have students

complete all three prompts and then bring the class

together after a few minutes for a discussion.

Discuss: Once again have students share the results

of their discussions and modifications with the room.

Here are some good points to draw out if they don't

come up naturally in discussion.

console.log  prints text in the Debug Console

setProperty  changes the properties of elements on the screen. These should be familiar from using Design

Mode.

console.log  needs one input while setProperty  needs three

https://studio.code.org/docs/applab/console.log/
https://studio.code.org/docs/applab/setProperty/
https://studio.code.org/docs/applab/console.log/
https://studio.code.org/docs/applab/setProperty/


 Discussion Goal

Goal: Make this a quick discussion to help connect the

previous lesson to this one. Help bring out some of the

following points.

Programming languages are much more precise

than natural language

Programming languages have very strict rules

Programming languages may feel a little awkward

at first.

 Teaching Tip

Reinforcing Vocabulary: A lot of the vocabulary

introduced here is taken straight from the AP

framework. The images are designed to help connect

the definitions to the experiences they had in this

lesson. Help students make these connections by not

only writing down definitions but talking through how

it's connected to what they saw.

Hovering over a block in the toolbox helps you know what kind of information to put in each input.

Level 4: Run this level in the same way. Have students complete all three prompts and then bring the class together

after a few minutes for a discussion.

Discuss: Once again have students share the results of their discussions and modifications with the room. Here are

some good points to draw out if they don't come up naturally in discussion.

onEvent  makes the program respond to the user. You can add code inside of it that will only run when something

happens.

Changing the second input changes the type of interaction that will make the code inside the onEvent  run.

Code outside the onEvent  runs right away. Code inside an onEvent  will only run when the event happens.

Even if code is after an onEvent , it will run first if it's outside of any onEvent

Level 5: Run this level in the same way. Have students complete all three prompts and then bring the class together

after a few minutes for a discussion.

Discuss: Have students share the results of their discussion and anything else they noticed. Here are good points to

draw out.

playSound  will play a sound you pick from the Sound Library

Lines that start with // are called comments and don't actually run. They just help you understand your code.

Level 6: Run this level in the same way. Have students complete all three prompts and then bring the class together

after a few minutes for a discussion.

Discuss: Have students share the results of their discussion and anything else they noticed. Here are good points to

draw out.

Random number chooses a new random number each time, between the high and low value given

onEvent  takes many different event types, not just "mouseOver"  and "click" . Depending on the situation

different ones make more sense.

Wrap Up (15 mins)

  Prompt: Think about your experiences today and

in the previous lesson. How is a programming

language different from natural language?

 Remarks

Awesome job! Today was our first chance to check

out what programming in App Lab is like. So far

we've only learned a few blocks but we've already

seen they'll let us make a wide variety of types of

programs. We're going to get a lot more time to

practice using them, but before we do let's get

some vocabulary in your journal to make sure we're

using the same words to talk about what we saw

today.

  Journal: Go through each vocabulary word

(Program Statement, Program, Sequential

Programming, Event Driven Programming) and give

students a chance to record each piece of

information.

 Remarks

Great job today! You've learned a lot so far about

programs. It's important to remember that

programs need to work for a variety of inputs and

https://studio.code.org/docs/applab/onEvent/
https://studio.code.org/docs/applab/onEvent/
https://studio.code.org/docs/applab/onEvent/
https://studio.code.org/docs/applab/onEvent/
https://studio.code.org/docs/applab/onEvent/
https://studio.code.org/docs/applab/onEvent/
https://studio.code.org/docs/gamelab/playSound/
https://studio.code.org/docs/applab/onEvent/


outputs. That's what makes programming interactive apps so fun! Today, you also learned how to describe the

behavior of a program, or how the program works when it's run and how the user interacts with it.

When we talk about how programs run, we can describe both what the program does and specifically how the

program statements accomplish this goal.

We're going to keep practicing using these words and going forward you're going to get more chance to practice

programming. Start thinking about how you might want to use what you learned today in your project.

Assessment: Check For Understanding

Check For Understanding Question(s) and solutions can be found in each lesson on Code Studio. These questions

can be used for an exit ticket.

What is the difference between a sequential program and an event-driven program?

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CSP2021

AAP-2 - The way statements are sequenced and combined in a program determines the computed result

AAP-3 - Programmers break down problems into smaller and more manageable pieces

CRD-2 - Developers create and innovate using an iterative design process

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact


UNIT

3
1 2 3 4 5 6 7 8 9 10 11

Lesson 7: Debugging

Overview

In this lesson students practice using the different programming

concepts that they were introduced to in the last lesson. To begin,

however, they are introduced to the concept of debugging and

are encouraged to use and reflect on this practice throughout the

lesson. At the end of the lesson students share their experiences

debugging as well as an new realizations about programming.

Purpose

This lesson serves a number of roles. Even if students had

modified programs in the previous lesson, this continues to be an

introduction to many of the skills of programming. Students are

also introduced to debugging as a skill they'll need to use and

develop as programmers. A huge goal of this lesson, however, is

attitudinal.

Agenda
Warm Up (5 mins)

Preview the Lesson

Activity (30 mins)

Practice Time

Wrap Up (10 mins)

Assessment: Check For Understanding

View on Code Studio

Objectives
Students will be able to:

Debug simple sequential and event-driven

programs

Use the debugging process and Identify

specific best practices for debugging

programs

Use the speed slider, break points, and

documentation as part of the debugging

process

Preparation

Review the steps of the debugging

process

Review the levels students will need to

complete on Code Studio

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

CSP Unit 3 - Intro to App Design -

Presentation

https://curriculum.code.org/csp-20/unit3/
https://studio.code.org/s/csp3-2020/stage/7/puzzle/1/
https://docs.google.com/presentation/d/1aCM_jM8YIi7NIouM60w9IJ3JKSBvrdDN61HjaJk5nyI/edit?usp=sharing


 Discussion Goal

Optional Warmup Prompt: This prompt is optional and

included for instances where you need a warm up

prompt on the board when students walk in. If your

classroom is able to move directly to main activity you

should feel free to skip this prompt in the interest of

time.

Goal: This prompt should help get students in the

mindset of debugging. If students ask for more details

tell them that this is all the information they have and

that they should feel free to

Teaching Guide

Warm Up (5 mins)

Preview the Lesson

  Prompt: Your friend calls and says "I can't get

music to come out of my speakers, can you help?".

Write a quick list of everything you'd ask them or

have them check to try to fix the problem.

 Remarks

Today we're going to practice programming, but

we're also going to practice a very important skill in

programming called "debugging". Let's see what it

looks like.

Activity (30 mins)

Practice Time

 Display: Show the Debugging video and then show the debugging process.

 Remarks

We're going to use this process to help us fix programs. I want you to use this process as you fix issues you find in

code today. At the end of the lesson we'll talk more about this process and any specific strategies you document

along the way.

Group: Place students in pairs.

Level 2: This level requires students to recognize that strings need to go in quotes.

Level 3: This level also requires students to recognize that strings need to go in quotes. Ideally students will get

more familiar with checking for yellow warnings in this level.

Level 4: The code in this level will run, but the wrong text and sounds have been placed in the wrong places. This

shows that code may have no warnings but still is not working correctly.

Level 5: Again this code has no warnings but in testing the app students should see that the range of values for the

random numbers is too large. Iterative testing with different values should help them pick a number that keeps the

smiley inside the screen.

Level 6: In this level an entire event handler is missing. Students will need to add it to the app.

Level 7: This level explicitly introduces the fact that event handlers ( onEvent ) should not go inside other onEvent

blocks. This is explicitly addressed in the concluding slide show as well.

Level 8: This app is a good chance for students to practice adding functionality of their own. While nothing starts off

as "broken", students will need to use debugging practices as they add code to this app.

Wrap Up (10 mins)

  Prompt: If you were using the debugging process then you should have some notes of good debugging tips.

Share those with your neighbor and add any new ones you forgot to add. Be ready to share with the class.

 Display: Show the slide which lists some best practices in addition to those students may have mentioned.

 Remarks

https://studio.code.org/docs/applab/onEvent/
https://studio.code.org/docs/applab/onEvent/


 Discussion Goal

Goal: This discussion should help reinforce the fact

that debugging is a skill that can be learned and that it

is made up of many little steps and understandings.

Give the room an opportunity to share as many ideas

as they can before sharing the provided slides with

some recommended steps.

Debugging is an important and entirely normal part

of programming. You code won't always work the

first time, and that's OK! Debugging is a skill that

you can practice and get better at. Using

documentation and leaving comments for yourself

are important skills, but so is working with

classmates or learning to more effectively search

for bugs. We'll keep using these skills.

 Journal: Have students add the following

vocabulary words and definitions to their journals:

documentation and comment.

 Remarks

Let's take a minute to talk more about comments and documentation. Comments help explain the code, but do

not affect how the program runs. They are meant to be read by people! When we write code, we don't only write

for the computer we also write for other people. It's important that others can understand our code, so write your

code clearly using the practices we discussed and comments.

Not all programming environments support comments, so other forms of documentation may be important like

keeping a separate document with information about your program. The key takeaway here, is no matter what

the format, comments and documentation are important!

As you grow in your programming skills, you will start to appreciate how valuable comments can be. You don't

have to wait until a program is complete to write the comments. You should be doing this as you develop the

project. There will be opportunities to write comments called out in the App project you are currently working on.

Assessment: Check For Understanding

Check For Understanding Question(s) and solutions can be found in each lesson on Code Studio. These questions

can be used for an exit ticket.

What is one thing you really enjoyed about today's activity?

Is there anything that you found confusing or need extra help with?

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

CS - Computing Systems

CSP2021

AAP-2 - The way statements are sequenced and combined in a program determines the computed result

CRD-2 - Developers create and innovate using an iterative design process

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact


UNIT

3
1 2 3 4 5 6 7 8 9 10 11

Lesson 8: Project - Designing an App Part 3

Overview

Student learn about Pair Programming by watching a video and

then practicing it themselves while working on their project apps.

At this stage, students are adding their first lines of code to their

app using debugging skills from the previous lesson.

Purpose

Pair Programming is an effective collaboration strategy both

inside the classroom and in professional setting. As this is the

first opportunity students have to program starting from a blank

screen, this is a good opportunity to explore the usefulness of Pair

Programming.

Agenda
Warm Up (5 mins)

What Makes a Good Partner?

Activity (35 mins)

Using Pair Programming

Wrap Up (5 mins)

Reflecting on Pair Programming

View on Code Studio

Objectives
Students will be able to:

Effectively use pair programming while

designing the features of an app

Create the code and user interface of an

app based on a program specification

Preparation

Make sure students have access to their

App Development Planning Guides

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

CSP Unit 3 - Intro to App Design -

Presentation

For the Students

App Development Planning Guide - Activity

Guide Make a Copy 

https://curriculum.code.org/csp-20/unit3/
https://studio.code.org/s/csp3-2020/stage/8/puzzle/1/
https://docs.google.com/presentation/d/1aCM_jM8YIi7NIouM60w9IJ3JKSBvrdDN61HjaJk5nyI/edit?usp=sharing
https://docs.google.com/document/d/1JXIaQGRKzsw9UvZh58yLfkriV2QH7fTE51Omr8OJ1aM/edit?usp=sharing


 Discussion Goal

Goal: Make this a quick discussion and just aim to get

a few ideas from around the room. For example, a

good partner...

listens

contributes

shares the work evenly

and so on....

 Teaching Tip

Taking on the Blank Screen: This is the first time

students are adding code to a blank screen. Some

students may need assistance. Direct them back to

their Planning Guides to help students understand the

onEvent  blocks they need to add to their project.

Supporting Pair Programming: Your biggest role in

supporting pair programming will be encouraging

students to use it early on and helping enforce the

switching. Run the timer in the slides and have left

and right partners switch roles. You may opt to

increase the time to longer periods as time goes on.

Debugging Practices: Students learned a lot of

debugging practices in the previous lesson. Encourage

students to use these and record bugs they find as

they program today. Continue to normalize and

celebrate debugging as a normal and fun part of

programming.

Teaching Guide

Warm Up (5 mins)

What Makes a Good Partner?

  Prompt: What makes a good partner?

 Remarks

Now you've got the skills you'll need for your

project, but we'll need a minute to talk about how to

use them when working in teams. Today you're

mostly going to have work time, but you're going to

be practicing a new skill called pair programming.

Activity (35 mins)

Using Pair Programming

 Group: Place students in pairs with their project

partner

 Distribute: Direct students back to the App

Development Planning Guide - Activity Guide

 Step 5: Students fill out the chart on page 4,

listing all of the Event Handlers in their programs.

They should be able to determine these based on

the Program Specification they designed.

 Display: Play the Pair Programming video found

either in CSP Unit 3 - Intro to App Design -

Presentation or on Code Studio. Afterwards review the

pair programming steps found in Code Studio.

 Remarks

Today we're going to use the pair programming as

you work on your app with your partner. To begin

we'll make the partner sitting on the left the driver

and the one on the right the navigator. Every few

minutes I'll ask you to switch roles.

Circulate: Give students time to work on their project.

As they do so circulate the room encouraging them to

use debugging practices they've learned in previous

lessons. Every few minutes ask left and right partners

to switch being drivers and navigators.

Wrap Up (5 mins)

Reflecting on Pair Programming

  Prompt: How does Pair Programming help when working on a project? How does it help with the debugging

process in particular?

 Journal: Have students add "Pair Programming" to their journals.

https://studio.code.org/docs/applab/onEvent/
https://docs.google.com/document/d/1JXIaQGRKzsw9UvZh58yLfkriV2QH7fTE51Omr8OJ1aM/edit?usp=sharing
https://docs.google.com/presentation/d/1aCM_jM8YIi7NIouM60w9IJ3JKSBvrdDN61HjaJk5nyI/edit?usp=sharing


 Discussion Goal

Goal: Use this prompt to reinforce not only the value

of pair programming and collaboration while

programming, but also to remind students of

debugging practices they learned in the previous

lesson. Possible answers include

Talking through my code with another person helps

me figure out what to do

When I get stuck, there's someone there to help

brainstorm a solution

There's more than one set of eyes to find bugs

Different partners bring different perspectives to a

project

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CSP2021

CRD-1 - Incorporating multiple perspectives

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact


UNIT

3
1 2 3 4 5 6 7 8 9 10 11

Lesson 9: Project - Designing an App Part 4

Overview

Students continue working on their apps. Halfway through class

the focus of the lesson shifts to getting feedback. Students watch

other groups test their apps and collect feedback that will be

used to make updates.

Purpose

This lesson reinforces the importance of feedback in the process

of developing software. Feedback and testing help make sure that

an app actually works for lots of people and in the context in

which it will be used. This process also reinforces the importance

of making iterative improvements in making software.

Agenda
Warm Up (5 mins)

Activity (30 mins)

Work Time - 25 mins

Testing and Feedback - 10 mins

Wrap Up (10 mins)

View on Code Studio

Objectives
Students will be able to:

Test an app's functionality by attempting to

use features and behavior described in a

program specification

Provide effective feedback on the

functionality or usability of an app

Iteratively improve an app based on

feedback

Preparation

Make sure students have access to their

App Development Planning Guides

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

CSP Unit 3 - Intro to App Design -

Presentation

For the Students

App Development Planning Guide - Activity

Guide Make a Copy 

https://curriculum.code.org/csp-20/unit3/
https://studio.code.org/s/csp3-2020/stage/9/puzzle/1/
https://docs.google.com/presentation/d/1aCM_jM8YIi7NIouM60w9IJ3JKSBvrdDN61HjaJk5nyI/edit?usp=sharing
https://docs.google.com/document/d/1JXIaQGRKzsw9UvZh58yLfkriV2QH7fTE51Omr8OJ1aM/edit?usp=sharing


 Teaching Tip

Review Pair Programming: You may want to reuse the

slides from the previous lesson to remind students of

their Pair Programming roles.

Encourage Debugging Practices: Continue to

encourage students to use the debugging practices

they learned in previous lessons and normalize and

celebrate debugging as a part of programming

 Discussion Goal

Goal: This is an optional prompt if your class situation

requires it. If you believe your students need more

time to work on their apps then move right into work

time. This prompt, however is designed to get

students thinking early about the differences between

useful and unhelpful feedback. For example, students

may note that...

Good feedback:

Specific information beyond "it's great".

Explains why something needs work

Bad Feedback:

Is overly negative without constructive feedback

Does not go into enough detail

Teaching Guide

Warm Up (5 mins)

  Prompt: Think of times when you've received

helpful feedback on school work, a hobby, or a sport.

What makes good feedback?

What makes bad feedback?

 Remarks

Today we're going to keep working on our apps, but

we're also going to be getting feedback from our

classmates. Let's get to it!

Activity (30 mins)

Group: Place students back in pairs with their project

partners.

Work Time - 25 mins

 Remarks

  For the next twenty five minutes, you and your

partner will use Pair Programming to continue

working on your app. After this is done, you will get

feedback from another group.

Circulate: Direct students to Code Studio to continue

working on their apps.

Testing and Feedback - 10 mins

 Distribute: Direct students back to the App

Development Planning Guide - Activity Guide.

 Step 6: Groups swap apps and gather feedback. It is ok to move ahead to this section even if students are not

done with their apps yet.

Here's what you should observe:

Group A lets Group B test their app.

Group A watches Group B use the app, and writes down improvements that come to mind.

Group A interviews Group B asking for specific improvements Group A can make. This may be different than

what Group A came up with during the observation. These improvements are written down in the Activity

Guide.

Group A and B swap and now Group A tests Group B's app while Group B watches.

After this, mix up the group pairings and repeat the steps above.

https://docs.google.com/document/d/1JXIaQGRKzsw9UvZh58yLfkriV2QH7fTE51Omr8OJ1aM/edit?usp=sharing


 Discussion Goal

Goal: Use this prompt as time allows. The goal is to

reinforce the importance of feedback in the

development of good software. Possible answers

include:

Another person may find a bug that you have been

overlooking

Something that seems obvious to you is not obvious

to the user

Even if the app isn't finished, feedback can help

guide the next steps

Wrap Up (10 mins)

 Remarks

  Step 7: Now return to your stations and pick at least one improvement to make to their app based on

feedback. Write this down in the Planning Guide in Step 7.

  Prompt: Why is it important to get feedback from

others while building your app? What is the value of

getting this feedback even if you aren't finished with

your app?

 Remarks

Feedback and testing are important parts of making

good software. They ensure that our apps actually

work the way we designed them, and they help us

make gradualy improvements. Tomorrow you'll have

a chance to make some final touches on your app

before we submit them!

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CSP2021

CRD-1 - Incorporating multiple perspectives

CRD-2 - Developers create and innovate using an iterative design process

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact


UNIT

3
1 2 3 4 5 6 7 8 9 10 11

Lesson 10: Project - Designing an App Part 5

Overview

Students complete their apps, making any final adjustments

based on feedback from their peers. Students spend some time

reviewing other apps that classmates made and then complete a

short set of reflection prompts before submitting their projects.

Purpose

This lesson concludes the project students have been working on

throughout the unit. Students will have a chance to respond to

any feedback they received and incorporate that into their

project. The reflection prompts in the activity help students

synthesize their overall experience with a focus on how

collaboration within their team and within their classroom

impacted the final projects they designed.

Agenda
Warm Up (5 mins)

Activity (30 mins)

Finish building apps

Wrap Up (10 mins)

Assessment: Project

View on Code Studio

Objectives
Students will be able to:

Reflect on the value of different stages of a

development process in creating an app

Preparation

Make sure students have access to their

App Development Planning Guides

Review the two sample project

submissions, available in the "For Teachers

Only" area on the first level of this lesson

on Code Studio

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

CSP Unit 3 - Intro to App Design -

Presentation

For the Students

App Development Planning Guide - Activity

Guide Make a Copy 

https://curriculum.code.org/csp-20/unit3/
https://studio.code.org/s/csp3-2020/stage/10/puzzle/1/
https://docs.google.com/presentation/d/1aCM_jM8YIi7NIouM60w9IJ3JKSBvrdDN61HjaJk5nyI/edit?usp=sharing
https://docs.google.com/document/d/1JXIaQGRKzsw9UvZh58yLfkriV2QH7fTE51Omr8OJ1aM/edit?usp=sharing


 Teaching Tip

Get to the Project: Quickly move the class to the

activity where the bulk of their time should be spent

today.

Teaching Guide

Warm Up (5 mins)

 Remarks

  Your apps are almost done and soon will be ready

to share with the world. Let's get back to work.

Activity (30 mins)

Group: Place students back in pairs with their project partner.

 Distribute: Make sure students have access to the App Development Planning Guide - Activity Guide

Finish building apps

 Remarks

For the next thirty minutes, you and your partner will work on finishing your app. Don't forget to consider the

suggestions your classmates made. Check the rubric before submitting your app.

 Code Studio: Direct students to continue working on their app. When they are finished, they should hit "Submit"

to turn in their app.

Wrap Up (10 mins)

 Reflection: Direct students to the Reflection Section in the Planning Guide. There are two questions for students

to complete.

Submit Projects: Students should submit their final projects including both a link to the app and their planning

guide.

Assessment: Project

Use the rubric to assess student projects. The rubric can be found on the last page of the App Development

Planning Guide - Activity Guide.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://docs.google.com/document/d/1JXIaQGRKzsw9UvZh58yLfkriV2QH7fTE51Omr8OJ1aM/edit?usp=sharing
https://docs.google.com/document/d/1JXIaQGRKzsw9UvZh58yLfkriV2QH7fTE51Omr8OJ1aM/edit?usp=sharing
https://creativecommons.org/
https://code.org/contact


UNIT

3
1 2 3 4 5 6 7 8 9 10 11

Lesson 11: Assessment Day

Overview

Students complete the Unit Assessment and then spend the rest

of class sharing their projects.

Purpose

This lesson provides a bookend to Unit 3 where students

demonstrate their learning through their projects and a multiple

choice assessment.

Agenda
Warm Up (5 mins)

Activity (30 mins)

Unit Assessment - 25 mins

Gallery Walk - 10 mins

Wrap Up (10 mins)

View on Code Studio

Objectives
Students will be able to:

Reflect on the value of different stages of a

development process in creating an app

Preparation

Make sure students have access to their

App Development Planning Guides

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

CSP Unit 3 - Intro to App Design -

Presentation

For the Students

App Development Planning Guide - Activity

Guide Make a Copy 

https://curriculum.code.org/csp-20/unit3/
https://studio.code.org/s/csp3-2020/stage/11/puzzle/1/
https://docs.google.com/presentation/d/1aCM_jM8YIi7NIouM60w9IJ3JKSBvrdDN61HjaJk5nyI/edit?usp=sharing
https://docs.google.com/document/d/1JXIaQGRKzsw9UvZh58yLfkriV2QH7fTE51Omr8OJ1aM/edit?usp=sharing


Teaching Guide

Warm Up (5 mins)

 Remarks

We've come to the end of the unit, and we've learned a lot about developing apps. Today we are going to take an

assessment and then you will have the opportunity to share your apps with the entire class.

Activity (30 mins)

Unit Assessment - 25 mins

 Do This: Students complete the Unit Assessment on Code Studio.

Gallery Walk - 10 mins

 Do This: One student per group displays their app on the computer. Groups rotate around the room running the

different apps. Students can leave comments on sticky notes at each station.

 Remarks

If you want, your app can be shared with people beyond this classroom. Click the "Share" button and then grab

the link or type in a phone number to share it with a friend or family member. Congratulations on making your

first app!

Wrap Up (10 mins)

Do This: If you have time, quickly review the Assessment.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

