
Unit 5 Lesson 1

Introduction to Event-Driven Programming

Resources

Unit 5 Lesson 2

Multi-Screen Apps

Resources

Unit 5 Lesson 3

Building an App: Multi-Screen App

Resources

Unit 5 Lesson 3

Name(s)__ Period ______ Date ___________________

 Activity Guide - Multi-screen App

Multi-screen App
You will be creating your own multi-screen app to practice designing user interfaces and writing event-driven
programs. You have a lot of freedom to choose what your application will be but some ideas might include:

● A personal app about you and your hobbies / interests
● A “Top 3” app for a category of your choosing
● An informational app for an organization or club
● A flash card app for studying for quizzes
● A short “choose-your-own adventure” game
● An app with a different game on each screen

Requirements
Your application must have the following components:

● Your app must have some kind of purpose
○ Even if the purpose is simple like “Celebrating all my favorite foods to eat”, there must be an

underlying purpose that thematically ties the whole thing together.
○ The title of your app should make it pretty clear.

● Your app will have at least 4 screens.
● Your app should include text, images, and buttons (and optionally sound).
● No “getting stuck” on a screen.

○ It should always be possible to navigate from a screen in your app to some other screen.
○ The user should also be able to “get back to the start” somehow. There are many ways to do this (e.g.,

screens go in a cycle, or every screen can navigate back to the home screen, etc.) but you should
make sure you plan accordingly.

● Your program code should follow good style, particularly by giving UI elements descriptive and meaningful
IDs.

● Your user interface should be intuitive to use.

Process
● Choose the theme and purpose of your app.
● Complete the Planning Guide to decide how you will display your information.
● Informally Share the sketch of your idea with a classmate to get some basic feedback and to see if they have

any ideas you hadn’t thought of. Possible discussion points:
○ Does the way users navigate through pages intuitive?
○ Is the design / layout clear and present the information well?
○ Anything you would add? Anything you would take out?

● Program your app following the plan you develop in the Planning Guide.
● Peer Review at least one of your classmates’ apps using the Peer Review Rubric.

 Planning Guide

Outline Your App
You will be sketching out the layout of your application using the rectangles below. Each rectangle represents a
screen of your app. For each screen you should:

● Decide what information will be included on that screen.
● Give the screen a descriptive ID.
● Add any notes about the content that will be featured in that screen.
● Within each rectangle, draw the elements that will appear in that screen.
● Draw arrows to / from your screen showing how a user will be able to navigate through the app.

2

Outline Example

3

 Peer Review Rubric

Project being reviewed:

Reviewer:

Criteria Yes Almost No Comments

Intended purpose of
the app is clear

Project includes at
least 4 screens.

Application includes
images, text, and
buttons. (bonus
points for sound).

You cannot get
“stuck” on any
screen. It is always
possible to get to the
rest of the app.

Text on screen is
clear and descriptive.

Element IDs are
descriptive and
meaningful.
(Look at the code.)

The app is visually
appealing and the
user interface is
intuitive to use.

4

Unit 5 Lesson 4

Controlling Memory with Variables

Resources

Unit 5 Lesson 5

Building an App: Clicker Game

Resources

Unit 5 Lesson 5

Name(s)__ Period ______ Date ___________________

 Activity Guide - The Clicker Game

The Clicker Game
You will be creating your own “clicker” game similar to the Apple Grabber game you worked on in this lesson.
The general object of the game is to click on an element that jumps around every time you click it. You will pick your
own theme and decide what the rules are and how to keep score.

Template
A template for the app is provided in Code Studio. The template has 4 screens and
some basic navigation functionality and event handlers set up for you.
The game play screen uses the images from the Apple Grabber game, but you
should replace these with images related to your chosen theme.

Your main tasks are to:

● pick a theme for your game and add appropriate images and styling
● add variables to track some data during game play
● add code to event handlers to update the variables and display appropriately

Requirements
Your application must have the following components:

● Your game must end - there must be a way to “win” and a way to “lose.”
● You must use at least one variable (but you may use as many as you like) to keep track of some data during

game play (such as a score, or a number of attempts remaining, number of times a certain element was
clicked, etc.).

● Your app will have at least 4 screens:
1. A welcome screen that explains what your game is and how to play, and lets the user start
2. A screen for game play that displays some data on the screen that updates during play (such as the

running score, number of attempts remaining, etc.)
3. A “win” screen to show a congratulatory message if the player “wins” the game
4. A “loss” screen to show when the player “loses” the game

● From the the win/loss screens, it must be possible to start the game over without simply re-running the app
from scratch; this means resetting all variables and displays back to initial values.

● Your program code should follow good style, particularly by making sure to create global variables in the
first few lines of code and giving UI elements and variables descriptive and meaningful IDs.

● Your user interface should be intuitive to use.

Process
● Choose the theme of your game: what is jumping around the screen that the user is trying to click? Many

themes and metaphors are possible.
● Program your app: it’s suggested you start by adding some functionality before style. Add one variable into the

program, and add code to update and display it properly.
● Have a peer test it out to see if there are any more improvements you should make.
● Make any necessary final adjustments.
● Peer Review: you will review at least one of your classmates’ apps using the Peer Review Rubric, and

someone will review yours.

Advanced option: use getTime() to factor time into your game
In the toolbox you’ll see a function called getTime() which returns a number that’s called a timestamp, representing
the moment in time (to the millisecond) when the function was called. If you store a timestamp in a variable when the
player starts the game and then grab a timestamp when they win, you can calculate how long it took and you could
factor this into your score. Read the documentation for getTime() to see how it works.

 Peer Review Rubric

Project being reviewed:

Reviewer:

Criteria Yes Almost No Comments

Using the App / Playing the game

Welcome screen explains the
game, how to win or lose, and
allows the player to start.

At least one value is shown on
screen that changes during game
play (for example: a running
score).

It is possible to win, and the app
switches to a “win” screen.

It is possible to lose, and the app
switches to a “loss” screen.

It is possible to start the game
over without having to restart the
program (i.e., the win/loss
screens allow you to navigate
back to the welcome screen).

When you start over, variables or
other data and displays are
properly reset to initial values.

The app is visually appealing and
the user interface is intuitive to
use.

The Code

The code contains at least one
global variable; it appears at or
near the first lines of code.

You can find the line or lines of
code in an event handler function
that updates a global variable.

UI elements have meaningful/
descriptive IDs.

2

Unit 5 Lesson 6

User Input and Strings

Resources

Unit 5 Lesson 6

Name(s)___ Period ______ Date ___________________

 Activity Guide - Mad Libs®

Create a Mad Libs App
You will be creating an instructional Mad Libs® app that allows a user to submit input of different types (e.g., noun,
verb, plural noun, etc.) and then combines them with text you’ve written to create a single (usually funny) message.
The main criteria of your project are as follows:

● Your Mad Libs app should be structured as instructions for completing some task.
● You must include at least three steps in your instructions.
● You must accept at least three pieces of input from your user.
● You must set at least one piece of input to always be uppercase or lowercase.

Example
Here you can see how you might plan out the “Learn to Drive” example found in Code Studio.

Inputs:
● [plural noun] make lowercase
● [noun 1] made lowercase
● [noun 2] made lowercase
● [song] make lowercase
● [verb] made uppercase

Output Text:

Learning to drive is a tricky process. There are a few rules you must
follow.

1. Keep two [plural noun] on the steering wheel at all times.

2. Step on the [noun 1] to speed up and the [noun 2] to slow down.

3. Your parents will just LOVE it if you play [song] on the radio.

4. Make sure to honk your horn when you see [verb] on a street sign.

Brainstorm
Use this space to brainstorm components of your own Mad Libs app.

Mad Libs® is a trademark of the Penguin Group (USA) LLC., which does not sponsor, authorize or endorse this site.

Unit 5 Lesson 7

If-statements Unplugged

Resources

Unit 5 - Lesson 7

Name(s)___ Period ______ Date _____________

Activity Guide - Will it Crash?

Let’s play a game: “Will it Crash?”
Each row in the table below presents a small program that uses if-statements and robot commands.
Trace the code and plot the movements of the robot for the 3 scenarios shown to the right of the code. If
the robot is directed to move onto a black square, it “crashes” and the program ends. If the robot doesn’t
crash, then draw a triangle showing its ending location and direction.

There are a few patterns to the ways if-statements are typically used:

● Basic If-statements
● Sequential If-statements
● Basic If-else statements
● Nested If and if-else statements.
● Combinations of all of the above

Each section below presents an example of one of these common patterns, followed by a few problems
for you to try. For each type study, and make sure you understand, the example and why each of the
3 scenarios ends up in the state shown.

EXAMPLE: Basic If-statement

Code is executed sequentially from top to
bottom. The code inside the if-block
executes ONLY if the condition is true,
otherwise the block is skipped and
execution picks up on the first line after the
if-block.

MOVE_FORWARD ()

IF (CAN_MOVE (forward))

{

 MOVE_FORWARD ()

 MOVE_FORWARD ()

}

ROTATE_LEFT ()

MOVE_FORWARD ()

Scenario 1:

Use the diagram to
trace each robot move.

Scenario 2:

Scenario 3:

YOU TRY IT - Basic If-statement

ROTATE_LEFT ()

IF (CAN_MOVE (left))

{

 ROTATE_LEFT ()

}

MOVE_FORWARD ()

MOVE_FORWARD ()

1

EXAMPLE: Sequential If-statements
Lines of code, including if statements, are
evaluated separately, one at a time, in
order from top to bottom. An if-block
executes ONLY if the expression is true.
Note that an earlier if-statement might
change the state of the of world for an
if-statement that comes later. This makes
it hard to predict what will happen unless
you trace the robot moves and take each
line one at a time.

IF (CAN_MOVE (forward))

{

 MOVE_FORWARD ()

}

IF (CAN_MOVE (forward))

{

 MOVE_FORWARD ()

}

ROTATE_LEFT ()

IF (CAN_MOVE (forward))

{

 MOVE_FORWARD ()

}

YOU TRY IT - Sequential If-statements

ROTATE_LEFT ()

IF (CAN_MOVE (forward))

{

 MOVE_FORWARD ()

}

ROTATE_RIGHT ()

IF (CAN_MOVE (forward))

{

 MOVE_FORWARD ()

}

ROTATE_LEFT ()

IF (CAN_MOVE (forward))

{

 MOVE_FORWARD ()

}

IF (CAN_MOVE (left))

{

 ROTATE_LEFT ()

 MOVE_FORWARD ()

}

IF (CAN_MOVE (left))

{

 ROTATE_LEFT ()

 MOVE_FORWARD ()

}

IF (CAN_MOVE (left))

{

 ROTATE_LEFT ()

 MOVE_FORWARD ()

}

2

EXAMPLE: If-else Statement
The code in the if-block executes ONLY if
the expression is true, otherwise the code
in the else block will run. But one or the
other must execute. An else statement
can be attached to a single if-statement.

ROTATE_LEFT ()

IF (CAN_MOVE (forward))

{

 MOVE_FORWARD ()

}

ELSE{

 ROTATE_LEFT ()

 ROTATE_LEFT ()

}

MOVE_FORWARD ()

NOTE: Easy to miss
MOVE_FORWARD on
the last line

YOU TRY IT - Simple If-Else

Here is a block-based

version of a very similar

program.

IF (CAN_MOVE (left))

{

 ROTATE_LEFT ()

 MOVE_FORWARD ()

}

ELSE

{

 ROTATE_RIGHT()

 MOVE_FORWARD ()

}

IF (CAN_MOVE (right))

{

 ROTATE_RIGHT ()

}

ELSE

{

 ROTATE_LEFT ()

}

MOVE_FORWARD ()

3

EXAMPLE: Nested Statements
You can put if- and if-else statements
inside other if-statements. All previous
rules apply, but tracing the code can be
tricky.

IF (CAN_MOVE (forward))

{

 MOVE_FORWARD ()

}

ELSE

{

 IF(CAN_MOVE(backward))

 {

 ROTATE_LEFT ()

 ROTATE_LEFT ()

 MOVE_FORWARD ()

 }

 MOVE_FORWARD ()

}

MOVE_FORWARD ()

YOU TRY IT - Nested If-statements

IF (CAN_MOVE (forward))

{

 IF (CAN_MOVE (left))

 {

 ROTATE_LEFT ()

 }

 ELSE{

 ROTATE_RIGHT ()

 }

 MOVE_FORWARD ()

}

ELSE

{

 ROTATE_LEFT ()

 ROTATE_LEFT ()

}

MOVE_FORWARD ()

4

Challenge: putting it all together — if, if-else, sequential if, nested statements

IF (CAN_MOVE (forward))

{

 MOVE_FORWARD ()

 IF (CAN_MOVE (left))

 {

 ROTATE_LEFT ()

 IF (CAN_MOVE (right))

 {

 ROTATE_RIGHT()

 }

 }

}

MOVE_FORWARD ()

IF (CAN_MOVE (forward))

{

 MOVE_FORWARD ()

 IF(CAN_MOVE (left))

 {

 IF(CAN_MOVE (right))

 {

 ROTATE_RIGHT ()

 }

 ELSE

 {

 ROTATE_LEFT ()

 }

 }

 ELSE

 {

 ROTATE_RIGHT ()

 }

 MOVE_FORWARD ()

}

ELSE

{

 ROTATE_LEFT ()

 ROTATE_LEFT ()

}

MOVE_FORWARD ()

5

Now you try it!
Now that you’ve had a bunch of practice reading and tracing code with if-statements, try writing your own
pseudocode robot program that uses if-statements.

Problem statement:
Write a program to make the robot end up on the target gray square
facing any direction...but your code must be able to handle the possibility
of an obstacle that could appear in any one of the other squares (i.e.
squares that aren’t the start or target squares - numbered 1-7 in the
diagram)

You must write the code without knowing ahead of time where the
obstacle will be. In other words, you must write one program that can
handle any possibility that might occur. For this exercise, there 8 possible
locations where obstacle might be, we’ll call them scenarios 0-7:

Write your program by hand below and test it by tracing it against each of the 8 possible
scenarios. Your code should get the robot to the target no matter where the obstacle appears.
Goal: When the program ends, the robot is on the gray square -- it can be facing any direction
Tip: When hand-writing code you don’t need to follow the pseudocode syntax strictly, as long as
your intent is clear. For example, using abbreviations and/or omitting the curly-braces and just
indenting is fine.

6

Selection

Text
IF (condition)

{

 <block of statements>

}

Block

The code in block of statements is executed if the Boolean expression
condition evaluates to true; no action is taken if condition evaluates to
false.

Commentary:
An if-statement might execute some code or it might not. It checks to
see IF something is true (the “condition”). If it is true, then run some
code contained inside the if-statement. Otherwise, if the condition is
false, just ignore the whole block and pick up executing the code that
comes after it.

Text
IF (condition)

{

 <first block of statements>

}

ELSE

{

 <second block of statements>

}

Block

The code in first block of statements is executed if the Boolean
expression condition evaluates to true; otherwise the code in second
block of statements is executed.

Commentary:
An if-else statement is an “either or”. You are saying: “I want to run
either this block of code or this other one”. An if-else guarantees that
one of the two blocks of statements will execute. If the condition is
true, then run the first block of statements and ignore the other block.
If the condition is FALSE, then ignore the first block and run the
second one.

Important Note: While an if statement can stand on its own (see
above), an ELSE statement cannot - it must be “attached” to an IF
statement, and no lines of code can be inserted between an if and
else.

Robot

Text:
MOVE_FORWARD ()

Block:

The robot moves one square forward in the direction it is facing.

Text:
ROTATE_LEFT ()

Block:

The robot rotates in place 90 degrees counterclockwise (i.e., makes an
in-place left turn).

Text: The robot rotates in place 90 degrees clockwise (i.e., makes an in-place

1

ROTATE_RIGHT ()

Block:

right turn).

Text:
CAN_MOVE (direction)

Block:

Evaluates to true if there is an open square one square in the direction
relative to where the robot is facing; otherwise evaluates to false. The
value of direction can be left, right, forward, or backward.

Commentary:
CAN_MOVE is a condition that you can use in an if-statement
- it will either be true or false.
Example: IF(CAN_MOVE (forward)) is a way to check if the
space in front of the robot is open.

2

Code Robot Scenario Commentary
1 ROTATE LEFT ()

Before:
The starting scenario before any lines
have been executed.

Before reading the rest of the page, you
might want to try to predict where the
robot will end up.

2 IF (CAN MOVE (forward))
3 {

4 MOVE FORWARD ()

5 }

6 ROTATE LEFT ()
7 IF (CAN MOVE (forward))
8 {
9 MOVE FORWARD ()
10 }

1 > ROTATE LEFT ()

Line 1 executes:
Robot turns 90 degrees to the left

2 IF (CAN MOVE (forward))
3 {

4 MOVE FORWARD ()

5 }

6 ROTATE LEFT ()
7 IF (CAN MOVE (forward))
8 {
9 MOVE FORWARD ()
10 }

1 ROTATE LEFT ()

Line 2 executes:
Check to see if the robot can move
forward. TRUE - it can. So the code is
said to “enter the if-statement block” ...

2 > IF (CAN MOVE (forward))
3 {

4 MOVE FORWARD ()

5 }

6 ROTATE LEFT ()
7 IF (CAN MOVE (forward))
8 {
9 MOVE FORWARD ()
10 }

1 ROTATE LEFT ()

Line 4 executes:
Since the condition was TRUE, execute
the line(s) of code inside the
if-statement - in this case:
move_forward.

NOTE: Lines 3 and 5: The “curly
braces” { } encapsulate the lines of
code to execute if the condition is true.

2 IF (CAN MOVE (forward))
3 {

4 > MOVE FORWARD ()

5 }

6 ROTATE LEFT ()
7 IF (CAN MOVE (forward))
8 {
9 MOVE FORWARD ()
10 }

1 ROTATE LEFT () Line 6 executes:
Rotate the robot 90 degrees to the left

2 IF (CAN MOVE (forward))
3 {

1

4 MOVE FORWARD ()

5 }

6 > ROTATE LEFT ()
7 IF (CAN MOVE (forward))
8 {
9 MOVE FORWARD ()
10 }

1 ROTATE LEFT ()

Line 7: Check to see if the robot can
move forward now...

FALSE - it cannot move forward. The
condition fails, so IGNORE the block of
code in the curly braces. The robot
actually does nothing here.

NOTE: the condition of an if-statement
is always executed - the blocks inside it
though, only run if the condition is
TRUE.

2 IF (CAN MOVE (forward))
3 {

4 MOVE FORWARD ()

5 }

6 ROTATE LEFT ()
7 > IF (CAN MOVE (forward))
8 {
9 MOVE FORWARD ()
10 }

1 ROTATE LEFT ()

End state:

Since there are no more lines of code
to execute, the program ends in this
state.

All lines have been processed. If
there were any code starting on line
11, we would attempt to execute that
next.

2 IF (CAN MOVE (forward))
3 {

4 MOVE FORWARD ()

5 }

6 ROTATE LEFT ()
7 IF (CAN MOVE (forward))
8 {
9 MOVE FORWARD ()
10

11 >

}

You try it - Same Code, Different Scenario
Because the code that runs depends on the conditions at the time of execution, the same program might
end up with different results given a different starting scenario. Try tracing through the same program
again, but with a different initial robot setup. What happens? Where does the robot end up?

1 ROTATE LEFT ()

 2 IF (CAN MOVE (forward))

3 {

4 MOVE FORWARD ()

5 }

6 ROTATE LEFT ()
7 IF (CAN MOVE (forward))
8 {
9 MOVE FORWARD ()
10 }

2

3

Unit 5 Lesson 8

Boolean Expressions and "if" Statements

Resources

Unit 5 Lesson 8

Name(s)___ Period ______ Date ___________________

 Activity Guide - Flowcharts

The Types of Questions You Can Ask a Computer
When we make decisions as humans, we usually consider complex sets of conditions, like the circumstances
surrounding the decision, past experience, or even just how we feel. When we want to write programs that make
decisions, we need to represent our decisions in a way the computer can understand.

Decision Making with a Computer

● The computer evaluates some statement (also called an expression) that can only be true or false. This
means that the result can be represented by a single bit.

● This result determines which of two parts of the program will run next.

The types of statements that a computer can evaluate as either true or false are also limited by the fact that information
stored in the computer is binary. As a result, most true/false statements you will use in your programs are comparing
two values in the computer’s memory. Here are the most common types of comparisons you’ll see:

__ is equal to __
 __ is greater than __ __ is greater than or equal to __

__ is not equal to __
 __ is less than __ __ is less than or equal to __

Creating Computer Questions
It can take a little practice to convert a question you might ask as a human into a binary statement that can be
evaluated by a computer. Here are some examples:

The Human Question The Computer Question The Human Question The Computer Question

Are you old enough
to drive?

Is age greater than or
equal to 16?

 Is it lunch time? Is the time equal to 12?

Did I fail the test? Is grade less than 70? Is it the weekend? Is the day equal to
Saturday? If not, is the day
equal to Sunday?

Was it a tied game? Was the home team score
equal to the away team
score?

 Is this person a
teenager?

Is age greater than 12? If
yes, is age less than 20?

Your Turn! Change the following human questions into computer questions:

Human Question Computer Question

Could this water freeze right now?

Did I get a baker’s dozen (13) of donuts?

Am I old enough to vote?

Were you born before the millennium?

Are you an only child?

Flowchart Components

One way that programmers plan complex programs with decisions in them is to create diagrams called Flowcharts,
which demonstrate the logic they want for their program. Flowcharts have a couple different components. Each
component is a different shape to signify its purpose. Check out the table below as a build to flowcharts.

Component Purpose

A diamond represents a decision to be made within your
program, based on a binary question or expression (one
that has only two possible responses). We will see more
about binary questions later in this activity.

True and False arrows designate the paths taken,
based on the result of a decision (diamond). Note once
again that every decision may have only 2 possible paths
that result from it, one for true and one for false.

A rectangle represents an action that is performed.
Some actions may be performed as the direct result of a
decision, while others are performed every time a
program is run. The examples we’ll see usually use the
following style:

● Action that is always performed: wide orange

rectangle
● Action performed based on decision: narrow blue

rectangle

When you draw your own flowcharts, you may use a
single style of rectangle for all actions.

A simple arrow indicates that we are moving from one
action to the next without considering any decision.
These will generally be used to link a set of actions to be
completed one after the other.

2

The Results of Questions You Can Ask a Computer
So far we have only created questions, but in order to use them to make decisions, we need to specify actions that get
performed depending on the result. Check out the examples of flowcharts below:

Sometimes you need to get multiple pieces of
information to make your decision.

Sometimes you want to ask a follow up question to your original question based on a certain answer.

3

Your turn!
Refer back to your Human-Computer Questions you worked on before. Can you make flow charts for them? The
questions are copied below for your reference.

Human
Question

Flow Chart

Could this water
freeze right
now?

Did I get a
baker’s dozen of
donuts?

4

Human
Question

Flow Chart

Am I old enough
to vote?

Were you born
before this
millennium?

Are you an only
child?

5

Unit 5 Lesson 9

"if-else-if" and Conditional Logic

Resources

Unit 5 Lesson 9
Name(s)__ Period ______ Date ___________________

 Worksheet - Compound Conditionals

Chained and Nested Conditionals
In order to express more complex decisions, we’ve used chained conditionals (else / else-if) and nested
conditionals (if statements inside of if statements). These are powerful tools which can be combined to express
any complex boolean condition.

Practice: Using what you know about writing if, if-else, and if-else-if statements, write pseudocode to
accomplish the tasks given below. Assume that you are writing an application which asks the user to input the day of 1

the week (a string) and his age (a number) and that these are stored in variables called day and age.

● EXAMPLE: If the day is Friday, write, “Thank goodness it’s Friday.” Otherwise, write, “How long till Friday?”
if day == Friday

write “Thank goodness it’s Friday.”
else

write “How long till Friday?”

● If the day is any day but “Monday” the program writes, “At least it’s not Monday.”

● If the user is a teenager, the program writes, “You are a teenager.” Otherwise, it writes, “You are not a
teenager.” (Remember that you can assume there is a variable called age that you can refer to.)

● If the day is a weekend day, the program writes, “It is the weekend.” Otherwise, it writes, “It is not the
weekend.”

1 Writing pseudocode means you should use the structural conventions of a programming language, but it is intended for human
reading rather than machine reading. Even if pseudocode sometimes looks very close to a real programming language, there is no
expectation that it be syntactically perfect - it’s about expressing and communicating your ideas for a program.

1

Improving Conditionals with Boolean Operators
As we noted before, nested and chained conditionals can be used to create any possible boolean condition.
Unfortunately, however, the resulting code will often be long, cumbersome, and redundant. To help simplify the
expression of complex conditionals we will be introducing three new logical operators: NOT, AND, and OR.

NOT
When creating more complex boolean expressions you will encounter instances when you want to know if a statement
is false rather than true. You have seen the != (“is not equal”) operator before, but previously we might also have
accomplished this by using the else statement. Sometimes, expressing logical conditions is a challenge and you
might feel like you need to write an if statement just to use the else clause. Here is simple example.

Example: if(day == "Monday"){

}

else {

 write("At least it’s not Monday.");
}

But writing an empty if statement just to use the else clause is bad practice (some would call it ugly code). There
are many instances in programming where an operation doesn’t have a convenient logical inverse (like == and !=) and
we simply want to say if some condition is NOT true. The single ! is the NOT operator. Here’s an example:

Operator Description Truth Table JavaScript Syntax

NOT statement1

Evaluates to the opposite
truth value of the
statement provided as
input

!

Note the truth table shown above. A truth table is a simple tool used to show how every possible value of the input will
be treated by a logical operation. Here we use “expr” to stand in for any expression that might evaluate to true or false.
This table shows that when NOT is applied to a boolean expression, the result is the opposite truth value.

Also note that the JavaScript syntax for NOT is a single exclamation point. As good practice, you should place the
expression to which you want to apply the NOT within parentheses. Here’s our example from before, simplified with the
NOT operation.

Updated Example: if(!(day == "Monday")){

 write("At least it’s not Monday.");
}

Practice: Circle whether each expression evaluates to true or false. The variable day is initialized as shown.

var day = "Monday";

1. !(day == "Monday") (Evaluates to true) (Evaluates to false)

2. !(2 > 3) (Evaluates to true) (Evaluates to false)

3. !(day == "Tuesday") (Evaluates to true) (Evaluates to false)

2

AND
When we’ve wanted to check whether multiple conditions are true, we have been making use of nested conditionals.
Here’s how we might approach determining whether a user is a teenager, based on the variable age.

Example: if(age >= 13){

 if(age < 20){

 write("You are a teenager.");
 } else {

 write("You are not a teenager.");
 }

} else {

 write("You are not a teenager.");
 }

Not only is this code long, but there is redundancy introduced by having to write “You are not a teenager.” at two
different points. We can improve the expression of this complex condition with the AND operator.

Operator Description Truth Table JavaScript Syntax

statement1 AND statement2

Evaluates to true only
when both boolean
statements it connects
are true

&&

Notice that the truth table for AND includes columns for two statements, “a” and “b,” and that every possible true /
false combination of their values is shown in the columns.

When using the AND operator, we can significantly improve the code we wrote in the example above (see below).
We’ve actually improved the code in two ways. First, notice that we’ve removed the redundant lines of code. Second,
since all of the logic of the conditional can now be found in one line, it is easier to read and understand, making it a
better expression of what you are trying say.

Updated Example: if((age >= 13) && (age < 20)){

 write("You are a teenager.");
 } else {

 write("You are not a teenager.");
 }

It is recommended that you place each boolean expression inside of its own parentheses, as shown here. This
ensures that the expressions are evaluated in the order you intend.

Practice: Circle whether each expression evaluates to true or false. The variable age is initialized as shown.

var age = 16;

1. (age > 12) && (age < 18) (Evaluates to true) (Evaluates to false)

2. (age != 12) && (age > 18) (Evaluates to true) (Evaluates to false)

3. (age != 12) && (2 > 3) (Evaluates to true) (Evaluates to false)

3

OR
When we’ve wanted to check whether at least one of many conditions is true we have been making use of chained
conditionals. Here’s how we might approach determining whether it is the weekend based on the variable “day”.

Example: if(day == "Saturday"){

 write("It is the weekend.");
} else if(day == "Sunday"){

 write("It is the weekend.”);
} else {

 write("It is not the weekend.");
 }

Once again, this code is long and introduces redundancies. We can improve the expression of this complex condition
with the OR operator.

Operator Description Truth Table JavaScript Syntax

statement1 OR statement2

Evaluates to true as long
as at least one of the
boolean statements it
connects is true

||

The syntax for OR in JavaScript is two vertical pipe characters that you probably have not used very much outside of
programming. When using the OR operator, we can significantly improve the code we wrote in the example above.
Once again we’ve removed redundancy and improved the overall readability of our code.

Updated Example: if((day == "Saturday") || (day == "Sunday")){

 write("It is the weekend.");
} else {

 write("It is not the weekend.");
 }

Notice that once again we have placed each boolean expression inside of its own parentheses. This is not strictly
necessary, but it makes it clear which expressions are being grouped together.

Practice: Circle whether each expression evaluates to true or false. Assume the variable day is initialized as
shown.

var day = "Monday";

1. (day == "Mon") || (day == "Monday") (Evaluates to true) (Evaluates to false)

2. (day == "Tues") || (day == "Tuesday") (Evaluates to true) (Evaluates to false)

3. (day == "Tues") || (5 < 10) (Evaluates to true) (Evaluates to false)

4

Activity

Evaluating Compound Conditionals: Determine if the follow statements evaluate to true or false. Assume in
every case that the two variables age and day have been initialized with the values shown.

var age = 16;

var day = "Monday";

4. (age > 10) && (age < 20) (Evaluates to true) (Evaluates to false)

5. !(age > 10) (Evaluates to true) (Evaluates to false)

6. (day == "Tuesday") || (age < 12) (Evaluates to true) (Evaluates to false)

7. !((age == 16) || (day == "Monday")) (Evaluates to true) (Evaluates to false)

8. !((age == 16) && !(day == "Monday"))(Evaluates to true) (Evaluates to false)

Challenge Problems

9. ((age == 16) && (day == "Monday")) && (day == "Tuesday")

(Evaluates to true) (Evaluates to false)

10. ((age == 16) && (day == "Monday")) || (day == "Tuesday")

(Evaluates to true) (Evaluates to false)

11. ((age > 10) && ((age + 5) > 20))

(Evaluates to true) (Evaluates to false)

5

Unit 5 Lesson 10

Building an App: Color Sleuth

Resources

Color Sleuth and the AP Create PT

How the Color Sleuth Project Meets the AP Create Performance Task Requirements

The Color Sleuth App, written as suggested in this lesson, is an example of a program that can meet the minimum
bar for the AP Create Performance Task. Here’s how.

Iterative Design Process (rows 2-3 of AP Create Task Scoring Guidelines) - for the AP you must discuss your
overall “incremental and iterative development process” as well as two points along the way where you saw an
opportunity, or some difficulty, that you worked out and it ended up in the final program.

Alexis and Michael’s discussion throughout the tutorial is an excellent example of working collaboratively to
iteratively write a program - they wrote in small parts, testing each part along the way, modifying it, or adding new
functionality. The realization to use a parameterized function is a good opportunity to talk about. And any time
they re-organized the code or changed their course of action is a response to some difficulty they were trying to
overcome.

Algorithms (rows 4-6) - For the AP you
need to show code of an algorithm that
includes two or more algorithms where at
least one of the included algorithms
contains mathematical or logical concepts.

For a program structured like Color Sleuth,
the main algorithm (or “parent”) and
included algorithms (“children”) will likely
be spread out across separate functions.
An example of a choice that could be
made along with arguments for the written
responses is shown in the diagram. Note:
the student would select all three of these
functions as the “algorithm”.

Abstraction (rows 7-8) - for the AP the
code must contain a student-written
abstraction that helps manage the
complexity of the program. The functions
in this program are strong evidence of
using abstraction to manage complexity in
the code.

A function with a parameter is often a good
one to choose because the fact that the
function has a parameter means that the
problem has been abstracted so it can
handle different types of input. checkCorrect(buttonId) and updateScore(amt)would be good choices
that you should be able to justify easily in the written responses about how they help manage complexity.

Unit 5 Lesson 10
Name(s)__ Period _______ Date _____________

 Color Sleuth Project Rubric

Overview
The Color Sleuth lesson walks you through a scenario of two fictional students planning and writing code for an
app of their design. You are asked to mimic the code they write by transcribing from the pseudocode sketches
they make along the way (the tutorial). At the end you’re on your own to write code that decides how the came
ends and who wins.

Criteria Yes Almost No Comments

Features Covered in Tutorial Students are guided through building these components of the game by the tutorial.
These features should be clear from quickly playing the game and reviewing the code.

Game Board Changes: Buttons change colors
when any one of them is clicked, one button
has a slightly different color

Score Updates: Clicking buttons updates and
displays score for the correct player

Switching Turns: Players switch turns after
each click - whose turn it is clearly indicated

Code Style: Code is neatly organized and
broken into functions in the style suggested by
the tutorial.

Features Student(s) Write Independently Students are asked to independently write code to end the game.
Assessing this feature may require reading code, playing the game to its conclusion, or changing the starting score
of the game to force the game to end.

Game over: UI indicates game is over

Game over: Code written so that game can
end - contains logic to check whether game is
over.

Who won: UI indicates winning player

Who won: Code contains logic to determine
which player won (if game is over).

Unit 5 Lesson 11

While Loops

Resources

Unit 5 Lesson 11

Name(s)___ Period ______ Date ___________________

 Activity Guide - Flowcharts with while Loops

Introduction

We are going to be learning a new programming structure today called while loops. while loops allow us to
control program flow by repeating a set of commands until a condition is met. When we control program flow it
is often helpful to think about the ideas in a visual way first. You will use flowcharts to begin thinking about while
loops.

Flowchart Components

As a reminder we have included the flowchart components here as a reference for you as you work on this sheet.

Real-Life while Loops

Each flowchart below contains a “loop” that runs “while” a condition is true. Investigate each flowchart, mark
how many times you believe the loop will run on the line provided, and then justify your reasoning.
Note: There may be many possible answers, so pick the one you believe makes the most sense.

How many times will the loop run?

|---|

Never A few times Forever

Justification:__

__

How many times will the loop run?

|---|

Never A few times Forever

Justification:__

__

Complete this flowchart with a real-life while loop of your own choosing. Exchange with a partner and see
how many times they think your loop would run.

Programming with while Loops

The next two examples begin making the transition from real-life while loops to ones you might see while
programming. Use the space provided to write the output that would be generated from the program.

Output:

2

Output:

3

Unit 5 Lesson 12

Loops and Simulations

Resources

Unit 5 Lesson 12

Name(s)___ Period ______ Date ___________________

 Worksheet - Flipping Coins

Flip a coin until you get 5 total heads. How many flips did it take? __________

Record your flips in the space below by writing “H” or “T” for each flip.

Flip a coin until you get 3 heads in a row. How many flips did it take? __________

Record your flips in the space below by writing “H” or “T” for each flip.

Predict
The most flips it took someone (including you) to get 5 total heads __________

The fewest flips it took someone (including you) to get 5 total heads __________

The most flips it took someone (including you) to get 3 heads in a row __________

The fewest flips it took someone (including you) to get 3 heads in a row __________

Make a Hypothesis
We’ll be developing a simulation that flips coins for us. As a result we can test how many flips it takes to get many
more total heads and longer strings of heads. Before we make our simulation, predict the following.

What is the most flips you expect to see in order to get 10,000 total heads? __________

What is the fewest flips you expect to see in order to get 10,000 total heads? __________

Explain your reasoning:

What is the most flips you expect to see in order to get 12 heads in a row? __________

What is the fewest flips you expect to see in order to get 12 heads in a row? __________

Explain your reasoning:

Extend Your Hypothesis
You may have observed that flipping tens of thousands of coins takes some time on a computer. If we want to simulate
even larger problems, it may be difficult for even a computer to complete the full simulation in a time frame that makes
sense. Luckily, you should have developed some intuitions about how these problems develop, based on your earlier
simulation. Try to make a reasonable prediction for the questions below, based on the results from the simulation
that you ran today.

What is the most flips you expect to see in order to get 10,000,000 total heads? __________

What is the fewest flips you expect to see in order to get 10,000,000 total heads? __________

Explain your reasoning, making reference to the results of your simulation.

What is the most flips you expect to see in order to get 20 heads in a row? __________

What is the fewest flips you expect to see in order to get 20 heads in a row? __________

Explain your reasoning, making reference to the results of your simulation.

2

Unit 5 Lesson 13

Introduction to Arrays

Resources

Unit 5 Lesson 14

Building an App: Image Scroller

Resources

Unit 5 Lesson 15

Processing Arrays

Resources

Unit 5 Lesson 15

Name(s)___ Period ______ Date ___________________

 Activity - Minimum Card Algorithm

Algorithms with Lists
Once you know how to write programs that can store data in lists, the next step is to think about how you might write
code, or develop algorithms, to process those lists to find or do interesting things with the data.

We often get started thinking about algorithms by trying to rigorously act them out ourselves. Because we know
something about how computer programs work, we can keep the limitations of a computer in mind when we are “acting
as the machine.”

In this activity, you’ll design an algorithm to find the smallest item in a list. Obviously, if we were really writing
instructions for a person, we could simply tell them: “find the smallest item in a list.” But that won’t work for a computer.
We need to describe the process that a person must go through when they are finding the smallest item. What are
they really doing?

Setup and Rules:
● We’ll use playing cards face down on

the table to represent a list of items.
Start with 8 cards face down in a row.
Any card on the table must be face
down.

● When acting as the machine, you can

pick up a card with either hand, but you
can only hold one card at a time in
each hand.

● You can also compare the values on

playing cards to determine which one
is greater than the other (based on its face value).

● You can put a card back down on the table (face down), but once a card is face down on the table, you cannot

remember (or memorize) its value or position in the list.

Task:
Write an algorithm to find the card with the lowest value in the row of cards.

● Goal: The algorithm must have a clear end to it. The last instruction should be to say: “I found it!” and hold up
the card with the lowest value.

● The algorithm should be written so that it would theoretically work for any number of cards (1 or 1 million).

● Write your algorithm out on paper as a clear list of instructions in “pseudocode.” Your instructions can refer to

cards, and a person’s hands, etc., but you must give a systematic way for finding the smallest card.

Algorithm To Find Minimum Card

2

Unit 5 Lesson 15

Name(s)___ Period ______ Date ___________________

 Activity - Card Searching Algorithm

Analyzing Algorithms

Linear Search
A common way to process a list is to find out if it contains a specific item. We implemented one algorithm to do this
called linear search. Linear search is pretty simple. You start at the beginning of the list, look at every item, one at a
time, and see if it matches what you are looking for. Stop once you’ve found it, or when there are no more items to
consider.

Cost and Efficiency
In computer science, we measure the “cost” or “efficiency” of an algorithm by how much work - roughly, how many
primitive operations - the computer has to execute to arrive at the answer. All computers perform roughly the same set
of primitive commands, but some are much faster at running them than others. Measuring the total number of primitive
commands, rather than the time it takes to run a program, is a better way to compare one algorithm to another, since it
does not depend on the speed of the computer running it.

Worst-Case Analysis
The same algorithm might take a different amount of time to run based on the input it is given. Consider linear search.
This algorithm will likely require more work to run on larger lists, since we may need to look at every item. At the same
time, we could always get lucky and find the item in the first place we look. To make it easier to compare efficiencies of
algorithms, we usually consider the worst-case scenario. In other words, we consider the input that would cause the
algorithm to do the most work. Then we can guarantee that our algorithm can’t do worse than that.

Worst-Case Analysis of Linear Search
The worst case for linear search (and most searching algorithms) is that the item you’re looking for is not in the list.
This would make the algorithm look at every item once to verify that it wasn’t there. We typically talk about the
efficiency of an algorithm in comparison to the size of the input, or data, that it must consider. Therefore, we
would say that if a list has N items, linear search requires that you look at all N items in the worst case. (For most
searching algorithms, the only primitive command we consider is accessing an item in the list.) Based on this analysis,
we can compare linear search to other searching algorithms.

Searching on Sorted Lists

Different Algorithms for Different Inputs
Linear search can find an item in any list, no matter how it’s ordered. If we know the items in the list are in sorted
order, however, then there are more efficient algorithms we could use to search for an item.

Challenge: Develop a searching algorithm for a sorted list
Develop an algorithm that searches for an item in a sorted list. Your algorithm should be as efficient as possible, as
measured by a worst-case analysis. Note the list [1, 2, 3, 4, 5] is sorted, but so is [1, 1, 1, 1, 2] and [1, 2, 2, 2, 2].

How To Do It
On the next page you have space to write out your algorithm in pseudocode. Your algorithm should be written to
work on any list, but you might want some manipulatives, such as a deck of cards, that you can use to test out your
ideas as you go. If you are having trouble expressing your algorithm in pseudocode, it is fine to just describe it so that a
friend could run it on a small row of cards.

My Algorithm for Searching a Sorted List
Write the steps of your algorithm below.

Analyze Your Algorithm

Worst-Case Analysis
Share your algorithm with a classmate. Once you understand one another’s algorithms, try to come up with the
worst-case input for each algorithm. What is the sorted list that would make it perform the most work?

Quantify Your Results
For the purposes of comparison, we’ll consider the most important primitive command when comparing searching
algorithms: accessing an item in a list. In the worst case, we know that linear search must look at every item in a list.
Try to determine how many items your algorithm must look at in the worst case for the different-sized inputs
shown below.

Number of Items Looked at in the Worst Case

Algorithm 8 items 16 items 32 items 64 items 100 items 1,000 items

Linear Search 8 16 32 64 100 1,000

Your Algorithm

2

Unit 5 Lesson 16

Functions with Return Values

Resources

Unit 5 Lesson 16

Name(s)___ Period ______ Date ___________________

 Activity - Return Values with Go Fish

Functions with Return Values
Today you and your group are going to play the classic card game of Go Fish. You will work as a group to break down
the game into functions in order explore writing our own functions with return values.

Rules of Go Fish

Goal: Obtain as many sets of 4-of-a-kind as possible.

Game Play:

● Each player is dealt 5 cards.
● Remaining cards are spread out in the middle.
● Moving clockwise, players take turns asking one other player in the group for a card of a particular rank. You

can only ask for a rank that you currently have in your hand.
○ For example: if you have a 7 in your hand you could ask, “Sarah, do you have any 7s?”

● If you ask someone for a card, they must give up all the cards of that rank to you. Then you get to ask for
another card from any of the players.

● If you ask someone for a card and they don’t have any, they will say “Go Fish!”, and you can pull one card from
the table.

● Once you have obtained a set of 4-of-a-kind, remove them from your hand and place them in front of you.
● If you ever run out of cards in your hand, pick up 5 new cards from the middle of the table.
● The game is over when there are no more cards on the table.
● The winner is the person who has the most complete sets of 4-of-a-kind.

Task

1. Spend 5 minutes playing Go Fish with your group.
2. Answer the questions to explore the functions in Go Fish.

Reflection

1. What part(s) of your algorithm could be written using a list or array?

2. What part(s) of your algorithm could be written using a function?

There are two different types of people in the game of Go Fish:
1. Asker: The person asking the question
2. Responder: The person responding

We are going to focus on the algorithm for the Responder, as it is a function which gets called by the Asker.

3. What parameters would the Responder function have? i.e., What information does the Asker need to give the
Responder?

4. What information/objects does the Responder have to give the Asker at the end of the function?

5. What programming commands have you seen which have behavior like the interaction between the Asker and
Responder?

6. Write a pseudocode algorithm for the Responder, using the parameters you specified above.
a. When you want to give information from the Responder back to the Asker, use the word RETURN.

i. For example: RETURN card.
b. Note: Obviously, if we were really writing instructions for a person, we could simply tell them: “Find all

the cards that match the Asker’s request.” But that won’t work for a computer. We need to describe
the process that a person must go through when they are finding all those items. What are they really
doing?

2

Unit 5 Lesson 17

Building an App: Canvas Painter

Resources

