

UNIT

2
Ch. 1 1 2 3 4 5 6

Big Questions

How are images and other complex information

represented in a computer?

How can we reduce the size of digital

information and what tradeoffs are involved?

Why are there so many different formats for

representing the same kind of information?

Enduring Understandings

1.1 Creative development can be an essential

process for creating computational artifacts.

1.3 Computing can extend traditional forms of

human expression and experience.

2.1 A variety of abstractions built upon binary

sequences can be used to represent all digital

data.

3.3 There are trade offs when representing

information as digital data.

Unit 2 - Digital Information
This unit explores the way large and complex pieces of digital information are stored in computers and the

associated challenges. Through a mix of online research and interactive widgets, students learn about foundational

topics like compression, image representation, and the advantages and disadvantages of different file formats. To

conclude the unit, students research the history and characteristics of a real-world file format.

Chapter 1: Digital Information

Week 1

Lesson 1: Bytes and File Sizes
Research

Students are introduced to the standard units for measuring

the sizes of digital files: bytes, kilobytes, megabytes, gigabytes,

etc. and research the sizes of files they make use of every day.

Lesson 2: Text Compression
Widget | Individual and Group Discovery

At some point we reach a physical limit of how fast we can send bits and

if we want to send a large amount of information faster, we have to find

a way to represent the same information with fewer bits - we must

compress the data.

Lesson 3: Encoding B&W Images
Widget | Concept Invention | Individual Creation

Students explore methods for encoding digital images in binary

which requires representing metadata such as width and height

as well as pixel data. Students use the the Pixelation widget to

encode simple B&W raster images.

Week 2

Lesson 4: Encoding Color Images
Students learn about the RGB color encoding scheme and use an

updated version of the pixelation widget to encode color images.

Hexadecimal notation is useful for representing larger groupings of

binary digits.

Lesson 5: Lossy vs. Lossless Compression
Research

Students learn the difference between lossy and lossless

compression. They then research three different real-world file

formats for images and sound and compare them using the

concepts and vocabulary they’ve learned through the unit.

Lesson 6: Rapid Research - Format Showdown
Project | Research

In this lesson students will conduct a small amount of research to explore a file format

either currently in use or from history. Students will conduct research in order to

complete a "one-pager" that summarizes their findings. They will also design a

computational artifact (video, audio, graphic, etc.) that succinctly summarizes the

advantages of their format over other similar ones.

Chapter Commentary
Key Concepts and Pedagogy

Increasing Focus on Research: Unit 2 includes an increasing focus on research skills students will use throughout

the rest of the course and eventually on the Explore PT. Researching computing topics is a challenging skill which

students will need to develop separately from the other skills and content knowledge. Lesson 5 and the Rapid

Research activity in Lesson 6 in particular explicitly review these research skills as students apply the knowledge

they’ve developed elsewhere in the unit to research the differences between familiar file formats.

A Familiar Pedagogy: Many of the lessons in this unit will feel similar to Unit 1 Chapter 1. Students will explore real

world concepts and problems in data representation through collaborative problem solving activities. This process is

aided through the introduction of two new widgets, the Text Compression Widget in Lesson 2 and the Pixelation

Widget in Lessons 3 and 4. As with the Internet Simulator, students can’t “break” these tools and so are

encouraged to freely explore them with minimal content frontloading to discover the concepts they highlight. In

keeping with the “ABC CBV” approach, technical vocabulary is only introduced only once these exploratory

activities ensure all students have developed a shared understanding of the concepts.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

2
Ch. 1 1 2 3 4 5 6

Lesson 1: Bytes and File Sizes

Overview

In this lesson students are introduced to the standard units for

measuring the sizes of digital files, from a single byte, all the way

up to terabytes and beyond. Students begin the lesson by

comparing the size of a plain text file containing “hello” to a Word

document with the same contents. Students are introduced to the

units kilobyte, megabyte, gigabyte, and terabyte, and research

the sizes of files they make use of every day, using the

appropriate terminology. This lesson foreshadows an investigation

of compression as a means for combatting the rapid growth of

digital data.

Purpose

The simple purposes of this lesson are:

1. Get terminology out in the open

2. Become somewhat conversant with file types and sizes

3. Grapple with orders-of-magnitude differences between things.

The 8-bit byte has become the de-facto fundamental unit with

which we measure the “size” of data on computers, and in fact,

today most computers only let you save data as combinations of

whole bytes; even if you only want to store 1 bit of information,

you have to use a whole byte to do it. And many computer

systems will require you store even more than that. Messages

sent over the Internet are also typically structured as messages

with byte-offsets.

Paralleling the explosion of computing power and speed, the

sheer size of the digital data now created and consumed every

day is staggering. Units of measure (terabytes) that previously

seemed unfathomably large are now making their way into

personal computing. This rapid growth of digital data presents

many new opportunities and also poses new challenges to

engineers and programmers. The implications of so-called Big

Data will not be investigated until later in the course, but it's

good and interesting to be thinking about the size of things now.

Agenda
Getting Started (10 mins)

File Size Comparison: .txt vs .doc

Activity (30 mins)

Wrap-up

Review worksheet

Foreshadow Compression

Assessment

View on Code Studio

Objectives
Students will be able to:

Use appropriate terminology when

describing the size of digital files.

Identify and compare the size of familiar

digital media.

Solve small word problems that require

reasoning about file sizes.

Preparation

You should verify that you know how to

look at the sizes of files on computers that

your students are using (see activity).

For the getting started activity might

want a Word processing program (such as

MS Word) and plain text editor (such as

Notepad or TextEdit) open and ready.

The teaching remarks and content

corners in this lesson contain lots of little

bits of history that you might choose to

share at various points in the lesson.

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Activity Guide KEY - Bytes and File Sizes -

2018 - Answer Key

For the Students

Bytes and File Sizes - Activity Guide

CS101 - Kilobytes Megabytes Gigabytes

Terabytes

Make a Copy

https://curriculum.code.org/csp-18/unit2/
https://studio.code.org/s/csp2-2018/stage/1/puzzle/1/
https://studio.code.org/s/csp2/stage/1/puzzle/1
https://docs.google.com/document/d/13v41TcQHadNF4NYNjIHaVk53BJIfYlo_GUmM1NYrobQ/
https://drive.google.com/file/d/1AUnckxNHDmPFHDu_iHfAUZYdkLg_30r8/view?userstoinvite=antonio.vazquez@aspirail.org&ts=5bcdec4e

 Content Corner

Why is a Byte 8 bits?: The 8-bit byte was not always

standard. Computers used many different "byte" sizes

over the course of history, depending on hardware and

how addressable memory worked. However, much of

the early computing world relied on representing data

and computer instructions encoded in ASCII text where

every character is 8 bits. Thus, 8-bits was such a

common chunk-size for representing information that

it stuck and they gave it its own name - byte.

There are various accounts about why it was called a

“byte” but most point to early days at IBM where

“bite” was used to to refer to groups of 8-bits that a

computer was processing, as in it could “bite” off 8

bits at time. The spelling was changed to “byte” to

avoid confusion with “bit”.

Bytes became the fundamental unit with which we

measure the “size” of data on computers, and in fact,

today most computers only let you save data as

combinations of whole bytes; even if you only want to

store 1 bit of information, you have to use a whole

byte to do it.

 Teaching Tip

Try a Live Demo: If you wish, it might be more fun to

create these files in front of your students, saving

them on the desktop for a quick demo. To make a plain

ASCII text file you’ll need to use the correct program:

PC/Windows: use Notepad

Mac: use TextEdit (Note: TextEdit needs to be

switched into plain text mode from rich text. Go to

Format → Make Plain Text)

Teaching Guide

Getting Started (10 mins)

 Remarks

As we start a new unit about Data and Digital

Information we need to get familiar with

terminology about data and different types of data

files.

Vocabulary: Recall that a single character of ASCII

text requires 8 bits. The technical term for 8 bits of

data is a byte.

A byte is the standard fundamental unit (or “chunk

size”) underlying most computing systems today. You

may have heard "megabyte", "kilobyte", "gigabyte",

etc. which are all different amounts of a bytes. We're

going to learn more about them today.

File Size Comparison: .txt vs .doc

Prompt: In addition to the actual text of a document,

it is usually necessary to store the formatting

information that allows the text to be displayed

correctly. We might wonder just how much extra

information, i.e. how many extra bytes, we need to

store when we include all of this formatting. Let's find

out!

If a single ASCII character is one byte then if we were to store the word “hello” in a plain ASCII text file in a

computer, we would expect it to need 5 bytes (or 40 bits) of memory.

What about a Microsoft Word document that contains the single word "hello"? How many more bytes will a Word

document require to store the word “hello” than a plain text document?

Discuss: Have students silently make their prediction, then share with a partner, then share with the group. Prompt

a couple students to share why they chose the size they did.



Demonstrate: Do a live demo where you show the size

of the different files. Here are some files you can

download to use.

Plain text document hello.txt

MS word document hello.docx

To find the actual size of a file on your computer, do

one of the following:

PC/Windows: Right-click and choose “Properties”

Mac: Ctrl+click and choose “Get Info”

In general, the Word Doc should be thousands of times larger than the plain text. For the files above:

hello.txt - 5 bytes

hello.docx = 21,969 bytes

Review: Review students predictions to see how close they were.

 Remarks

https://docs.google.com/uc?export=download&id=0B2QFqkDgv9LjX0FOa1lQQ3ZkRFU
https://docs.google.com/uc?export=download&id=0B2QFqkDgv9LjV2J6M3NaZExBY2M

 Content Corner

NOTE: A 5-byte file is so small that some computers

won't allocate a chunk of memory that small. For

example you might see something like this:

Which indicates that even though the file is 5 bytes,

it's taking up 4 Kilobytes of memory on your computer.

 Content Corner

There are some discrepancies in common usage of the

kilo, mega, giga prefixes.

From the Stanford CS 101 website:

It's convenient within the computer to organize things

in groups of powers of 2. For example, 2 is 1024, and

so a program might group 1024 items together, as a

sort of "round" number of things within the computer.

The term "kilobyte" above refers to this group size of

1024 things. However, people also group things by

thousands -- 1 thousand or 1 million items.

There's this problem with the word "megabyte" .. does

it mean 1024 * 1024 bytes, i.e. 2 which is 1,048,576, or

does it mean exactly 1 million, 1000 * 1000. It's just a

5% difference, but marketers tend to prefer the 1

million, interpretation, since it makes their hard drives

etc. appear to hold a little bit more. In an attempt to

fix this, the terms "kibibyte" "mebibyte" "gibibyte"

"tebibyte" have been introduced to specifically mean

the 1024 based units (see wikipedia kibibyte article).

These terms do not seem to have caught on very

strongly thus far.

If nothing else, remember that terms like "megabyte"

have this little wiggle room in them between the 1024

and 1000 based meanings. For purposes of CS

Principles the distinction is not important - "about a

million bytes" is a fine, close-enough interpretation

for "megabyte".

 Teaching Tip

Finding Solutions: Note that answers to 3 of the 6

questions on the activity guide can be found on the

Stanford CS 101 page linked to in the activity guide.

Perfect accuracy is not important for some sections in

this activity, but using the correct terminology and

achieving a rough estimate of size (one million bytes

vs. one billion) is important. Encourage students to

practice using terms like megabyte, gigabyte, and

terabyte to gain comfort with them.

The big difference in file size between .txt and .docx

is due to the extensive formatting information

included along with the actual text in .docx. Modern

data files typically measure in the thousands,

millions, billions or trillions of bytes. Let's get a little

practice looking at files and how big they are.

Activity (30 mins)

 Activity Guide: Bytes and File Sizes -
Activity Guide

Group: Put students in pairs to find answers or work

individually.

Distribute: Activity Guide: Bytes and File Sizes -

Activity Guide

Introduces the terminology

Refers to websites for students to use as

reference

Stanford CS 101 website

Computer Hope



Has questions and space for students to write

answers to questions like:

How many bytes are in a Megabyte?

Give an example of a file type that is measured

in Gigabytes

What is the typical size of a .jpg image, .mp3

audio etc.

Allow students time to finish this activity either

individually or in pairs by conducting online

research.



There are 6 practice questions on the 2nd page of

the activity guide.

Wrap-up

Review worksheet

Share: Provide students an opportunity to clear up

any remaining confusion and share interesting pieces

of information they came across.

Review: Answers to the questions on the Activity

Guide.

Foreshadow Compression

 Remarks

As you have seen data file size can grow very quickly in size. In the modern world there is a lot of data around us

and usually we want it transmitted over the internet.

10

20

https://drive.google.com/file/d/1AUnckxNHDmPFHDu_iHfAUZYdkLg_30r8/view?usp=sharing
https://docs.google.com/document/d/13v41TcQHadNF4NYNjIHaVk53BJIfYlo_GUmM1NYrobQ/
https://docs.google.com/document/d/13v41TcQHadNF4NYNjIHaVk53BJIfYlo_GUmM1NYrobQ/
https://drive.google.com/file/d/1AUnckxNHDmPFHDu_iHfAUZYdkLg_30r8/view?usp=sharing
http://www.computerhope.com/issues/chspace.htm

 Teaching Tip

Time Saving Tip: Time permitting you could do the

warm up activity from the next lesson (Text

Compression) here. That warm up activity asks

students to write down common abbreviations they

use when sending text messages to friends and family,

and then asks why they do that. The answer is

compression: to save time and space.

There is a problem though: If you want to transmit a

lot of data you are limited by the speed of your

internet connection. Even if you have a fast Internet

connection there is a physical limit to how fast you

can transmit bits.

What if the data you want to send is big enough

that it takes an unreasonable amount of time to

transmit it, even with a really fast internet

connection. Assuming you can't make the Internet

connection any faster, could you still transmit the

data faster somehow?



The answer is yes and it's probably something you've done, or do every day!

Assessment

Use the last 3 questions on the activity guide for assessment.

Standards Alignment

CSTA K-12 Computer Science Standards (2011)

CT - Computational Thinking

Computer Science Principles

2.1 - A variety of abstractions built upon binary sequences can be used to represent all digital data.

3.3 - There are trade offs when representing information as digital data.

CSTA K-12 Computer Science Standards (2017)

DA - Data & Analysis

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

2
Ch. 1 1 2 3 4 5 6

Lesson 2: Text Compression

Overview

At some point we reach a physical limit of how fast we can send

bits and if we want to send a large amount of information faster,

we have to find a way to represent the same information with

fewer bits - we must compress the data.

In this lesson, students will use the Text Compression Widget to

compress segments of English text by looking for patterns and

substituting symbols for larger patterns of text. After some

experimentation students are asked to come up with a process

(or algorithm) for arriving at a "good" amount of compression

despite the fact that there is no way to know what is best or

optimal. In developing a so-called "heuristic approach" to this

problem, students will grapple with the tradeoffs in compressing

data and begin to develop a sense of computing problems that

are “hard” to solve.

Purpose

This is a big lesson that covers a lot of bases. It should easily take

2 or more days of class. First and foremost it covers two or three

topics directly from the CSP framework.

1. lossless compression

The basic principle behind compression is to develop a method or

protocol for using fewer bits to represent the original information.

The way we represent compressed data in this lesson, with a

“dictionary” of repeated patterns is similar to the LZW

compression scheme, but it should be noted that LZW is slightly

different from what students do in this lesson. Students invent

their own way here. LZW is used not only for text (zip files), but

also with the GIF image file format.

2. heuristics

The lesson touches on computationally hard problems and

heuristics but please note that computationally hard problems

and heuristics will be revisited later on. A general "hand-wavy"

understanding is all that's needed from this lesson.

We do want students to see, however, that there is no single

correct way to compress text using the method we use in this

lesson because a) there is no known algorithm for finding an

optimal solution, and b) we don’t even know a way to verify

whether a given solution is optimal. There is no way to prove it or

derive it beyond trying all possibilities by brute force. This is an

example of an algorithm that cannot run in a “reasonable amount

of time” - one of the CSP learning objectives.

3. Foreshadowing programming behaviors

View on Code Studio

Objectives
Students will be able to:

Collaborate with a peer to find a solution to

a text compression problem using the Text

Compression Widget (lossless compression

scheme).

Explain why the optimal amount of

compression is impossible or “hard” to

identify.

Explain some factors that make

compression challenging.

Develop a strategy (heuristic algorithm) for

compressing text.

Describe the purpose and rationale for

lossless compression.

Preparation

Test out the Text Compression Widget

Review the teaching tips to decide which

options you want to use

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Activity Recap - Decode this Message -

Activity Recap

For the Students

Decode this message - Activity Guide

Activity Guide - Text Compression -

Activity Guide

Video: Text Compression with Aloe Blacc -

Video (download)

Activity Guide - Text Compression

Heuristics - Activity Guide

Vocabulary

Heuristic - a problem solving approach

(algorithm) to find a satisfactory solution

Make a Copy

Make a Copy

Make a Copy

Make a Copy

https://curriculum.code.org/csp-18/unit2/
http://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch
https://studio.code.org/s/csp2-2018/stage/2/puzzle/1/
https://docs.google.com/document/d/1Z3kwOLtnzV-vFvNYVCI5CwJlqW7oMPHsmLEQNog-0jM/
https://docs.google.com/document/d/1x89s9Xo6lwMJPQjJqhzPaBg_huwTF9LmV2PrUrESYZQ/
https://docs.google.com/document/d/1dEvtuFNhx9tOWBFt8z_7_uB6WqeS5SSSdYamsZu6hJ0/
https://www.youtube.com/watch?v=LCGkcn1f-ms&feature=youtu.be
https://videos.code.org/2015/csp/textcompression_blacc.mp4
https://docs.google.com/document/d/1U1SPSyBYS9tnJmpnQd-xbWnhb6TpwdJ6i82H662hxdM/

Lastly, the Text Compression Activity is an important lesson to

refer back to when students start programming. The activity

engages students in thinking and problem solving behaviors that

foreshadow skills that are particularly useful for programming

later down the line. In particular, when students recognize

patterns that repeat, and then represent those patterns as

abstract symbols, and then further recognize patterns within

those patterns, it is very similar to the kinds of abstractions we

develop when writing functions and procedures when

programming. Decoding the message in the warm-up activity is

very similar to tracing a sequence of function calls in a program.

Agenda
Getting Started (5-7 mins)

Warm up: Abbr In Ur Txt Msgs (5-7 mins)

Activity (45 mins)

Decode this Mystery Text (10-15 mins)

Use theText Compression Widget

Discuss properties and challenges with compression.

Activity 2 (30 mins)

Develop a heuristic for doing compression

What's best?

Wrap-up (20 mins)

Recap Questions

Compression in the Real World (.zip)

Assessment

Extended Learning

where finding an optimal or exact solution

is impractical or impossible.

Lossless Compression - a data compression

algorithm that allows the original data to

be perfectly reconstructed from the

compressed data.

 Discussion Goal

As a warm up to thinking about Text Compression,

connect to ways that most people already compress

text in their lives, through abbreviations and acronyms

with which most people have some experience in text

messages.

Motivate some ideas about why someone would want

to compress text.

Teaching Guide

Getting Started (5-7 mins)

Warm up: Abbr In Ur Txt Msgs (5-7 mins)

Prompt:



"When you send text messages to a friend, do you

spell every word correctly?"

Do you use abbreviations for common words?

List as many as you can.

Write some examples of things you might see in

a text message that are not proper English.

Give students a minute to write, and to share with a

neighbor?

"Why do you use these abbreviations? What is the benefit?"

Possible answers:

to save characters/keystrokes

to hide from parents/teachers

to be cool, clever, funny

to “speak in code”

to say the same thing in less space

 What's this about? - Compression: Same Data, Fewer Bits

Today's class is about compression

When you abbreviate or use coded language to shorten the original text, you are “compressing text.”

Computers do this too, in order to save time and space.

The art and science of compression is about figuring out how to represent the SAME DATA with FEWER BITS.

Why is this important? One reason is that storage space is limited and you'd always prefer to use fewer bits if

you could. A much more compelling reason is that there is an upper limit to how fast bits can be transmitted

over the Internet.

What if we need to send a large amount of text faster over the Internet, but we’ve reached the physical limit of

how fast we can send bits? Our only choice is to somehow capture the same information with fewer bits; we

call this compression.

Transition:

Let's look at an example of a text message that's been compressed in a clever way.

Activity (45 mins)

Decode this Mystery Text (10-15 mins)

Distribute or Display the Activity guide: Decode this message - Activity Guide

Put students into partners or work individually.

Task: What was the original text?

Give students a few minutes to decode the text. The text should be a short poem (see activity recap below)

Student Activity Guide Activity Recap

https://docs.google.com/document/d/1x89s9Xo6lwMJPQjJqhzPaBg_huwTF9LmV2PrUrESYZQ/

Student Activity Guide Activity Recap

Distribute or Display Activity guide:

Decode this message - Activity
Guide

(Display or draw yourself) Activity Recap:

Activity Recap - Decode this Message -
Activity Recap

Recap: How much was it compressed?

To answer, we need to compare the number of characters in the original poem to the number of characters needed

to represent the compressed version.

Let's break it down.

Display or Demonstrate yourself ideas from: Activity Recap - Decode this Message - Activity Recap (shown in

table above)

Important Note:

The compressed poem is not just this part: If you were to send this to someone

over the Internet they would not be able to decode it.

The full compressed text includes BOTH the compressed text and the key to solve it.

Thus, you must account for the total number of characters in the message plus the total number of characters

in the key to see how much you've compressed it over the original.

Transition

Now you're going to get to try your hand at compressing some things on your own.

Use theText Compression Widget

 Code Studio levels

Lesson Overview  Student Overview

Text Compression  Student Overview

Widget: Text Compression  Student Overview

https://docs.google.com/document/d/1x89s9Xo6lwMJPQjJqhzPaBg_huwTF9LmV2PrUrESYZQ/
https://docs.google.com/document/d/1Z3kwOLtnzV-vFvNYVCI5CwJlqW7oMPHsmLEQNog-0jM/
https://docs.google.com/document/d/1Z3kwOLtnzV-vFvNYVCI5CwJlqW7oMPHsmLEQNog-0jM/

 Content Corner

The video explains a little bit about compression in

general - the difference between lossless compression

and lossy compression. Todays class is about lossless

compression we'll do lossy compression in a class or

two after looking at image encoding.

 Teaching Tip

Teacher's Choice whether to show the video to the

whole class or let students watch it from within Code

Studio. There are benefits and drawbacks to each.

Option to Consider: Get students into the text

compression tool BEFORE showing the video. You

might find students are more receptive to some of the

information in the video if they have tried to use the

tool first.

Communication and Collaboration: To develop

communication and collaboration between students,

include one of the following scenarios in class:

Have students who were assigned the same poem

compare results, or seat them in the same area of

the room.

Have a little friendly competition - but be careful not

to let “bad” competition seep in - to see which pair

can compress a poem the most. Use a poem that

none of the students have compressed yet.

For each poem, have the group(s) who did it figure

out the best in the class, and record it on the board

or somewhere that people can see.

Have a class goal of getting the compression

percentages for the four poems as high as

possible.

The groups with the best compression

percentages may be asked to share their strategy

with the class.

Students may be reluctant to share if they feel they

don’t have the best results, but students should see

others’ work and offer advice and strategies.

 Video: Text Compression with Aloe Blacc -

Video





Video explains compression

Demonstrates the use of the Text Compression

Tool.

NOTE: This video pops up automatically when

students visit the text compression stage in Code

Studio.

Divide students into groups of 2

Assign each pair one of the poems provided and

challenge them, as a pair to compress their poem

as much as possible.

Deliver or put simple instructions on the board so

students can follow.

Challenge: compress your assigned poem as

much as possible.

Compare with other groups to see if you can do

better.

Try to develop a general strategy that will lead

to a good compression.



After some time, have pairs that did the same

poem get together to compare schemes. As a

group their job is to come up with the best

compression for that poem for the class.

Optionally: you may hand out Activity Guide - Text

Compression - Activity Guide and have students

complete it individually. It may work well as an out-

of-class activity or assessment.

Discuss properties and challenges
with compression.

Ask groups to pause to discuss the questions at the

end of the activity.

Prompts:

"What makes doing this compression hard?"

Invite responses. Some of these issues should surface: You can start in lots of different ways. Early choices

affect later ones. Once you find one set of patterns, others emerge.

There is a tipping point: you might be making progress compressing, but at some point the scale tips and the

dictionary starts to get so big that you lose the benefit of having it. But then you might start re-thinking the

dictionary to tweak some bits out.

"Do we think that these compression amounts that we’ve found are the the best? Is there a way to know what the

best compression is?"

We probably don’t know what’s best.

Check Your Understanding  4  5  6  7

(click tabs to see student view)

https://www.youtube.com/watch?v=LCGkcn1f-ms&feature=youtu.be
https://docs.google.com/document/d/1dEvtuFNhx9tOWBFt8z_7_uB6WqeS5SSSdYamsZu6hJ0/

 Teaching Tip

You may elect to not do this heuristic activity and

instead get the key take-aways (see Activity Goal

below) across through discussion following the

previous activity.

 Activity Goal

The point here is to establish:

There is no real way to determine for sure that

you've got the best compression besides trying

everything possible by brute force.

Heuristics are techniques for at least making

progress toward a "good enough" solution.

Following the same heuristic might lead to different

results.

There are so many possibilities it’s hard to know. It turns out the only way to guarantee perfect compression is

brute force. This means trying every possible set of substitutions. Even for small texts this will take far too

long. The “best” is really just the best we’ve found so far.

"But is there a process a person can follow to find the best (or a pretty good) compression for a piece of text?"

Yes, but it’s imprecise -- you might leave this as a lingering question that leads to the next student task.

Activity 2 (30 mins)

Develop a heuristic for doing
compression

Distribute or Display: Activity Guide - Text

Compression Heuristics - Activity Guide

In computer science there is a word for strategies to

use when you're not sure what the exact or best

solution to a problem is.

Vocabulary: heuristic a problem solving approach (typically an algorithm) to find a satisfactory solution where

finding an optimal or exact solution is impractical or impossible.

Instructions:

Continue working on compressing your poem using the Text Compression Widget. As you do so, develop a set

of rules, or a “heuristic” that generally seems to provide good results.

Record your heuristic as a list of steps that someone else unfamiliar with the problem could follow and still end

up with decent compression.

Trade your heuristics with another group. Are they

clear and specific enough that you always know

what to do? If not, provide feedback to one

another and improve your heuristics to provide

clearer instructions.

Using another group’s heuristic, attempt to

compress one or more of the poems in the tool.

Record the amount of compression you achieve.

What's best?

Share Findings:

Have one member of each group give a summary of their heuristic and the results on each of the poems. If time is

limited, these presentations can be done between groups instead in front of the entire class. The discussion

questions below could also be done group to group.

Reflection Prompts (from the Activity Guide)



"Do you think it’s possible to describe (or write) a specific set of instructions that a person could follow that would

always result in better text compression than your heuristic? Why or why not?"

Some compression programs (like zip) do a great job if the file is sufficiently large and has reasonable amounts of

repetition.

However, it is also possible to create a “compressed file” that is larger than the original because the heuristic

does work in every single case.

"Is there a way to know that a compressed piece of text is compressed the most possible? If yes, describe how you

could determine it. If no, why not?"

Stress that there is no perfect solution.

https://docs.google.com/document/d/1U1SPSyBYS9tnJmpnQd-xbWnhb6TpwdJ6i82H662hxdM/

 Teaching Tip

You do not have to review or demo LZW

compression in depth here. It is an interesting real-

world application of the activity done in class.

While details of LZW compression are not part of the

AP course content, but the idea of lossless

compression is.

Recommendation: demonstrate zip quickly.

Have a large text file at the ready, such as the

plaintext version of Hamlet

Use the .zip utility on your computer to compress

into a zip file and then compare the file size to the

original. (We learned how to do this in the previous

lesson).

The size and shape of the data will determine what the “best” answer is and we often cannot even be sure it is

the best answer (only that it is better than other answers we have tried.)

Wrap-up (20 mins)

Recap Questions

"What did all groups’ processes for compression have in common?"

Pattern Recognition

Abstraction (patterns referring to other patterns)

"Will following this process always lead to the same compression? (i.e. two people following the process for the

same poem, will result in the same compression?)"

No. It’s imprecise, but still OK. The text still gets compressed, no matter what.

Since there is no way to know what’s best, all we need is a process that comes up with some solution, and a way

to make progress.

Terminology: Verify students know or use an *exit ticket on this vocabulary:

lossless compression v. lossy compression

heuristic

Compression in the Real World (.zip)

Zip Compression

There is a compression algorithm called LZW

compression upon which the common “zip” utility

is based. Zip compression does something very

similar to what you did today with the text

compression widget.

Here is an animation of lzw in action. You can see

the algorithm doesn't compress it the most, but it

is following a heuristic that will lead to better and

better compression over time.

Do you want to use zip compression for real? Most

computers have it built in:

Windows: select a file or group of files, right-

click, and choose “Send To...Compressed

(zipped) Folder.”

Mac: select a file or group of files, ctrl+click, and

choose “Compress Items.”

Warning: if you try this results may vary.

Zip works really well for text, but only on large files. If you try to compress the simple hello.txt file we used in a

previous lesson, you'll see the resulting file is actually bigger.

Zip is meant for text. It might not work well on non-text files very well because they are already compressed or

don’t have the same kinds of embedded patterns that text documents do.

Assessment

Code Studio: Assessment questions are available on the Code Studio

Extended Learning

http://www.gutenberg.org/ebooks/1524.txt.utf-8
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch
https://curriculum.code.org/media/uploads/lempelziv.gif

Real World: Zip Compression

Experiment with zip using text files with different contents. Are the results for small files as good as for large

files? (On Macs, in the Finder choose “get info” for a file to see the actual number of bytes in the file, since the

Finder display will show 4KB for any file that’s less than that.)

Warning: results may vary. Zip works really well for text, but it might not compress other files very well

because they are already compressed or don’t have the same kinds of embedded patterns that text

documents do.

Challenge: Research the LZW algorithm

.zip compression is based on the LZW Compression Scheme

While the idea behind the text compression tool is similar to LZW (zip) algorithm, tracing the path of compression

and decompression is somewhat challenging. Learning more about LZW and what happens in the course of this

algorithm would be an excellent extension project for some individuals.

Standards Alignment

CSTA K-12 Computer Science Standards (2011)

CL - Collaboration

CPP - Computing Practice & Programming

CT - Computational Thinking

Computer Science Principles

2.1 - A variety of abstractions built upon binary sequences can be used to represent all digital data.

2.2 - Multiple levels of abstraction are used to write programs or create other computational artifacts

3.1 - People use computer programs to process information to gain insight and knowledge.

3.3 - There are trade offs when representing information as digital data.

4.2 - Algorithms can solve many but not all computational problems.

CSTA K-12 Computer Science Standards (2017)

DA - Data & Analysis

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch
https://creativecommons.org/
https://code.org/contact

UNIT

2
Ch. 1 1 2 3 4 5 6

Lesson 3: Encoding B&W Images

Overview

In this lesson, students will begin to explore the way digital

images are encoded in binary. The class begins by asking

students to invent their own image encoding protocol in order to

familiarize themselves with some of the subtle complications of

encoding images, namely the need for other data, called

metadata, that describes properties of the image necessary for

rendering it. Students will learn about pixels, raster images, and

what an image file format is. Students will encode binary image

data using a widget in Code Studio.

Purpose

The main purpose of this lesson is for students to exhibit some

creativity while getting some hands-on experience manipulating

binary data that represents something other than plain numbers

or text. Connections to abstraction in data can be made here.

Connections can be made back to file sizes and file formats here

as well - e.g. how many bytes does it take to store an image v.

text? If you want to broach the subject, the concept of data

compression can come in here too - it is interesting to think about

how a black and white image might be compressed. You should

be aware that this lesson largely acts a stepping stone to the next

lesson which addresses how RGB colors are represented in binary.

Image file types have some similarities to data packets we saw in

the Internet unit -- because images must include metadata, or

data about the data. The data of a black-and-white image is the

list of bits that represent whether each pixel is on or off. To create

the image, however, we must also know how wide and tall the

image is in order to recreate it accurately. This necessitates the

creation of a file format which clearly defines how this metadata

will be encoded, since it is crucial for interpreting the subsequent

data of the image. It is similar to how an internet packet doesn't

only contain the data you need to send, but must also include

metadata like the to and from addresses and packet number.

Digital images can be stored in many formats, but one of the

most common formats is "raster". Raster images store the image

as an array of individual pixels, each of which has a particular

color. Higher-quality images can be obtained by decreasing the

size of the pixels (resolution). While full color will be addressed in

the next lesson, an important idea here is that images on

computer screens are created with light by illuminating pixels on

the screen. This is why it is typical in a black and white image for

the value 1 to represent white - it means turn the light on - and 0

represents black - light off. If you were drawing on paper you

might do the inverse.

View on Code Studio

Objectives
Students will be able to:

Explain how images are encoded with pixel

data.

Describe a pixel as an element of a digital

image.

Encode a B&W image in binary

representing both the pixel data (intensity)

and metadata (width, height).

Create the necessary metadata to

represent the width and height of a digital

image, using a computational tool.

Explain why image width and height are

metadata for a digital image.

Preparation

(Optional) Graph or grid paper for

drawing pixel images by hand

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Activity Guide KEY - Encode a B&W Image

- Answer Key

Teaching Tips & Tricks Video - Encoding

Images - Video (download)

KEY: Extension: Magnify an Image

(optional) - Answer Key

For the Students

B&W Pixelation Widget - Activity Guide

Extension: Magnify an Image (optional) -

Activity Guide

B&W Pixelation Tutorial - Video (download)

Invent a B&W image encoding scheme -

Activity Guide

Vocabulary

Make a Copy

Make a Copy

Make a Copy

https://curriculum.code.org/csp-18/unit2/
https://studio.code.org/s/csp2-2018/stage/3/puzzle/1/
https://studio.code.org/s/csp2-2018/stage/3/puzzle/1
http://youtu.be/yWrmxQSnmPc
https://www.dropbox.com/s/ryke4wt445sds9c/U1L14-Tips%26Tricks-v2_1.mp4?dl=0
https://studio.code.org/s/csp2-2018/stage/3/puzzle/1
https://docs.google.com/document/d/1kLLr-ELXgBKDULCYDm3slAVQkszAHez85es7aLdAk_Q/
https://docs.google.com/document/d/12Ugl6_dULl_3r2Jjg_7At0ZqK98e8olOAMQAgU0Pv7I/
https://youtu.be/rJOa5Q5a1WM
http://videos.code.org/2015/csp/pixelation_bw.mp4
https://docs.google.com/document/d/1ueUif3AbjQHgte5B1ud1gyenQFEYzj5f8rnqpAsZXJg/

Agenda
Getting Started (10 mins)

Invent An Encoding Scheme for B&W Images

Activity (40 mins)

Video: The Pixelation widget

Wrap-up (10 mins)

Assessment

Extended Learning

Image - A type of data used for graphics or

pictures.

metadata - is data that describes other

data. For example, a digital image may

include metadata that describe the size of

the image, number of colors, or resolution.

Pixel - short for "picture element", the

fundamental unit of a digital image,

typically a tiny square or dot that contains

a single point of color of a larger image.

 Activity Goal

The purpose of this little concept invention activity is

to be creative and to get the mind moving. There is

no exact right answer that we're going for here.

There are many clever and interesting ways this

could be done. Most students will likely end up saying

that each pixel should be represented with either a 0

or a 1.

But what we really want to draw out is the idea of

"metadata". Simply encoding the pixel data is not

enough. We also need to encode the width and height

of the image, or the image could not be recreated -

other than through trial and error

 Content Corner

There is some mystery about the etymology of the

word "pixel". You can read more about it on the

Wikipedia: pixel page

Teaching Guide

Getting Started (10 mins)

 Remarks

Back in the Internet Unit you encoded a line-drawing image as a list of numbers that made up the coordinates of

the points in the image. That works for line drawings, but how might you encode a different kind of image? Today

we’re going to consider how you might use bits to encode a photographic image, or if you like: how could I

encode vision?

Today, we're going to start to learn about images, but we're going to start simple, with black and white images.

Invent An Encoding Scheme for B&W Images

Distribute Invent a B&W image encoding scheme -

Activity Guide

Separate students into pairs, and hand each

student a copy of the activity guide.

Students should work the first two pages

Give groups time to work

Discuss:

Ask students to share-out their file format to identify

commonalities and patterns.

As a class, address students’ questions that arise

from the concept invention activity.

Use the questions below to spur conversation. If

the concept of metadata, or data about data,

arises naturally, then address it here.

Prompts:

How have you encoded white and black portions of your image, what do 0 and 1 stand for in your encoding?

Are your encodings flexible enough to accommodate images of any size? * How do they accomplish this?

Is your encoding intuitive and easy to use?

Is your encoding efficient?

 Remarks



Vocabulary: each little dot that makes up a

picture like this is called a pixel. Where did this

word pixel come from? It turns out that originally

the dots were referred to as "picture elements",

that got shortened to "pict-el" and eventually "pixel".

What we've discovered is that the data for our image file must contain more than just a 0 or 1 for every pixel. It

must contain other data that describes the pixel data.

This is called metatdata. In this case the metadata encodes the width and height of the image.

We've seen forms of metadata before. For example: an internet packet. The packet contains the data that

needs to be sent, but also other data like the to and from address and packet number.

Activity (40 mins)

Introduction

https://en.wikipedia.org/wiki/Pixel#Etymology
https://docs.google.com/document/d/1ueUif3AbjQHgte5B1ud1gyenQFEYzj5f8rnqpAsZXJg/

View on Code Studio 

View on Code Studio 

View on Code Studio 

The pixelation widget in Code Studio will allow us to play with these ideas a little more.

This widget follows a particular encoding scheme for images that you'll have to follow.

Video: The Pixelation widget

Show the tutorial video: B&W Pixelation Tutorial - Video

NOTE: This video pops up the first time you visit the pixelation widget in Code Studio. You might perfer to have

students watch it there on their own.

 Code Studio levels

Levels

 2

 3

Student Instructions

Task 1: Make a 3x5 letter 'A'
Start by trying to recreate the 3x5 letter "A" depicted (at right) using the pixelation widget.

The image is initially setup with the incorrect dimensions. Your first task is to set the second

byte to the 8-bit binary code for 5: 0000 0101. Then you can start entering pixel data to

make the A.

Student Instructions

Oh no! An image got messed up during
transmission!
The problem: A single extra bit was inserted into the stream of bits that make up the

C of the Code.org logo.

That extra bit bumps all of the other bits down the line which makes the logo look

messed up.

Your task: Hunt down the extra bit and remove it to fix the Code.org logo.

HINT: One bit early on would make it look like many bits were out of order.

Widget: Black and White Pixelation 

Student Overview

Make your own image of any size

Directions:

Encode an image of anything you like.

You might want to do some planning and sketching with graph paper first.

DO NOT simply make an abstract pattern, like a checkerboard.

Depict something, perhaps your name written out, your initials, an icon or logo of some sort.

Get creative! The image doesn't have to be a perfect square, it can be long and skinny.

Optional: for fun, send your image bits to a friend using the sending bits widget. (note: this is just a link to the

sending formatted text level from a couple of classes ago)

Distribute: Activity Guide - B&W Pixelation Widget - Activity Guide

 Activity Guide

https://studio.code.org/s/csp2-2018/stage/3/puzzle/2
https://studio.code.org/s/csp2-2018/stage/3/puzzle/3
https://studio.code.org/s/csp2-2018/stage/3/puzzle/4
https://youtu.be/rJOa5Q5a1WM
https://studio.code.org/s/cspunit1/stage/11/puzzle/2
https://docs.google.com/document/d/1kLLr-ELXgBKDULCYDm3slAVQkszAHez85es7aLdAk_Q/

 Teaching Tip

You may not need or want to use the first page of

the activity guide. It is a reference for students, but

the tasks for students are given in Code Studio.

Similarly for the second page, if you don't intend to

collect it for assessment purposes, you can use the

questions as group discussion or wrap-up

questions.

Page 1:

Explains the encoding scheme and a bit about how the tool works.

Describes the 3 student tasks to get familiar with the tool:

1. Create a small image: Start by trying to recreate the 3x5 letter “A” depicted (shown above) using the

pixelation widget.

2. Correct an error: Oh no! An extra bit was inserted into an image during transmission! Track it down.

3. Make your own image of any size of anything you like.

The second page asks students to:

Copy/paste a copy of their personal creation

Copy/paste the bits that are used to encode it

Written reflection questions:

What are the largest dimensions (width and

height) of an image we can make with the

pixelation widget?

How many total bits would there be in the

largest possible image we could make with the

pixelation widget?

How many bits would it take to represent the smallest possible image (i.e. an image with one pixel)?

What would happen if we didn’t include width and height bits in our protocol? Assume your friend just sent

you 32 bits of pixel data (just the 0s and 1s for black and white pixels). Could you recover the original

image? If so, how?

Wrap-up (10 mins)

Review:

The image file protocol we used contains “metadata”: the width and height. Metadata is “data about the data”

that might be required to encode or decode the bits.

For example, you couldn’t render the B&W image properly without somehow including the dimensions. Prompts:

What other examples of metadata have we seen in the course so far?

What other types of data might we want to send that would require metadata?

(Optional) Prompt:

"Did you think about compression at all while doing this exercise? Can you think of a way that you might represent

an image of pixel data with fewer bits? What would have to change about the encoding strategy?"

For an answer to this see the "Color by Numbers" Activity from CS Unplugged (csunplugged.org).

It uses something called "run-length encoding"

Assessment

Check students responses on: B&W Pixelation Widget - Activity Guide

Check to make sure that the bits they submitted actually produce the image as claimed.

Score the digital artifact as you see fit, with points for creativity and perceived effort.

The following questions can be found in the Activity Guide and also appear on Code Studio

Answers these questions can be found here: Activity Guide KEY - Encode a B&W Image - Answer Key

Using the B&W file format from the pixelation widget

What are the largest dimensions (width and height) of an image we can make with the pixelation widget?

How many total bits would there be in the largest possible image we could make with the pixelation widget?

How many bits would it take to represent the smallest possible image (i.e. an image with one pixel)?

http://csunplugged.org/image-representation/#Colour_by_Numbers
https://docs.google.com/document/d/1kLLr-ELXgBKDULCYDm3slAVQkszAHez85es7aLdAk_Q/
https://studio.code.org/s/csp2-2018/stage/3/puzzle/1

What would happen if we didn’t include width and height bits in our protocol? Assume your friend just sent you

32 bits of pixel data (just the 0s and 1s for black and white pixels). Could you recover the original image? If so,

how?

Extended Learning

Check out the "Color by Numbers" from CS Unplugged (csunplugged.org) which uses a different clever encoding

scheme for B&W images.

Do the Extension: Magnify an Image (optional) - Activity Guide activity (double the size of an image on the

Pixelation Tool).

Have students research raster graphics in anticipation of the subsequent lesson.

Attempting to communicate with possible intelligent life beyond our solar system has been a dream for humans

and the goal of scientists for many years. Questions about messages to send, as well as how to send messages

deep into space to unknown recipients have been debated. In 1974, scientists sent the Arecibo message to the

star cluster M13 some 25,000 light years away. Read about the message they sent using 1,679 binary digits

(https://en.m.wikipedia.org/wiki/Arecibo_message).

How would you change the content of the message? What would you delete and add? Why would your change

be significant in a communication to other intelligent beings?

Sketch the segment of the design you would alter. Remember, you must retain the original number of bits.

List the details in this article that you understand more deeply because of what you have learned in this class

up to this point.

Standards Alignment

CSTA K-12 Computer Science Standards (2011)

CL - Collaboration

CPP - Computing Practice & Programming

CT - Computational Thinking

Computer Science Principles

1.1 - Creative development can be an essential process for creating computational artifacts.

1.2 - Computing enables people to use creative development processes to create computational artifacts for creative expression or

to solve a problem.

1.3 - Computing can extend traditional forms of human expression and experience.

2.1 - A variety of abstractions built upon binary sequences can be used to represent all digital data.

2.3 - Models and simulations use abstraction to generate new understanding and knowledge.

3.1 - People use computer programs to process information to gain insight and knowledge.

3.2 - Computing facilitates exploration and the discovery of connections in information.

3.3 - There are trade offs when representing information as digital data.

CSTA K-12 Computer Science Standards (2017)

CS - Computing Systems

DA - Data & Analysis

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://csunplugged.org/image-representation/#Colour_by_Numbers
https://docs.google.com/document/d/12Ugl6_dULl_3r2Jjg_7At0ZqK98e8olOAMQAgU0Pv7I/
https://creativecommons.org/
https://code.org/contact

UNIT

2
Ch. 1 1 2 3 4 5 6

Lesson 4: Encoding Color Images

Overview

In this lesson students are asked to consider how color is

represented on a computer and to imagine how it might be

encoded in binary. Students then learn about how color is actually

represented on a computer - using the RGB color scheme - and

create their own images in an new version of the pixelation

widget that allows you use more than 1 bit per pixel to represent

color information. After grappling with the prospect of possibly

many bits just to represent a single pixel, students are shown

how using hexadecimal allows us to represent many bits with

fewer characters. Students use a new version of the pixelation

tool to encode an image with color and create a personal favicon.

Purpose

The main purpose here, similar to the B&W pixelation activity is

for students to get hands-on and "down and dirty" with bits. A

major outcome will also be understanding the relationship

between hexadecimal (base-16) and binary (base-2), and how

useful it is to use hex to represent groups of 4 bits. It's important

to realize that using hex is not a form of data compression, it's

simply a different view into the bits.

The most common color representation scheme - RGB - typically

uses 24 bits (3 bytes) with 8 bits each for Red, Green and Blue

intensities. And one of the most common ways you see these

colors represented is in hexadecimal. The pixelation widget, with

its ability to choose how many bits represent the color value for

each pixel, can be a very useful tool for showing the utility of hex

representations for bits.

The process of rendering color on a computer screen by mixing

red, green and blue light is an important concept of this lesson.

The results are not always intuitive, because mixing pigment and

mixing colored lights (like what’s on a computer screen) lead to

different results.

Another important objective of this lesson is to understand how

(uncompressed) image file sizes can become quite large. For

example, even a relatively small image of 250x250 pixels is a

total of 62,500 pixels, each requiring up to three bytes (24 bits)

or color information, resulting in a total of 1.5 million bits to store

one image! Thus, interesting connections to compression can be

made here, but note that lossy compression and image formats

like .jpg are covered in the next lesson.

Agenda
Getting Started (5 mins)

View on Code Studio

Objectives
Students will be able to:

Use the Pixelation Tool to encode small

color images with varying bits-per-pixel

settings.

Explain the color encoding scheme for

digital images.

Use the Pixelation Tool to encode an image

of the student’s design.

Explain the benefits of using hexadecimal

numbers for representing long streams of

bits.

Preparation

(Optional) Consider demonstrating the

color pixelation widget instead of showing

the video.

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Teaching Tips & Tricks Video - Encoding

Images - Video (download)

Activity Guide KEY - Encoding Color

Images - 2018 - Answer Key

Video Guide KEY for "A Little Bit about

Pixels" - 2018 - Answer Key

Activity Guide KEY - Hexadecimal

Numbers (optional) - 2018 - Answer Key

For the Students

A Little Bit about Pixels - Video

(download)

Worksheet - Video Guide for "A Little Bit

about Pixels" (optional) - Worksheet

Encoding Color Images - Activity Guide

Hexadecimal Numbers (optional) - Activity

Guide

Make a Copy

Make a Copy

Make a Copy

https://curriculum.code.org/csp-18/unit2/
https://studio.code.org/s/csp2-2018/stage/4/puzzle/1/
http://youtu.be/yWrmxQSnmPc
https://www.dropbox.com/s/ryke4wt445sds9c/U1L14-Tips%26Tricks-v2_1.mp4?dl=0
https://studio.code.org/s/csp2-2018/stage/4/puzzle/1
https://studio.code.org/s/csp2-2018/stage/4/puzzle/1
https://studio.code.org/s/csp2-2017/stage/4/puzzle/1
https://youtu.be/15aqFQQVBWU
http://videos.code.org/2015/csp/concept_rgb.mp4
https://docs.google.com/document/d/1C72wLDIk7_AC8nVMKLQgvAqLUSt9UybyWGQPLtIJRL4/
https://docs.google.com/document/d/1-u6PaswugFEkBf2NVa8aD_IlD4wSeYLhvD7GEkNtArA/
https://docs.google.com/document/d/10BkpM4DSvlAJbo6DeJLa3G0CoulCPL08LcRdkdmSIRM/

Prompt: How might you encode colors?

Activity (40 mins)

Video: A Little Bit about Pixels

Color Pixelation Widget

Activity 2 (30-40 mins)

Personal Favicon Project

Wrap-up

Submit Favicon

Gallery Walk

Assessment

Extended Learning

Personal Favicon Project - Activity Guide

Rubric - Personal Favicon Project - Rubric

Vocabulary

Hexadecimal - A base-16 number system

that uses sixteen distinct symbols 0-9 and

A-F to represent numbers from 0 to 15.

Pixel - short for "picture element", the

fundamental unit of a digital image,

typically a tiny square or dot that contains

a single point of color of a larger image.

RGB - the RGB color model uses varying

intensities of (R)ed, (G)reen, and (B)lue

light are added together in to reproduce a

broad array of colors.

Make a Copy

Make a Copy

https://docs.google.com/document/d/1bUVXHZUafmxDT5pOGlWSFkQSc_0Ll_lzMtfSh8JiI20/
https://docs.google.com/document/d/1Oug5bmr_Ml4cK690BhtC5_Ow6l17QofGDG61NJ7k3X4/

 Discussion Goal

It is likely that many students will come up with an

idea like making a list of colors and just assigning a

number to each one. That is fine and reasonable.

Some students may already be aware of a numeric

RGB color scheme. If they can describe that here, that

is fine as well.

Regardless of their encoding, students should be

thinking about the number of bits they will allocate to

the encoding and how that will affect the number of

colors that can be encoded.

Teaching Guide

Getting Started (5 mins)

Prompt: How might you encode colors?

Use a getting started strategy to address these

questions (for ideas consult: Teaching Strategies for

the CS Classroom - Resource)

In the previous lesson we came up with a simple

encoding scheme for B&W images. What if we

wanted to have color?

Devise an encoding scheme for color in an image

file. How would you represent color for each pixel?

How many different colors could you represent? Do

you have a particular order to the colors?

Pair and share ideas



Discuss some of the difficulties of representing color

Compare and contrast the different schemes students come up with.

Activity (40 mins)

 Remarks

The way color is represented in a computer is different from the ways we represented text or numbers. With text,

we just made a list of characters and assigned a number to each one. As you are about to see, with color, we

actually use binary to encode the physical phenomenon of LIGHT. You saw this a little bit in the previous lesson,

but today we will see how to make colors by mixing different amounts of colored light.

Video: A Little Bit about Pixels

Show the video: A Little Bit about Pixels - Video

Kevin Systrom, founder of Instagram, explains pixels and RGB color.

(Optional) complete the video worksheet: Video Guide KEY for "A Little Bit about Pixels" - Answer Key

Discuss:

Following the video, you might address any questions (or give students time to complete the video worksheet)

Important ideas from this video include:

Image sharing services are a universal and powerful way of communicating all over the world.

Digital images are just data (lots of data) composed of layers of abstraction: pixels, RGB, binary.

The RGB color scheme is composed of red, green, and blue components that have a range of intensities from 0

to 255.

Screen resolution is the number of pixels and how they are arranged vertically and horizontally, and density is

the number of pixels per a given area.

Digital photo filters are not magic! Math is applied to RGB values to create new ones.

Color Pixelation Widget

Distribute the Activity Guide: Encoding Color Images - Activity Guide

Direct students to work in Code Studio.



https://docs.google.com/document/d/18FwTTnIKkuBcuHZlvlNbYzmZLzgHjFZHeT_2_T7tuq4
https://youtu.be/15aqFQQVBWU
https://studio.code.org/s/csp2-2017/stage/4/puzzle/1
https://docs.google.com/document/d/1-u6PaswugFEkBf2NVa8aD_IlD4wSeYLhvD7GEkNtArA/

 Teaching Tip

If you are comfortable you might consider

demonstrating the pixelation tool for each of the 3

steps in the activity guide rather than having students

watch the tutorial video. Demonstrating might be a

more efficient and interactive/engaging way bring

students through each step.

There are 3 tutorial videos that appear in Code Studio that guide students through using the widget.

This activity guides students through a few levels to get used to representing pixel data with more than one bit

per pixel. It works up to full 24-bit RGB color and will present hexadecimal as a convenient way to represent

binary information for humans to read.

 Guide: Encoding Color Images

Each of the items below are presented to students

on the activity guide and in Code Studio.

Step 1: 3-bit color

Color Pixelation widget tutorial video - Part 1 - Video: How to use the pixelation widget to control color.

Task 1: Fill in the last two pixels with the missing colors

Step 2: 6-bit color



Color Pixelation widget tutorial video - Part 2 - Video: more bits per pixel for more colors

Task 2: Experiment with 6-bit color

Step 3: 12-bit color and Hex

Color Pixelation widget tutorial video - Part 3 - Video: Using hex to type bits more quickly

Task 3: Experiment with Hex

Activity 2 (30-40 mins)

Personal Favicon Project

Students will create a 16 by 16 pixel personal favicon in RGB color using the Pixelation Tool. This project will likely

require some time to complete, and should serve as a practice with hexadecimal numbers, metadata, and the

underlying encoding of images in a raster file.

Distribute the Activity Guide: Personal Favicon Project - Activity Guide

and review the criteria for the project.

Students will need a decent amount of work time to create their favicon. You might get them started in class and

then assign it as homework.

 Personal Favicon

(From the activity guide)

Directions

http://youtu.be/763E3_Z6Hng
http://youtu.be/xK9z51Tin4E
http://youtu.be/Xhqz3ffGm74
https://docs.google.com/document/d/1bUVXHZUafmxDT5pOGlWSFkQSc_0Ll_lzMtfSh8JiI20/

 Content Corner

RGB color model - Additive Light

Computer screens emit light, so when you mix RGB

colors, you are really mixing light together. This is

counterintuitive for many students who have grown up

mixing paints in school. When you mix paint it absorbs

light.

It is illustrative to look at how you make black and

white with paint vs. light:

To make black: with paint, mix a full spectrum of

colors together; with light, turn off all the lights.

To make white: with paint, don’t use any paint

(assuming canvas is white); with light, turn on all

lights for a full spectrum of color.

This can make mixing colors a little bizarre too:

With paint, mix full red and full blue to make Purple

With light, mix full red and full blue to make Pink

The Pixelation Tool is in RGB mode, as long as the

number of bits per pixel is a multiple of 3 (3, 6, 9, 12,

etc.) This allows for the same number of bits to be

allocated to each color channel. Other bits-per-pixel

settings will set the image to grayscale, with more bits

allowing finer control over the shade of gray.

Hexadecimal Numbers:

When working through the Activity Guide for the color

version of the Pixelation Tool, students will be

introduced to the concept of hexadecimal numbers,

so-called because there are 16 unique symbols that

can appear in each place value, 0-9, A, B, C, D, E, and

F.

MISCONCEPTION ALERT

It is important to note that hexadecimal numbers are

used to aid humans in reading longer strings of bits,

but they in no way change the underlying data being

represented. Instead, they allow us to read 4 bits at a

time rather than 1, and so allow us to more easily parse

binary information. Hexadecimal representation is NOT

a form of compression, since the underlying binary

representation is not changing at all. Rather it is a

more convenient way of representing that binary

information when humans need to read and interact

with it.

You may wish to separately address this topic as a

class. Students can practice with the Hexadecimal

Odometer and can complete this Hexadecimal

Numbers (optional) - Activity Guide if you deem more

practice necessary.

Create a

personal

16x16

favicon

and

encode it

using the

Pixelation

Widget on

the final

level of

this

lesson in Code Studio.

The image you make should represent your

personality in some distinctive way. You will be

using this favicon in future lessons and web sites

that you make, so be creative and thoughtful.

After you have finished your favicon, share it with

others in the class by sending them the bits with

the Internet Simulator Widget!

Requirements

The icon must be 16x16 pixels.

You must use the Pixelation Widget to encode the

bits of color information.

The image must be encoded with at least 12 bits

per pixel.

Things to think about

A simple design with a few basic colors is

probably the best solution. How could you use

more colors?

Plan ahead: Sketch your design before starting to

encode the bits. You might want to use a tool to

help you draw small images. Suggestions:

Favicon Maker: http://www.favicon.cc/

Make Pixel Art: http://makepixelart.com/free/

Wrap-up

Submit Favicon

You should ask students to submit a .png version of

their favicon, blown up to a larger size. And ask them

to send you the bits that made up the image.

Gallery Walk

With the images you can make a class favicon

“quilt” by printing them out.

And you can copy/paste the bits into the pixelation tool to verify that image is correct.

Assessment

Questions:

http://studio.code.org/s/odometer
https://docs.google.com/document/d/10BkpM4DSvlAJbo6DeJLa3G0CoulCPL08LcRdkdmSIRM/
http://www.favicon.cc/
http://makepixelart.com/free/

How many bits (or bytes) are required to encode an image that is 25 pixels wide and 50 pixels tall, if you encode

it with 24 bits per pixel?

To help students understand how quickly the bit size of images expands as the image is enlarged, start with

smaller numbers (5 X 10) and then incrementally increase the width and height to illustrate the concept.

Imagine that you have an image that is too dark or too bright. Describe how you would alter the RGB settings to

brighten or darken it. Give an example.

Extended Learning

If you had to send your favicon using the sending bits widget, it would probably take a long time. Could you

compress your image? How? Describe in broad strokes the kinds of things you could do.

Read Blown to Bits (www.bitsbook.com), Chapter 3, Ghosts in the Machine, pp. 95-99 (Hiding Information in

Images), then answer the following questions:

Besides hiding information sent to others, what other uses can steganography have for everyday users? For

example, what uses would steganography have for an American businessman in China?

Standards Alignment

CSTA K-12 Computer Science Standards (2011)

CL - Collaboration

CPP - Computing Practice & Programming

CT - Computational Thinking

Computer Science Principles

1.1 - Creative development can be an essential process for creating computational artifacts.

1.2 - Computing enables people to use creative development processes to create computational artifacts for creative expression or

to solve a problem.

1.3 - Computing can extend traditional forms of human expression and experience.

2.1 - A variety of abstractions built upon binary sequences can be used to represent all digital data.

2.2 - Multiple levels of abstraction are used to write programs or create other computational artifacts

2.3 - Models and simulations use abstraction to generate new understanding and knowledge.

3.1 - People use computer programs to process information to gain insight and knowledge.

3.2 - Computing facilitates exploration and the discovery of connections in information.

3.3 - There are trade offs when representing information as digital data.

CSTA K-12 Computer Science Standards (2017)

CS - Computing Systems

DA - Data & Analysis

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://www.bitsbook.com/wp-content/uploads/2008/12/chapter3.pdf
https://creativecommons.org/
https://code.org/contact

UNIT

2
Ch. 1 1 2 3 4 5 6

Lesson 5: Lossy vs. Lossless Compression

Overview

Students learn the difference between lossy and lossless

compression by experimenting with a simple lossy compression

widget for compressing text. Students then research three real-

world compressed file formats to fill in a research guide.

Throughout the process they review the skills and strategies used

to research computer science topics online, in particular to cope

with situations when they don't have the background to fully

understand everything they're reading (a common situation even

for experienced CS students).

Purpose

The first goal of this lesson is straightforward: understand what

lossy compression is and when/why it might be used. Students

should see a number of examples of this distinction throughout

the lesson and should leave the lesson being able to describe the

relative benefits of each.

The second goal of this lesson is to build up students' research

skills both for the project they will complete in the next lesson

and for the Explore PT at the end of the year. Students will need

practice finding reliable sources, reading technical articles, and

synthesizing information. The teacher's role in calling out the

skills being used, not merely the facts being found, is significant.

Agenda
Getting Started (15 mins)

Quick Discovery: Lossy Text Compression

Lossless vs. Lossy Compression

Activity (40 mins)

Wrap-up (5 mins)

View on Code Studio

Objectives
Students will be able to:

Explain the difference between lossy and

lossless compression.

Explain the relative benefits or drawbacks

of different file formats, particularly in

terms of how they compress information.

Identify reliable sources of information

when doing research

Explain the difference between open

source and licensed software.

Preparation

Prepare print or digital copies of File

Formats and Compression Activity Guide

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

KEY - File Formats and Compression -

Answer Key

For the Students

Lossy Text Compression App - App Lab

File Formats and Compression - Activity

Guide

Vocabulary

Lossless Compression - a data compression

algorithm that allows the original data to

be perfectly reconstructed from the

compressed data.

Lossy Compression - (or irreversible

compression) a data compression method

that uses inexact approximations,

discarding some data to represent the

content. Most commonly seen in image

formats like .jpg.

Make a Copy

https://curriculum.code.org/csp-18/unit2/
https://studio.code.org/s/csp2-2018/stage/5/puzzle/1/
https://studio.code.org/s/csp2-2018/stage/5/puzzle/1
https://studio.code.org/p/applab#hxXJIEGg2yza_Q7t9W04xg
https://docs.google.com/document/d/1o09fLcNGPWdtquAd-2l6ZAsNcUhLAVSLaVi8kE0iZsQ/edit?usp=sharing

 Discussion Goal

Goal: As you circulate first make sure that all groups

try typing their own text into the app. They should see

that the app keeps the first character of every word

but then removes all vowels.

During the share out aim to hear from multiple groups.

If you ask leading questions you might direct the

conversation towards the following points.

The text is certainly "smaller" than before so at

least it might be compression.

This is different from what they saw with the text

compression widget though. Some information is

being entirely thrown away and if you only had the

compressed text there's no way to get back the

original text.

That said, you can usually still read the text. The

meaning hasn't been lost even if some parts of the

original message could never be perfectly

recovered.

The word "lossy" probably has something to do with

the fact that some letters (information) are entirely

lost here.

Your goal in this discussion isn't that students arrive at

a definition. You're aiming for all students to see that

this type of compression is different from what they've

seen before and prep them all for the following

remarks.

Teaching Guide

Getting Started (15 mins)

Quick Discovery: Lossy Text
Compression

Prompt: With a partner, go to the Lossy Text

Compression App - App Lab. Use it for a couple

minutes, discuss with your partner what's happening,

and then answer the following questions.

Should this “count” as text compression? Why or

why not?

What do you think the word “lossy” refers to?



Discuss: Give pairs of students a couple minutes to

explore the app. Then ask discuss what they are

seeing. Finally ask them to write down brief responses

to the two prompts. Once all pairs have had a chance

to write responses have a few groups share opinions

with the groups.

Lossless vs. Lossy Compression

 Remarks

This is an example of compression since the total

number of bits needed to represent the message is

reduced. As we've seen, though, it's different than

the compression we saw with the text compression

widget.

The text compression widget uses "lossless"

compression. This means that it is possible to

reverse the compression and recover the original

information (message) in its entirety. This is what

the dictionary was for.

The text compression we just saw is "lossy" compression. This means that it isn't possible to perfectly reverse the

compression and recover the original (message). Some of it is lost forever. If you saw the word “fd” it could be

“food”, “feed”, “feud”, or “fad”. You might be able to guess what it was supposed to be, but there’s no algorithm

that will always give you the original message.

Vocabulary: Display these definitions

Lossless Compression: a data compression algorithm that allows the original data to be perfectly reconstructed

from the compressed data.

Lossy Compression: (or irreversible compression) a data compression method that uses inexact approximations,

discarding some data to represent the content. Most commonly seen in image formats like .jpg.



Prompt: Have students briefly discuss the prompt below with a neighbor.

When you use lossy compression you lose the ability to decompress your information and get back a perfect

copy. Even so, people use lossy compression all the time. Can you think of reasons or situations where someone

would still use lossy compression?

Discuss: Have pairs briefly discuss with one another. Circulate and listen to ideas as they're discussed. Then have a

couple groups share with the whole room.

https://studio.code.org/p/applab#hxXJIEGg2yza_Q7t9W04xg

 Discussion Goal

Researching CS Topics: When researching a

computer science topic (e.g. as students will have to

do on the Explore PT) it is important to remember

that this is a unique and separate skill. It often

requires students to read text that they don't

completely understand or which uses advanced

vocabulary. At other times they'll need to consult

sources typically considered unreliable like online

forums or Wikipedia. Part of the goal of this lesson is

calling out the fact that this is a separate skill,

practicing the individual component, and preparing

students to do it more independently in the following

lesson.

 Content Corner

Formats in Everyday Life: The file extension you often

see on a file (for example: myPhoto.jpg) is really just

an indicator to the computer of how the underlying

bits are organized, so the computer can interpret

them. If you change the name of the file to

myPhoto.gif, that does not magically change the

underlying bits; all you’ve done is confuse the

computer. It won’t be able to open the file because it

will attempt to interpret the file as a GIF when really

the bits are in JPG format.

 Discussion Goal

Goal: This prompt serves two roles. It first should get

students a chance to practice using the vocabulary

you just introduced. Use their responses to judge

whether students understand the distinction between

the two types of compression. If necessary review the

two before continuing to the main activity.

Secondly it prompts students to begin thinking

critically about the tradeoffs of the two compression

types which they will be doing for the remainder of the

lesson.

Transition: We’ve been looking at image file formats.

And we’ve also seen text compression. Both of those

attempted to render perfectly every piece of

information.

Both the image file format and the text compression

scheme we used were lossless. Lossy compression

schemes usually take advantage of the fact that a

human is supposed to interpret the data at the other

end, and human brains are good at filling the gaps

when information is missing.

Activity (40 mins)

Group: Place students in pairs. Each group will only

need a single computer.

Distribute: File Formats and Compression - Activity

Guide to each group.

 Rapid Research - Compression Formats

JPG: Ask all groups to research the answers to the

first column in the activity guide together. In

particular remind them to keep track of their

sources of information.

Share: Have pairs share their answers with another

pair. If there are disagreements have them discuss

with one another the sources of their information and try to arrive at a shared solution.

Discuss: Share the solution to the first column as a class. Resolve any discrepancies. Afterwards briefly

acknowledge the following points.

JPG is lossy compression. Many images on the web are converted to JPG. Odds are if you've seen a grainy or

pixelated image on the Internet, it's a JPG.

Lossy compression like this results in a lower quality image with fewer details, but as humans we can still tell

what's in the picture. Especially in instances where you don't need a high quality image and bandwidth is

limited JPG makes a lot of sense.

This is a free and open format, but even so there have been disputes about its ownership.



Prompt: Let's think for a minute about how you are

doing your research. What kinds of sources are you

finding? How are you actually reading these sources?

Discuss: Have students briefly share their thoughts

at their tables before discussing as a class. Use the

discussion to lead into to the comments below.

 Remarks

Conducting research online about CS topics is a

skill. Often it means hunting through articles you

don't completely understand for the key pieces of

information that you do. Other subjects like history

or math may have classic agreed upon texts but in

the world of CS you'll often end up on Wikipedia or

online forums. This is ok. We're going to keep

working on this skill of reading technical articles. If

you sometimes are confused that's ok and entirely normal. There is no one on earth who understands

everything about CS with how large a subject it is and how quickly it's changing. When you're doing research as

https://docs.google.com/document/d/1o09fLcNGPWdtquAd-2l6ZAsNcUhLAVSLaVi8kE0iZsQ/edit?usp=sharing

 Discussion Goal

Goal: This discussion is primarily a way to check that

students have understood the difference between

lossy and lossless compression. Lossy compression is

fine if you just need a "good enough" version of

something and care about saving space or bandwidth.

For example, if you don't want to use up the data plan

on your phone you would use compressed images.

 Teaching Tip

Record Research Strategies: Throughout this activity

consider writing and recording strategies that

students are using in order to conduct their research.

This could be on a poster, the board, or some kind of

shared digital notes. Students are going to have

another chance to research formats in the following

lesson, so an important goal in this lesson is

highlighting how students are succeeding at doing

this research, not just the information they're finding.

a computer scientist it usually means sticking with

it even if a lot of the content doesn't make sense

at first.

MP3 and PNG: Have pairs fill in the MP3 and PNG

columns of the table.



Share: Once both columns have been filled out have

pairs share their results across the table again.

Discuss: Share out the results of the research with

the whole class, reviewing the results.

Wrap-up (5 mins)



Prompt: Lossy compression seems to be "worse" than

lossless compression but obviously both are being

used all the time. Write down three reasons or

situations where someone would be willing to use

lossy compression even though it means some loss of

quality.

Discuss: Students should silently list their responses,

then share with a neighbor, then finally discuss with

the entire class. Have multiple pairs or tables share

their responses.

 Remarks

Today we accomplished a lot. We explored the difference between lossy and lossless compression, we practiced

reading and researching a CS topic, and we learned a little bit about the complicated world of file formats! Next

time we'll close out this unit by digging a little deeper on all of these topics.

Standards Alignment

CSTA K-12 Computer Science Standards (2011)

CD - Computers & Communication Devices

CL - Collaboration

CT - Computational Thinking

Computer Science Principles

3.3 - There are trade offs when representing information as digital data.

7.3 - Computing has a global affect -- both beneficial and harmful -- on people and society.

7.5 - An investigative process is aided by effective organization and selection of resources. Appropriate technologies and tools

facilitate the accessing of information and enable the ability to evaluate the credibility of sources.

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

DA - Data & Analysis

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

2
Ch. 1 1 2 3 4 5 6

Lesson 6: Rapid Research - Format
Showdown

Overview

In this lesson students will conduct a small amount of research to

explore a file format either currently in use or from history.

Students will conduct research in order to complete a "one-

pager" that summarizes their findings. They will also design a

computational artifact (video, audio, graphic, etc.) that succinctly

summarizes the advantages of their format over other similar

ones.

This lesson is intended to be a quick, short version of a

performance task in which students rapidly do some research and

respond in writing. It might take 2 class days but should not take

more. The goal is to develop skills that students will use when

they complete the actual Explore PT later in the year.

Purpose

This lesson concludes Unit 2's investigation of file sizes, formats,

metadata, and compression. The activity is designed for students

to practice research skills that will be beneficial when completing

the Explore PT while also applying the knowledge they have

developed across the unit. The "showdown" aspect of the project

is designed to both encourage students to think more deeply

about the inherent tradeoffs of different file formats and also

provide a motivating context in which to perform their research.

The computational artifact completed in this project has a direct

parallel to the computational artifact students are expected to

design for the Explore PT.

Agenda
Warm Up (5 mins)

Activity (90 mins)

Rapid Research - Format Showdown

Day 1 - Choose Format, Research, Begin One-Pager

Day 2 - Complete One-pager and Computational Artifact

Wrap Up (10-60 mins)

Presentation (Optional):

View on Code Studio

Objectives
Students will be able to:

Identify reliable sources of information

when doing research

Synthesize information taken from multiple

online sources

Create an artifact (video, image, slide,

poster, etc.) to communicate information

about a computing topic.

Preparation

Prepare printed / digital copies of the

Rapid Research - Format Showdown -

Activity Guide and Rapid Research -

Format Showdown - One-pager Template

to share with students

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Students

Rapid Research - Format Showdown -

Activity Guide

Rapid Research - Format Showdown - One-

pager Template

Make a Copy

Make a Copy

https://curriculum.code.org/csp-18/unit2/
https://studio.code.org/s/csp2-2018/stage/6/puzzle/1/
https://docs.google.com/document/d/1wuET9SjdOIAnceHl5JeURTencOnip9ihsQPPiTI-BUU/edit?usp=sharing
https://docs.google.com/document/d/1MfFWSYpk7SfdKwZcVx5Lp6GZu9Oj6vO2jKaqB5gZjGc/edit?usp=sharing
https://docs.google.com/document/d/1wuET9SjdOIAnceHl5JeURTencOnip9ihsQPPiTI-BUU/edit?usp=sharing
https://docs.google.com/document/d/1MfFWSYpk7SfdKwZcVx5Lp6GZu9Oj6vO2jKaqB5gZjGc/edit?usp=sharing

 Discussion Goal

Goal: There's no expectation that students come up

with every reason listed. The goal is to get students in

the mindset of comparing formats. This discussion

should also highlight that there's lots of different ways

to consider one format better than the other. This is

also why there's so many different formats!

 Teaching Tip

Differences from the actual Explore PT: The actual

Explore Performance Task will be completed over 8

class hours. The fact that this schedule is significantly

shorter reflects several differences in this Practice PT.

Students are not choosing a computing innovation

by the College Board's definition (file formats and

protocols do not process data, include program

code, etc.)

Students are not completing most of the prompts of

the Explore PT

Research in this project is presumed to be less

detailed

Teaching Guide

Warm Up (5 mins)

Prompt: Imagine I was comparing two different file formats for representing images. All I tell you that one of them

is "better" than the other. Based on everything that you've learned in this unit, what might "better" mean? Try to

come up with at least three ideas and incorporate vocabulary from the unit.



Discuss: Have students quietly write their responses,

then share with a neighbor, then discuss with the

class. Some potential responses might include:

Better compression ratio or better quality image

even when compressed

Can hold larger or more complex types of

information

Different kinds of metadata

Includes features not found in other formats

Used by more people

Open, no licensing fees

Newer and optimized for modern technology

 Remarks

Today we're going to dig a little deeper into this question by doing a Rapid Research project. Not only are you

going to research your own file format, you're going to make the case why yours is the best!

Activity (90 mins)

Rapid Research - Format Showdown

Distribute: Rapid Research - Format Showdown - Activity Guide and Rapid Research - Format Showdown - One-

pager Template and review as a class.

Below is a suggested schedule for completing the

project.

Day 1 - Choose Format, Research,
Begin One-Pager

Review Activity Guide and Rubric:

At the beginning of the project, emphasize the

importance of reviewing the one-pager template

and rubric. Students may assume that more is

required of them than is actually the case.

Choosing Your Format: It is recommended that you

place a time limit on this process (e.g. 10 minutes).

You may even consider simply assigning formats

yourself. They are all essentially equivalent in terms

of difficulty. There's minimal difference in terms of

"quality" so long as students take a creative angle towards the presentation. All these formats have been used by

someone at some point, so their job is to find out why and creatively play up that angle.



https://docs.google.com/document/d/1wuET9SjdOIAnceHl5JeURTencOnip9ihsQPPiTI-BUU/edit?usp=sharing
https://docs.google.com/document/d/1MfFWSYpk7SfdKwZcVx5Lp6GZu9Oj6vO2jKaqB5gZjGc/edit?usp=sharing

 Teaching Tip

Reinforce Research Skills from the Previous Lesson:
As students saw in the previous lesson, performing

research on computing topics is a skill unto itself.

Reinforce skills reviewed in the previous lesson as

students move to this part of the activity.

 Teaching Tip

Timing Consideration: Having opportuities to share

work promotes a communal classroom atmosphere but

be thoughtful about time. If you feel you are not

pressed for time using a full class period for

presentations may be a great way to end the unit, but

otherwise you may be looking for a quicker way to

share highlights from this project.

Conduct Your Research: This document is intended

to serve primarily as a guide to students for

identifying online sources of information. The skill

students need to develop is identifying useful

resources on their own and then synthesizing this

information. Being presented with a structured way

of doing this means students will have a model for

how to complete their research when completing the

actual Explore PT.

The "Key Information to Find" highlights specific terminology from the Explore PT that students will benefit from

having seen earlier in the course.

Begin One-Pager: Have students begin working on filling in the details of their one-pager as they research.

Day 2 - Complete One-pager and Computational Artifact

Complete One-Pager: Students should continue filling in their one-pagers. Remind students to record their

sources of information as they go.

Computational Artifact: Decide if you will encourage students to all create separate kinds of computational

artifacts or if they will do them in a unified way. You might have everyone create a slide, a short video (e.g. a 30

second "campaign ad" for their format) etc. Remind students of the requirements for this artifact (noted below):

A list of other formats you’d specifically like to target in your computational artifact

Three key points you’d like to make in your artifact explaining the benefits of your format

Wrap Up (10-60 mins)



Presentation (Optional):

If time allows, students may wish to have an

opportunity to share their one-pagers and

computational artifacts with one another. Consider

other options like creating a “File Formats Hall of

Fame” by posting links to all their documents in single

shared document. Or even print them out and post

them in the room to be reviewed in a gallery walk.

Standards Alignment

Computer Science Principles

1.1 - Creative development can be an essential process for creating computational artifacts.

1.2 - Computing enables people to use creative development processes to create computational artifacts for creative expression or

to solve a problem.

2.1 - A variety of abstractions built upon binary sequences can be used to represent all digital data.

2.2 - Multiple levels of abstraction are used to write programs or create other computational artifacts

3.2 - Computing facilitates exploration and the discovery of connections in information.

3.3 - There are trade offs when representing information as digital data.

7.3 - Computing has a global affect -- both beneficial and harmful -- on people and society.

7.5 - An investigative process is aided by effective organization and selection of resources. Appropriate technologies and tools

facilitate the accessing of information and enable the ability to evaluate the credibility of sources.

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

DA - Data & Analysis

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

