
Unit 3 Lesson 1

The Need for Programming Languages

Resources

Unit 3 Lesson 1

Name(s)__ Period ______ Date ___________________

 Activity Guide - LEGO® Instructions

Challenge
Create instructions your classmates could use to reproduce a simple arrangement of LEGO® blocks. Do the following:

1. Create Your LEGO Arrangement

You will be given 5-6 LEGO blocks which you should connect into a single arrangement. Try to choose something
interesting or challenging to test your instruction-giving abilities.

2. Record Your Arrangement
Record your arrangement somehow so you can recall it later. Make a simple drawing, take a photo, etc. You’ll
want an exact record, so make sure you pay attention to color!

3. Write Instructions
In the space provided below, write a clear and precise set of instructions your classmates could follow to build this
arrangement on their own, without diagrams or pictures. That is, your instructions may only use words, so you
cannot use pictures to help you.

LEGO® is a trademark of the LEGO Group of companies, which does not sponsor, authorize or endorse this site.

Test Your Algorithm
Exchange algorithms and blocks with another group and try to follow the instructions provided to create the correct
arrangement. Afterwards, confirm whether you succeeded by using the other group’s image.

Reflection
Once you’ve had an opportunity to test one another’s instructions, respond to the following reflection questions.

● Were you always able to create the intended arrangement? Were your instructions as clear as you thought?

● Why do you think we are running into these miscommunications? Is it really the fault of your classmates or is
something else going on?

2

Unit 3 Lesson 1

Name(s)___ Period ______ Date ___________________

 Activity Guide - Building Blocks of Drawing

Challenge: Create instructions your classmates could use to reproduce a simple arrangement
of drawn blocks. Similar to the one shown at right.

Create Your Arrangement: With a pen, draw a figure of variously sized rectangles (or
squares) similar to the one shown at right.

Design Your Algorithm: As you draw think about about the fundamental operations - the
most basic set of commands - you would need in order to write out a list of instructions for
another person to draw it the same way you did. Your instructions may only use words, so you cannot use pictures to
help you.

1

Compare Your Instructions with a Neighbor’s Instructions:
With a neighbor, compare how you each drew the shape, and compare your sets of commands to see where you have
things in common.

● Where did the drawer start?
● Where did they end?
● Did they draw it the same way as you?
● Did they pick up the pen?
● How many different commands do you actually need to draw this?

Reflection: Once you’ve had an opportunity to compare instructions with a neighbor, respond to the following
reflection questions:

● How were your instructions different from your neighbor’s?

● Were your instructions as clear as you thought?

2

Unit 3 Lesson 2

The Need for Algorithms

Resources

The “Human Machine” Language

Here are the beginnings of a more formalized low-level language you can use to create programs for a “Human Machine”
to solve problems with playing cards.

To simplify things we’ll get rid of the need to pick cards
up and put them down. Instead leave cards face up and
just touch them. The 5 commands you can use are
shown to ‰the right. See the Reference Guide on the
next page for descriptions of what these commands
do.

Some of these commands might seem unusual, but we
can write programs with just these commands to control
the “human machine’s” hands to touch or pick up the
cards, look at their values, and move left or right down the row of cards.

Standard Card Setup
You should assume this standard initial setup. Here is a diagram for an 8-card setup:

● There will be some number of cards with random values, lined up in a row, face up.
● Positions are numbered starting at 0 and increasing for however many cards there are.
● The left and right hands start at positions 0 and 1 respectively.

Try out some example programs

Get to know the Human Machine Language by acting out the examples on the following page with a partner. For each of
the examples on the next page you should:

● Lay out a row of 8 cards in front of you to test out the program.
● Have one partner read the instructions in sequence starting at line 1, and the other partner act out each command

as the human machine.
● Use the code reference to answer your questions and verify you’re interpreting the code correctly.
● Give a brief description of what the program does, or its ending state.

NOTES:

● Some of the programs are very simple
● Some of the programs might not ever stop
● The point is simply to practice using the language and executing commands as a “Human Machine”

Example Program What does it do?

Note: this one has a problem, can you find it?

Note: there is a potential problem with this one too. But only in
certain circumstances. Can you find it?

Human Machine Code Reference Guide
Hands, Values and Direction
There are some short-hand abbreviations for referring to the human machine, the
cards, positions, and directions of movement.

Hands - The Human Machine has hands! You can refer to a specific hand
abbreviated LH or RH (left hand or right hand).

Values - Each hand has two values you can refer to:
1. LHPos, RHPos - The hand’s position in the list (a number)
2. LHCard, RHCard - The value of the card the hand is holding (a number)

Direction - There are two directions R and L (right and left) that hands can move
along the row of cards.

Commands

Description Examples

Shift the given hand one position to the right or left along the row of
cards.

Move a given hand to a specific position number in the row of
cards.

Jump to a specific line number in the program and continue
execution from that point.

Jump to line but ONLY IF the comparison of two numbers is true. If
the comparison is false then just proceed onto the next line of code.
● For numbers, you can use integers or any of the hand values

RHCard, LHCard, RHPos, LHPos

● For comparisons you can use eq, ne, lt, gt, (equal, not
equal, less than, greater than)

End of program. Stop doing anything, stop executing lines of code.

This should be the last line of code in the
program, or on a line that is jumped to
when you want the program to stop.

Challenge: Find Min
Using only the Human Machine Language design a program to find the card with the smallest value in the list of cards.

Goal: When the program stops, the left hand should be touching the card with the smallest value.

Hint: How do you know you’re at one end of the list or the other?
Use the hand position values to check whether the position is 0 or the largest
position in the list - you can assume that you know how big the list is ahead of time.
For example, if the last position is 7, then the comparison: IF RHPos eq 7 would tell you that the right hand was as the
end of the list.

Write your program in the space provided below

1

2

3

4

5

6

7

8

9

10

Command Cut Outs
Print out this sheet and cut out each command to use as lines of code in the template provided on the previous page.
Alternatively, you can just write the commands by hand into the template.

Unit 3 Lesson 2

Name(s)___ Period ______ Date ___________________

 Activity - Minimum Card Algorithm

“Human Machine” Algorithms - Find Min
We often get started thinking about algorithms by trying to rigorously act them out ourselves as a sort of “Human
Machine”. When acting as a machine, we can keep the limitations of a computer in mind.

In this activity, you’ll design an algorithm to find the smallest item in a list. Obviously, if we were really writing
instructions for a person, we could simply tell them: “find the smallest item in a list.” But that won’t work for a computer.

We need to describe the process that a person must go through when they are finding the smallest item. What are
they really doing?

Setup and Rules:
● We’ll use playing cards face down on the table

to represent a list of items. Start with 8 random
cards face down in a row.

● Any card on the table must be face down.

● When acting as the machine, you can pick up a

card with either hand, but each hand can only
hold one card at a time.

● You can look at and compare the values of any

cards you are holding to determine which one is greater than the other.

● You can put a card back down on the table (face down), but once a card is face down on the table, you cannot

remember (or memorize) its value or position in the list.

Task:
Write an algorithm to find the card with the lowest value in the row of cards.

● Goal: The algorithm must have a clear end to it. The last instruction should be to say: “I found it!” and hold up
the card with the lowest value.

● The algorithm should be written so that it would theoretically work for any number of cards (1 or 1 million).

● Write your algorithm out on paper as a clear list of instructions in “pseudocode.” Your instructions can refer to

the values on cards, and a person’s hands, etc., but you must invent a systematic way for finding the smallest
card.

My Algorithm To Find Minimum Card

Write your algorithm below. We suggest writing it out as a numbered list of instructions to make the sequence clear.

1.

2

Unit 3 Lesson 3

Creativity in Algorithms

Resources

Human Machine Language - Part 2

We’re going to add one command to the Human Machine Language called SWAP - see description below.
All of the other commands are still available to you. So, there are 6 commands total in the language now.

Swap the positions of the cards currently being touched by the
left and right hands. After a swap the cards have changed
positions but hands return to original position.

The human machine action is: pick up the cards, exchange the
cards in hand, and return hands to original position in the list
with the other card.

Human Machine Language Reference

Try an example with Swap
Trace the program below with a partner and describe what it does.

 What does this program do?

Challenge: Min To Front

Using only the Human Machine Language design an algorithm to
find the smallest card and move it to the front of the list (position
0). All of the other cards must remain in their original relative
ordering.

END STATE: When the program stops, the smallest card should
be in position 0. The ending positions of the hands do not matter,
the ending positions of the other cards do not matter. As a
challenge: try to move the min-to-front and have all other cards be
in their original relative ordering.

Cards BEFORE:
 0 1 2 3 4 5 6 7

Cards AFTER (may not be in this order)
 0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

8

9

10

(If you need more lines, just keep going).

Optional Challenges
This list of challenges is given in no particular order. Find one that intrigues you and try it out.
For all of these challenges make the following assumptions:

● Cards start randomly valued, and randomly ordered, and are dealt from an infinitely large deck. I.e. you could
face a row of all one value, or there could be seven 2s and one 6, and so on.

● Algorithms should work in principle for any number of cards, and any values that are comparable.
● Algorithms must STOP and be in the END STATE given in the challenge description.

Challenge Description Example

Search for 2 or a 10
Search the list and stop when find EITHER a 2 OR a 10 (you could substitute
2 and 10 for any other two values if you like).

END STATE: the left hand should be touching the first 2 or 10 encountered in
the list. End state does not matter if there is no 2 or 10, but the program
should stop.

BEFORE: 4 3 7 5 10 4 7 2 2

AFTER: 4 3 7 5 10 4 7 2 2

 ^
 LH

Hi-Lo
Find the min and max values in the list and move them to the first and last
positions, respectively.

END STATE: The card with lowest value in the list is in position 0, and the
card with the highest value is in the last position (position 7 if there are 8
cards). The end state of the hands does not matter, the positions of the other
cards does not matter.

BEFORE: 4 3 7 5 10 4 7 1 2
AFTER: 1 4 3 7 5 4 7 2 10

Search for 2 and a 10
Search the list and stop once you have found BOTH a 2 AND a 10.

END STATE: the left hand should be touching a 2 and the right hand should
be touching a 10. End state does not matter if there is not both 2 and a 10.

BEFORE: 4 3 7 5 10 4 7 2 2

AFTER: 4 3 7 5 10 4 7 2 2

 ^ ^
 RH LH

Sort
Get the cards into sorted order from least to greatest.

END STATE: end state of the hands does not matter, but cards should be in
ascending order, and the program should stop.

BEFORE: 4 3 7 5 10 4 7 2 2

AFTER: 2 2 3 4 4 5 7 7 10

Partition
Call the last card in the list the pivot value. Arrange the list so that the all of
the cards less than the pivot value are to the left of it and all the cards greater
than the pivot are to the right. (Cards equal to the pivot can go to the left or
right of it, your choice).

END STATE: The pivot value is in the middle of the list somewhere with all
values less than it to the left, and all values greater than it to the right. The
ordering of the cards to the left and right do matter. The end state of the
hands does not matter.

BEFORE: 8 7 4 2 3 7 5 1 6
AFTER: 4 2 3 5 1 6 8 7 7

BEFORE: 5 4 3 5 4 3 5 4 1
AFTER: 1 5 4 3 5 4 3 5 4

BEFORE: 5 4 3 5 4 3 5 4 7
AFTER: 5 4 3 5 4 3 5 4 7

Count
Count the number of 2s in the list and set the right hand so that its position
number is equal to the number of 2s in the list.

END STATE: the position number of the right hand is equal to the number of
2s in the list. If the count is higher than the possible position numbers (i.e.

BEFORE: 4 2 7 5 10 4 7 2 2
AFTER: 4 2 7 5 10 4 7 2 2

 RH

BEFORE: 4 3 7 5 10 4 7 1 1

AFTER: 4 3 7 5 10 4 7 1 1

every value is a 2) then set the right hand to the position past the end of the
list. I.e. if there are 8 positions (0-7) the right hand should end in position 8.

 RH

BEFORE: 2 2 2 2 2 2 2 2 2

AFTER: 2 2 2 2 2 2 2 2 2

 RH

Command Cut Outs

Print out this sheet and cut out each command to use as lines of code in the template provided on the previous page.

Unit 3 Lesson 4

Using Simple Commands

Resources

Unit 3 Lesson 5

Creating Functions

Resources

Unit 3 Lesson 6

Functions and Top-Down Design

Resources

Unit 3 Lesson 6

Name(s)__ Period ______ Date ___________________

 Worksheet - Top-Down Design
sg

Functions and Managing Complexity

In the previous lesson, we saw how we could use functions to manage the complexity of
a programming task. We identified repeated patterns in the diamond that could be
programmed as individual functions and then recombined these building blocks to make the
full figure. In that example, the problem was broken down for you into layers of functions
(and abstraction), but going forward you’ll be designing these layers of functions yourself.
The question is, “How?”

Top-Down Problem Solving

One method for approaching programming problems is called “Top-Down Design” or “Stepwise Refinement”. This
strategy is an informal way of repeatedly dividing a system into simpler subsystems. As these pieces of the original
problem get smaller and smaller, eventually you will arrive at pieces that you can program solutions to in a
straightforward manner. These pieces of code can then be recombined to solve your original, complex problem. As a
result you can eventually solve a large problem, but along the way you only ever had to address smaller ones. Another
benefit of this strategy is that it can help you choose names for the different functions you’ll design. Here’s an example
of how we used this strategy to develop our solution to the diamond problem.

Top-Down Design Strategy Talking through the problem... Function Name

Look at the big picture... “Well, I need to draw a diamond…” drawDiamond()

Identify a sub-task... “...the diamond has 4 sides I need to
draw…”

drawSide()

Break down that sub-task into smaller
sub-task(s)...

“...and each side is really 3 zig-zag
steps…”

drawStep()

Keep going until you’re down to the
commands you already have access to.

“...each step is just
forward-left-forward-right…”

Stop; this is simple enough to
begin programming.

Writing the Code

Once you’ve identified the layers of functions you want to design, you begin by writing and testing the bottom layer first
and work your way up. Higher layers of functions depend on lower layers working perfectly, since they use them
without needing to know the exact details of how they are programmed. The benefit of having these layers of
abstraction is that it lets you approach increasingly complex problems in an organized way. This typically makes
reasoning about your code much easier, and your code will read almost like you are describing your solution to the
problem in plain English.

Personal Expression in Programming

The solution you were presented to the diamond problem is only one of many possible solutions. In fact, when you
originally saw that figure, you may have seen a postage stamp or two pyramids stacked on one another. There are
always innumerable ways to break the problem into subproblems, name the associated functions, and program their
behavior. How you decide to write a program is a reflection of the way you think and approach problems and no
two people will always do it exactly identically. Programming is a form of personal expression as unique to you as any
other way you might express yourself.

Practice with Top-Down Design

Let’s practice using Top-Down Design by breaking down a simple problem.

● With a partner look at the figure that you need to draw.
● Talk through the problem starting from the big picture and identifying sub-tasks.
● Decide the names of the functions you would write to solve this problem.
● Use the space provided to do scratch work.
● Iterate on your ideas; as you discuss the problem you might change your mind about the approach, or come up

with better, more descriptive, function names.

The problem: Write a program for a
turtle to draw this figure

Functions you would write

Compare with Another Group
Trade your solution with another group. Did you break down the problem in the same way? Do your functions have the
same names?

2

Unit 3 Lesson 7

APIs and Using Functions with Parameters

Resources

Unit 3 Lesson 8

Creating Functions with Parameters

Resources

Unit 3 Lesson 9

Looping and Random Numbers

Resources

Unit 3 Lesson 10

Practice PT - Design a Digital Scene

Resources

Name(s)___________________________________ Period _______ Date _____________________ Unit 3 Lesson 10

Design a Digital Scene Project and Programming Rubric

This rubric does not mimic the Create Performance Task. It covers key practices and programming concepts taught in Unit 3.

Concept Limited / No Evidence (0) Inconsistent Evidence (1) Strong Evidence (2) Score

Comments The program includes no / extremely
limited commenting.

The program includes comments but not in
all sections. Comments may not effectively
clarify the purpose or functionality of the
program.

Comments are used consistently.
Comments help clarify the purpose or
functionality of the program.

Function and
Parameter
Names

Function and parameter names do not
clearly indicate their purpose. Consistent
naming conventions are not used.

Function and parameter names sometimes
indicate their purpose. Consistent naming
conventions may be used.

Function and parameter names indicate
their purpose. Consistent naming
conventions are used.

Functions
and
Abstraction
(Top Down
Design)

The program makes limited use of
functions. The program does not make use
of layers of functions.

The program uses functions but the
program may not feature high level and low
level functions. There may be missed
opportunities to simplify program
expression through the use of functions.

Top Down Design clearly used to divide
the program into layers of functions. Lower
level functions have been further divided
into layers when necessary.

Functions
with
Parameters

The program does not feature a function
with a parameter or the parameters are not
used in the function.

A function with a parameter is present, but
the parameter is not used in a meaningful
way - OR - the function is not called with
different values supplied to the parameter
(called with the same values every time)

A function with a parameter is present. The
parameter controls a meaningful
component of the function’s behavior. The
function is called with different values given
to the parameter.

Loops The program does not use loops. The program uses loops inconsistently.
There are sections of repeated code that
should be placed within a loop.

Loops are used consistently when there is
a need to repeatedly run the same block of
code.

Collaboration Group planning document may be
incomplete. In-class communication was
limited. Final project may not include code
from each member of the team. Comments
may not be used to indicate who wrote
different sections of the final program.

There is some evidence of effective
collaboration. For example the group
planning document is complete but in-class
communication was weak, leading to
program components that do not mesh
well.

Group planning guide, classroom
participation, and final program code reflect
consistent effective collaboration. All team
members are assigned significant portions
of program. Team members communicated
effectively during in-class programming
time. Final program includes comments
reflecting who completed which sections of
the program.

1

Unit 3 Lesson 10

Name(s)___________________________________ Period _______ Date _____________________

Design a Digital Scene - AP Style Rubric

Tips and Comments:
● This is a modified version of the 2018 Create Performance Task Scoring Guidelines, which has 8 rows.
● For each row you either are awarded the point or not. There is no partial credit.
● Row 1 was modified to remove references to the video.
● Rows 4, 5, and 6 are excluded because they deal with algorithms.
● All other rows are identical to the scoring guidelines with slightly different formatting.

Row and Task Decision Rules Score and Notes

Row 1
Response 2A

The response identifies the purpose of the
program

Response earns the point if it explains the function of
the program instead of identifying the purpose.

Response earns the point if the illustrated feature runs,
even if it does not function as intended.

Row 2
Response 2B

Describes or outlines steps used in the
incremental and iterative development
process to create the entire program.

Do NOT award a point if any one of the following is
true:

● the response does not indicate iterative development;
● refinement and revision are not connected to

feedback, testing, or reflection; or
● the response only describes the development at two

specific points in time.

Row 3
Response 2B

Specifically identifies at least two program
development difficulties or opportunities.

AND

Describes how the two identified difficulties
or opportunities are resolved or
incorporated.

Response earns the point if it identifies two
opportunities, or two difficulties, or one opportunity and
one difficulty AND describes how each is resolved or
incorporated.

Do NOT award a point if any one of the following is
true:

● only one distinct difficulty or opportunity in the

process is identified and described; or
● the response does not describe how the difficulties or

1

https://apcentral.collegeboard.org/pdf/2018-create-performance-tasks-sg.pdf

opportunities were resolved or incorporated.

Row and Task Decision Rules Score and Notes

Row 4 Omitted for this Practice Performance Task

Row 5 Omitted for this Practice Performance Task

Row 6 Omitted for this Practice Performance Task

Row 7
Response 2D

Selected code segment is a
student-developed abstraction.

Responses that use existing abstractions to create a
new abstraction, such as creating a list to represent a
collection (e.g., a classroom, an inventory), would earn
this point.

Do NOT award a point if any one of the following is
true:

● the response is an existing abstraction such as

variables, existing control structures, event handlers,
APIs;

● the code segment consisting of the abstraction is not
included in the written responses section or is not
explicitly identified in the program code section; or

● the abstraction is not explicitly identified (i.e., the
entire program is selected as an abstraction, without
explicitly identifying the code segment containing the
abstraction).

Row 8
Response 2D

Explains how the selected abstraction
manages the complexity of the program.

Responses should not be penalized for explanations of
abstractions that are not developed by the student.

Do NOT award a point if any one of the following is
true:

● the explanation does not apply to the selected

abstraction; or
● the abstraction is not explicitly identified (i.e., the

entire program is selected as an abstraction, without
explicitly identifying the code segment containing the
abstraction).

2

Unit 3 Lesson 10

Name(s)___________________________________ Period _______ Date _____________________

 Practice PT - Design a Digital Scene

Background
In this Practice Performance Task you will use many of the concepts and skills that you
have learned through this unit. Here’s a quick summary.

Abstractions simplify the representation of something more complex. They allow
you to hide details to help you manage complexity, focus on relevant concepts, and
reason about problems at a higher level.

Functions (also called “procedures”) are an example of an abstraction in
programming. They are named blocks of code. Grouping and naming many simple
commands allows programmers to reason about their program in chunks, rather
than having to think about individual commands.

Top-Down Design is a programming technique that breaks down a large
programming task into chunks. Each chunk becomes a function in your program. If
a chunk is still too large to easily program then it is divided into even smaller chunks
which are given additional functions of their own. Programs written in this way will
have layers of functions with high level functions calling lower level ones.

Collaboration in programming is much easier when using Top Down Design. Once
a task is divided into many chunks, they can then be assigned to individual
programmers who are responsible for writing the functions (or layers of functions)
that solve that piece. Their code can later be combined to solve the original
problem.

Project Description

Description: Work with a group to design and program a digital scene. You will use Top Down Design to
divide your scene into logical chunks. Then each member of your group will write the code to complete a
portion of the scene. Finally your group will combine your code into a single program that draws the scene.

AP Create Performance Task: This project is designed to closely match the Create Performance Task. The
submission guidelines provide more details on what elements are taken from the Create PT.

Programming Concepts: Your program code will need to use many of the programming concepts you
learned in this unit. More details can be found in the rubric but you should expect to use layers of functions,
loops, parameters, and commenting. The “Under the Sea” project is a good example.

You will submit individually

● PDF of program code with a rectangle around an abstraction that you developed.
● PDF of written responses describing the purpose of you program, your development process, and the

abstraction that you developed

You will submit as a group

● Group Planning Guide
● Link to your Digital Scene project. Only one group member needs to submit this project

1

 Practice PT Submission Guide - Design a Digital Scene

Reading these Guidelines
The language in this document is taken in large part from the Create Performance Task Description (pg 113) and
2018 Create Scoring Guidelines. It is highly recommended that you read those documents.

Written Responses Submission Guidelines
Selected portions for this Practice Performance Task

AP Performance Task - Create Tips and Comments

2. Written Responses

Submit one PDF file in which you respond directly
to each prompt. Clearly label your responses 2a,
2b, 2d in order. Your response to all prompts
combined must not exceed 550 words, exclusive of
the Program Code.

Program Purpose and Development

2a. Provide a written response that:

● identifies the programming language
● identifies the purpose of your program
● and explains what the user should expect to

see when they run the program.
(Must not exceed 150 words)

2b. Describe the incremental and iterative
development process of your program, focusing
on two distinct points in that process. Describe the
difficulties and/or opportunities you encountered
and how they were resolved or incorporated. In
your description clearly indicate whether the
development described was collaborative or
independent. At least one of these points must
refer to independent program development.
(Must not exceed 200 words)

2c. (omitted for this project)

2d. Capture and paste a program code segment
that contains an abstraction you developed
individually on your own (marked with a
rectangle). This abstraction must integrate
mathematical and logical concepts. Explain how
your abstraction helped manage the complexity of
your program.
(Must not exceed 200 words)

These tips and comments are not part of the official
Create PT. They are intended to help you better
understand the prompts. Many tips are taken directly
from the Scoring Guidelines.

2a

● JavaScript is the programming language used in
App Lab.

● The purpose can simply be to make a randomly
generated drawing.

● “Explains what user should expect..” is added to
this version of the activity since you will not submit
a video of your program.

2b

● Keep a few notes as you program. It will make it
easier to identify opportunities / difficulties later.

● Make sure you describe the entire process, not
just the two distinct points

● “Incremental and iterative” means that you
continuously improved your program based on
feedback, testing, or reflection. For credit you
need to refer to this feedback, testing, or reflection
in your response.

● For the two distinct opportunities / difficulties make
sure you include how they were resolved

2d

● Make sure you copy and paste the code of your
abstraction into your written responses, even
though you also are drawing a rectangle around it
in your code. Switching to text mode may help.

● The “how” is important. Don’t just explain what
your abstraction is. Explain how it makes your
program easier to read or reason about.

● Sentence starters: “An abstraction in my program
that I developed is the [blank]. It manages
complexity in my program by [blank]”

2

https://apcentral.collegeboard.org/pdf/ap-computer-science-principles-course-and-exam-description.pdf
https://apcentral.collegeboard.org/pdf/2018-create-performance-tasks-sg.pdf

PDF of Program Code Submission Guidelines
Selected portions for this Practice PT

AP Performance Task - Create Tips and Comments

3. Program Code

Capture and paste your entire program code into
a document.
● Mark with a rectangle the segment of

program code that represents an abstraction
you developed.

● Include comments or acknowledgments for
program code that has been written by
someone else.

These tips and comments are not part of the official
Create PT. They are intended to help you better
understand the prompts.

● “Include comments….for program code” means
inserting comments (by writing // before a line of
code) into the code itself before printing.

● On the Create Performance Task you are allowed
to collaborate with a partner but must carefully
indicate whose work is whose with comments.

● Make sure the abstraction you identify is program
code you wrote.

● In almost all cases the abstraction you choose will
be a function you wrote. You’ll want to draw a box
around the place where you wrote that function
code. Suggest: A good one to choose would be a
function that you wrote that calls other functions
you wrote, because it demonstrates abstraction
and managing complexity.

● To make a PDF and draw a rectangle, we suggest
using the “Code Print” program here:
https://bakerfranke.github.io/codePrint/

Group Planning Guide Submission Guidelines
Your collaborative programming group will submit a single copy of your group planning guide. Make sure that all
group members’ names are listed on the document.

App Lab Project Submission Guidelines
When you have completed your digital scene, submit it by clicking the Submit Project button on the proper App
Lab project in Code Studio (the project associated with this lesson). Submitting indicates that your project is ready
to be reviewed.

3

https://bakerfranke.github.io/codePrint/

Group Planning Guide

Choosing a topic: Before you begin make sure you’ve reviewed the submission guidelines and rubric. Then pick
a scene that has the following features:

● Have several components that allow it to be broken into logical chunks (functions)
● Have repeated elements that will allow you to use loops and random values
● Use a function with a parameter (same figure but different size / color / dimensions, etc.)

Scene Description What is the topic? What are the

different pieces of the scene?

Scene Sketch Make a quick sketch of the scene.
Write notes to clarify points. Use the back of this sheet
if you need.

Identify Top-Level Functions and Assign to Group Members
Use Top Down Design to identify the major components of your scene. Give each component a top-level function.
In the Under the Sea project these were drawAllFish(), drawAllSeagrass(), drawAllBubbles(), etc.
Then assign each function to a member of the team to program individually. They may need to further divide their
component into smaller functions later.

Scene Component Function Name Group Member

(use back side of page if you need more)

4

Unit 3 Lesson 10

Name(s)___ Period ________ Date ______________________

 Practice PT Planning Guide - Design a Digital Scene

Background
The beginning of our programming unit has focused on how to use Top-Down
Design as a strategy for thinking about how to design and write programs.
Functions, parameters, and loops have allowed us to break down increasingly
complex drawings into logical pieces. Most recently, we combined all three of
these programming constructs to design an “Under the Sea” digital scene.

Abstraction: Everyone uses abstraction on a daily basis to effectively manage
complexity. In computer science, abstraction is a central problem-solving
technique. It is a process, a strategy, and the result of reducing detail to focus on
concepts relevant to understanding and solving problems. Top-Down Design is a
technique for discovering the levels of abstraction in your problem so that you can
effectively write code to solve it.

Collaboration: Top-Down Design also helps by breaking up a problem in a way
that lets multiple people collaborate and work on it at the same time. Often
programming projects are divided among many programmers. Each person is
responsible for programming a portion of the final product. In order to do this,
everyone on the team must understand the overall plan at a high level, but each
person only needs to worry about the nitty gritty details of the portion they are
responsible for.

Project: Collaborate to Design a Digital Scene
For this project, you will be working with a group to design your own digital
scene. Your group can choose any kind of digital scene to create. You have
already seen how the “Under the Sea” scene was created, but here are some
guidelines to consider when picking your own:

Your scene should...

● Be of interest to every member of the group
● Have several components that allow it to be broken into logical chunks
● Have repeated elements that will allow you to use loops and potentially random values
● Have elements that would benefit from creating a function with a parameter (same figure but different size /

color / dimensions, etc.)

Each member of your group will write the code to complete a portion or portions of the scene. Then bring all the
code together to compose the final image! You will submit your own project and written reflection, but it must use
code written by your teammates.

General Process
● Get together with your group (recommended groups of 3 or 4 people)
● Do Group Project Planning (see below)

○ Brainstorm ideas, break the problem down, delegate tasks
● Do your individual programming and share with teammates

○ Program your portion of the project
○ Share your code with teammates, and incorporate others’ code into your project

● Complete your digital scene, write responses to reflection questions, and submit
○ See: Practice PT Project Overview and Rubric - Design a Digital Scene
○ Submission includes final program and completed reflections questions

https://docs.google.com/document/d/19pgdzB9bs94iti-fC3iIMDUmEWSpY5v17wQt14AUzHg/edit

Group Project Planning
Below we have laid out a process for your group to brainstorm, plan, and eventually create your Digital Scene project.
Go through each step together. The outcome of the process will be a project plan (see next two pages) that indicates
what you’re trying to create and who is doing what. Get started and have fun.

Understand the
problem &
timeline

 Identify the problem to solve. It may sound obvious, but it’s hard to solve a
problem if you don’t deeply understand it.

● Review the steps of the process for completing this project (see above
and below)

● Review Practice PT Project Overview and Rubric - Design a Digital
Scene make sure you understand what is required of you and your
teammates.

● Make sure you also understand the time constraints. There’s always
too much to do and too little time! This will help you prioritize work later.

Brainstorm
 What kind of digital scene will you create? Make it rain with ideas! Whether you’re

in a group or on your own, take the time to generate lots of different ideas for your
digital scene

● Put a time limit on how long you will brainstorm
● No criticism of ideas, only building up on ideas

Once you have decided on what your scene will be, complete the Project
Description below. It must contain a brief description and at least a rough sketch
of what you are trying to create.

Break it down
 Use Top-Down Design to identify the major components you will wish to

include in your image. At this point you only need to break down the image at a
high level.

● Decide as a group what high-level functions you will need.
● For example, in the Under the Sea project, the high-level functions for

each component were things like: drawAllFish(),
drawAllSeagrass(), drawAllBubbles(), etc. These high-level
functions are all you need to think about at this point.

Assign tasks &
prioritize

 Each of the high-level functions you identified will be programmed by one
member of the group.

● Assign the high-level functions you identified evenly among your group.
● If people have more than one thing to do, you should prioritize: what

can be cut if you run out of time or if there is an unanticipated bump in the
road?

● Once you have assigned functions, each group member can begin
working individually to program the components they have been
assigned.

Complete the Project Component Table below; this is where you will declare
what functions you will write and who will do what.

2

https://docs.google.com/document/d/19pgdzB9bs94iti-fC3iIMDUmEWSpY5v17wQt14AUzHg/edit
https://docs.google.com/document/d/19pgdzB9bs94iti-fC3iIMDUmEWSpY5v17wQt14AUzHg/edit

Name(s)___ Period _______ Date ______________

Project Description
Once you have chosen your topic, write a brief description of it below and include either a sketch or digital image that
shows what you are aiming to draw. It’s fine if your image includes more components or detail than you will be
including in your digital scene. You can also have more than one representative image.

Scene Title:

Group Members:

Short Description:

__

__

__

Sketch / Digital Image:

3

Name(s)___ Period _______ Date ______________

Project Component Table
With your group, identify the major components you would like to include in your digital scene. For each component,
provide a descriptive and meaningful name for the function that will draw that component, provide a short description of
what the function does, and assign the function to a member of the team.
You do not have to fill this table, but you can, and you can add more rows if necessary. This is just a template.

Component Function Name Description of Function Behavior Group Member

4

Unit 3 Lesson 10

Name(s)___ Period _______ Date _____________________

 Practice PT Overview and Rubric - Design a Digital Scene

Overview
You will submit this project and write responses to the reflection questions in the style of the AP® Create Performance
Task. The document below has been constructed to mimic the AP Create Performance Task. Some but not all of the
language is pulled directly from the AP document. Some of the prompts have been modified slightly or simply omitted
for clarity and to better fit the Design a Digital Scene project.

Programming Requirements

Process
The process of creating your program includes individual and collaborative work. Individual work means some portions
of the design, development, and implementation of your program must be completed independently. Collaboration can
take different forms and can occur at different times in the program development process.

You will be required to respond to prompts about your collaboration, as well as to identify the portions of your
program that were created independently. The following are examples of different forms of collaboration:

A. Collaboration can take the form of brainstorming and sharing ideas before the process of writing code begins.
Partners can then choose to work together or independently at selected times during the programming
process.

B. Collaboration can take the form of working together to develop an idea, beginning the programming process
together, and then working independently to add different features to the collaboratively-developed portion of
the program.

C. Collaboration can involve Pair Programming, in which one partner “drives” (enters code) while the other
“navigates” (recommends and reviews code entered by driver), with the partners changing roles after
designated time intervals.

D. Collaboration can involve each partner developing pieces of the program and combining those pieces during
the development process.

E. Collaboration can blend any or all of the above techniques and may include an iterative process in which one
or more of these techniques, or other collaboration techniques, are employed several times in the program
design, development, and testing phases.

Program
Your program must demonstrate a variety of capabilities and implement several different language features that, when
combined, produce a result that cannot be easily accomplished without computing tools and techniques. You will be
required to respond to prompts about the program development process and your program code, including
questions about the abstractions you used. The program must demonstrate:

● Use of several effectively integrated programming elements from the programming language you are using

● Use and creation of abstractions to manage the complexity of your program (e.g., functions/procedures;
abstractions provided by the programming language; APIs)

AP® is a trademark registered and/or owned by the College Board, which was not involved in the production of, and does not
endorse, this curriculum.

Submission Requirements

1. Group Planning Document
As a group, you will submit a single copy of your group planning document. Make sure that all group members’
names are listed on the document.

2. Program Code
When you have completed your digital scene, submit it to your teacher by clicking the “Submit Project” button on
the proper App Lab project in Code Studio (the project associated with this lesson). Submitting indicates to the
teacher that your project is ready to be reviewed.

Your final digital scene code should:
● contain the functions you wrote and the functions you got from your teammates
● make calls to both the functions you wrote and your teammates’ functions in your program.
Note: It is OK if you had to alter your teammates’ code slightly to make it work in your program, or to improve its
functionality.

3. Individual Written Responses
After completing your project, respond to each of the following reflection questions. Your response to any one
prompt must not exceed 300 words.

a. Provide an overview of the purpose of your program and how your program code works. Describe the most

important program features, rather than providing a line-by-line summary of the program code.

b. Describe the most difficult programming problem you encountered while writing your individual code. What was
the difficulty? Explain how you resolved it.

c. Identify an abstraction used in your program and explain how it helped manage the complexity of your
program.

d. Explain in detail points in your development process where collaboration was used.
○ Describe the form of collaboration you used. Refer to Process section A-E in your description.
○ Explain how this collaboration affected your program development. Cite specific examples from the

collaboration, such as how the group worked together to arrive at solutions, or feedback that you gave
and received.

 Rubric - Design a Digital Scene

Component 1 2 3 Score

Group Planning Document

Project Design The description and/or
sketch/digital image of
the design are simplistic
and lacking in details. Not
enough information is
given to realistically build
a program from.

The description and/or
sketch/digital image are
limited in details. While it
might be possible to
program from the design,
there are too many details
missing for the
programming task to be
easy.

The description and/or
sketch/digital image are
rich in details. A
programmer would have
few questions and find it
easy to work from this
design.

Top-Down
Design

The image has not been
broken into logical
components, or most
components have not
been assigned a
high-level function with a
descriptive name.

Most aspects of the image
have been broken into
components; however, the
components are not distinct
or logical and do not
represent top-down design,
or the functions are poorly
named.

The image has been
broken into logical
components that represent
top-down design; each
component has been
assigned a high-level
function with a descriptive
name.

Task
Assignments

Tasks have not been
evenly divided among
team members and/or
tasks have not been
prioritized.

Tasks have been divided
among members but the
assignments and
prioritizations do not reflect
a realistic estimate of the
time constraints or
anticipate problems that
might arise.

Tasks have been prioritized
and evenly divided among
members with
considerations made for
timing or problems that
might arise.

Program Code

Functions and
Abstraction

The program does not
make use of the
high-level functions
agreed upon by the team.

The program makes limited
or inconsistent use of levels
of abstraction and the
functions created by the
team members.

Appropriate levels of
abstraction are expressed
in code using the high-level
functions created by the
team. (Modifications of
functions are allowed.)

Functions with
Parameters

The program does not
feature a function with a
parameter.

Program contains a function
with a parameter that is
used in a limited or trivial
way.

Program contains at least
one function with a
parameter to control
behavior in a meaningful
way.

Loops The program does not
feature a loop.

A loop is used in a limited or
trivial way to repeatedly
execute portions of code.

A loop is used in a
meaningful way to
repeatedly execute portions
of code.

Functionality There is a weak
connection between the
output of your function(s)
and the function
descriptions agreed upon
by the group.

There is a moderate
connection between the
output of your function(s)
and the function
descriptions agreed upon
by the group.

There is a clear and
obvious connection
between the output of your
function(s) and the function
descriptions agreed upon
by the group.

Final Scene
Incorporates
Work from
Teammates

Final digital scene does
not make use of code
written by other
teammates.

Final digital scene uses
code written by some of the
other teammates.

Final digital scene uses
code written by each of the
teammates. (Note:
Students may make
alterations to their
teammates’ code as
needed to function correctly
in the final scene.)

Individual Written Responses

a. Program
Overview

The connection between
the program and its
purpose is unclear. Or it
is unclear how the
program features connect
to the purpose.

There is a logical
connection between the
program and its purpose. Or
the purpose of the program
is weakly supported by the
features identified.

There is a compelling
connection between the
program and its
stated purpose, supported
by details of the important
features identified.

b. Difficulties
Encountered

The response generally
describes the
development of the
program without clearly
describing any specific
problems.

The response describes the
developmental steps of the
program, but it includes little
or no information about how
any problems were
addressed.

The response fully
describes the development
details that enable the
reader to understand the
the difficulties that were
encountered and how they
were resolved.

c. Abstraction The explanation of how
the selected code
illustrates abstraction is
incorrect or incomplete.

The explanation of how the
selected code illustrates
abstraction is mostly
complete but lacks a clear
explanation of how it helps
manage the complexity of
the program.

The explanation of how the
selected code illustrates
abstraction is
well-supported by details
and clearly describes how it
helps manage the
complexity of the program.

d. Collaboration The response describes a
non-collaborative
process, or an ineffective
collaborative process.
The explanation does not
describe how the process
affected the program
development.

The response cites some
effective collaboration, but it
is unclear how the
collaboration affected the
program development or
any feedback was provided
or incorporated.

The response describes
effective collaboration and
cites specific examples of
how collaboration impacted
the program development.
Examples of providing and
incorporating feedback are
included.

