

COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 10

Ch. 4 11 12 13 Ch. 5 14 15 16 17 Ch. 6 18 Ch. 7 19

Course E
Created with fourth grade students in mind, this course begins with a brief review of concepts previously taught in

courses C and D. This introduction is intended to inspire beginners and remind the experts of the wonders of

computer science. Students will practice coding with algorithms, loops, conditionals, and events before they are

introduced to functions. At the end of the course, students will have the opportunity to create a capstone project

that they can proudly share with peers and loved ones.

Journaling

The lessons in this course include journaling prompts. Journals are also useful as scratch paper for building,

debugging, and strategizing. Journals can become a fantastic resource for referencing previous answers when

struggling with more complex problems.

Think Spot Journal Student Handout

Debugging

From beginners to professionals, debugging is an essential yet often underrated practice. It is likely that your

students will find most of their "coding" time is actually spent fixing bugs! To encourage students to take ownership

of this practice, we provide this handy reference they can use while coding. Please consult the "Debugging" section

of our CS Fundamentals Curriculum Guide for more information on this, as well as other debugging facilitation

strategies for your classroom.

Debugging Guide Student Handout

Chapter 1: Ramp Up

Lesson 1: Sequencing in the Maze
Skill Building | Ramp Up

In this lesson, you will learn how to write your very own programs!

Lesson 2: Drawing with Loops
Skill Building | Ramp Up

In this lesson, loops make it easy to make even cooler images with Artist!

Lesson 3: Conditionals in Minecraft: Voyage Aquatic
Skill Building | Ramp Up

Here you will learn about conditionals in the world of Minecraft.

Lesson 4: Conditionals with the Farmer
Skill Building | Ramp Up

You will get to tell the computer what to do under certain conditions in this fun and

challenging series.

Chapter Commentary

https://docs.google.com/document/d/1IwPCkbZen2Md6MsbaOO5wYA93e8qrgrna2pozTGazjY/edit?usp=sharing
https://drive.google.com/open?id=1z2FgBWwUq6vxwWbnbiQC0EaEKxwgAqBdtTZzVi98xHA

Ramp Up

Chapter 2: Sprites

Lesson 5: Simon Says
Unplugged | Behaviors

Play a game and think about what commands are needed to get the right result.

Lesson 6: Swimming Fish with Sprite Lab
Skill Building | Sprites

Learn how to create and edit sprites.

Lesson 7: Alien Dance Party with Sprite Lab
Skill Building | Sprites

Create an interactive project that can be shared with classmates.

Chapter Commentary
Sprites

Chapter 3: Digital Citizenship

Lesson 8: Private and Personal Information
Unplugged | Online Safety

The internet is fun and exciting, but it's important to stay safe too. This lesson teaches

you the difference between information that is safe to share and information that is

private.

Lesson 9: About Me with Sprite Lab
Application | Online Safety

By creating an interactive poster with SpriteLab, students will apply their understanding

of sharing personal and private information on the web.

Lesson 10: Digital Sharing
Unplugged | Social Interactions

In this lesson, you'll learn about the challenges and benefits of ownership and

copyright.

Chapter Commentary
Digital Citizenship

Chapter 4: Nested Loops

Lesson 11: Nested Loops in Maze
Skill Building | Nested Loops

Loops inside loops inside loops. What does this mean? This lesson will teach you what

happens when you place a loop inside another loop.

Lesson 12: Fancy Shapes using Nested Loops
Skill Building | Nested Loops

More nested loops! This time, you get to make some AMAZING drawing with nested

loops.

Lesson 13: Nested Loops with Frozen
Application | Nested Loops

Anna and Elsa have excellent ice-skating skills, but need your help to create patterns in

the ice. Use nested loops to create something super COOL.

Chapter Commentary
Nested Loops

Chapter 5: Functions

Lesson 14: Songwriting
Unplugged | Functions

Even rockstars need programming skills. This lesson will teach you about functions

using lyrics from songs.

Lesson 15: Functions in Minecraft
Skill Building | Functions

Can you figure out how to use functions for the most efficient code?

Lesson 16: Functions with Harvester
Skill Building | Functions

Functions will save you lots of work as you help the farmer with her harvest!

Lesson 17: Functions with Artist
Skill Building | Functions

Make complex drawings more easily with functions!

Chapter Commentary
Functions

Chapter 6: Impacts of Computing

Lesson 18: Designing for Accessibility
Unplugged | Impacts of Computing

In this lesson, students will learn about accessibility and the value of empathy through

brainstorming and designing accessible solutions for hypothetical apps.

Chapter Commentary
Impacts of Computing

Chapter 7: End of Course Project

Lesson 19: End of Course Project
End of Course Project

Projects this big take time and plenty of planning. Find your inspiration, develop a plan,

and unleash your creativity!

Chapter Commentary
End of Course Project

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 10

Ch. 4 11 12 13 Ch. 5 14 15 16 17 Ch. 6 18 Ch. 7 19

Lesson 1: Sequencing in the Maze

Overview

In this set of puzzles, students will begin with an introduction (or

review depending on the experience of your class) of Code.org's

online workspace. There will be videos pointing out the basic

functionality of the workspace including the Run , Reset , and

Step buttons. Also discussed in these videos: dragging Blockly

blocks, deleting Blockly blocks, and connecting Blockly blocks.

Next, students will practice their sequencing and debugging skills

in the maze. Debugging is an essential element of learning to

program. Students will encounter some puzzles that have been

solved incorrectly. They will need to step through the existing

code to identify errors, including incorrect loops, missing blocks,

extra blocks, and blocks that are out of order.

Purpose

We recognize that every classroom has a spectrum of

understanding for every subject. Some students in your class

may be computer wizards, while others haven't had much

experience at all. In order to create an equal playing (and

learning) field, we have developed these ramp-up lessons. This

can be used as either an introduction or a review of how to use

Code.org and basic computer science concepts. Students in your

class might become frustrated with this lesson because of the

essence of debugging. Debugging is a concept that is very

important to computer programming. Computer scientists have

to get really good at facing the bugs in their own programs.

Debugging forces the students to recognize problems and

overcome them while building critical thinking and problem

solving skills.

Agenda
Warm Up (15 min)

Introduction

Vocabulary

Main Activity (30 min)

Online Puzzles

Wrap Up (5 - 10 min)

Journaling

Extended Learning

View on Code Studio

Objectives
Students will be able to:

Order movement commands as sequential

steps in a program.

Modify an existing program to solve errors.

Break down a long sequence of instructions

into the largest repeatable sequence.

Predict where a program will fail.

Modify an existing program to solve errors.

Reflect on the debugging process in an

age-appropriate way.

Preparation

Play through the puzzles yourself to find

any potential problem areas for your class.

(Optional) Pick a couple of puzzles to do

as a group with your class.

Make sure every student has a journal.

Review Debugging Recipe - Student

Handout with the class.

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Students

Unplugged Blocks (Courses C-F) -

Manipulatives

Debugging Recipe - Student Handout

Vocabulary

Bug - Part of a program that does not work

correctly.

Debugging - Finding and fixing problems in

an algorithm or program.

Program - An algorithm that has been

coded into something that can be run by a

machine.

Programming - The art of creating a

program.

Make a Copy

https://curriculum.code.org/csf-20/coursee/
https://studio.code.org/s/coursee-2020/stage/1/puzzle/1/
https://docs.google.com/document/d/1mvczixGJKW6449WNmmc-r3RL3_2PU0yViiQSsRcTTNY/edit?usp=sharing
https://docs.google.com/document/d/1cRPELQ28TZMJhc68-eYP1D26Uqzcyfx4RDYuThZJGLo/edit
https://docs.google.com/document/d/1mvczixGJKW6449WNmmc-r3RL3_2PU0yViiQSsRcTTNY/edit?usp=sharing

 Teacher Tip:

Show the students the right way to help classmates:

Don’t sit in the classmate’s chair

Don’t use the classmate’s keyboard

Don’t touch the classmate’s mouse

Make sure the classmate can describe the solution

to you out loud before you walk away

Teaching Guide

Warm Up (15 min)

Introduction

Ask students to think about problems they have to solve in everyday life.

How do you fix something that isn't working?

Do you follow a specific series of steps?

Some puzzles in this lesson have already been solved for you (yay!), but they don't seem to be working (boo!)

We call the problems in these programs "bugs," and it will be your job to "debug" them.

Students will either be learning a lot of new concepts or reviewing a lot of basic concepts. Based on your class's

experience, you can cover the following vocabulary. We recommend using the following words in sentences if the

definitions aren't explicitly covered.

Vocabulary

This lesson has four new and important vocabulary words:

Program - Say it with me: Pro - Gram An algorithm that has been coded into something that can be run by a

machine.

Programming - Say it with me: Pro - Gramm - ing The art of creating a program.

Bug - Say it with me: Bug An error in a program that prevents the program from running as expected.

Debugging - Say it with me: De - Bugg - ing Finding and fixing errors in programs.

Say:

Debugging is a process. First, you must recognize that there is an error in your program. You then work through the

program step by step to find the error. Try the first step, did it work? Then the second, how about now? If you make

sure that everything is working line by line, then when you get to the place that your code isn't doing what it's

supposed to, you know that you've found a bug. Once you've discovered your bug, you can work to fix (or "debug")

it!

If you think it will build excitement in the class you can introduce the character of today's puzzles, Scrat from Ice

Age. If students aren't familiar with Scrat, show some videos of the quirky squirrel running into trouble.

Main Activity (30 min)

Online Puzzles

Teachers play a vital role in computer science

education and supporting a collaborative and vibrant

classroom environment. During online activities, the

role of the teacher is primarily one of encouragement

and support. Online lessons are meant to be student-

centered, so teachers should avoid stepping in when

students get stuck. Some ideas on how to do this are:

Utilize Pair Programming - Student Video

whenever possible during the activity.

Encourage students with questions/challenges to

start by asking their partner.

Unanswered questions can be escalated to a nearby group, who might already know the solution.

Remind students to use the debugging process before you approach.

http://www.iceagemovies.com/uk/characters/scrat
https://www.youtube.com/watch?v=vgkahOzFH2Q

Have students describe the problem that they’re seeing. What is it supposed to do? What does it do? What does

that tell you?

Remind frustrated students that frustration is a step on the path to learning, and that persistence will pay off.

If a student is still stuck after all of this, ask leading questions to get the student to spot an error on their own.

Before letting the students start on the computer, remind them of the advantages of Pair Programming - Student

Video and asking their peers for help. Sit students in pairs and recommend they ask at least two peers for help

before they come to a teacher.

 Code Studio levels

As mentioned in the purpose of this lesson, make sure the students are aware that they will face frustrating

puzzles. Tell them it is okay to feel frustrated, but it is important to work through the problem and ask for help. As

the students work through the puzzles, walk around to make sure no student is feeling so stuck that they aren't

willing to continue anymore.

Wrap Up (5 - 10 min)

Journaling

Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any

knowledge they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today’s lesson about?

How did you feel during today’s lesson?

What kind of bugs did you find today?

Draw a bug you encountered in one of the puzzles today. What did you do to "debug" the program?

Extended Learning

Use these activities to enhance student learning. They can be used as outside of class activities or other

enrichment.

Planting bugs

Have students go back through previous levels, purposefully adding bugs to their solutions. They can then ask

other students to debug their work. This can also be done with paper puzzles.

Maze Intro: Programming with Blocks 1 (click tabs to see student view)

Practice 2 3 4 5 (click tabs to see student view)

Debugging with the Step Button 6 (click tabs to see student view)

Practice 7 8 9 10 (click tabs to see student view)

Challenge 11 (click tabs to see student view)

Practice 12 13 (click tabs to see student view)

https://www.youtube.com/watch?v=vgkahOzFH2Q

When other students are debugging, make sure that the criticisms are constructive. If this could be a problem for

your class, go over respectful debugging before this activity by role playing with another student.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 10

Ch. 4 11 12 13 Ch. 5 14 15 16 17 Ch. 6 18 Ch. 7 19

Lesson 2: Drawing with Loops

Overview

Watch student faces light up as they make their own gorgeous

designs using a small number of blocks and digital stickers! This

lesson builds on the understanding of loops from previous lessons

and gives students a chance to be truly creative. This activity is

fantastic for producing artifacts for portfolios or parent/teacher

conferences.

Purpose

This series highlights the power of loops with creative and

personal designs.

Offered as a project-backed sequence, this progression will allow

students to build on top of their own work and create amazing

artifacts.

Agenda
Warm Up (15 min)

Introduction

Main Activity (30 min)

Online Puzzles

Wrap Up (15 min)

Journaling

View on Code Studio

Objectives
Students will be able to:

Identify the benefits of using a loop

structure instead of manual repetition.

Differentiate between commands that need

to be repeated in loops and commands that

should be used on their own.

Preparation

Play through the puzzles to find any

potential problem areas for your class.

Make sure every student has a journal.

Vocabulary

Loop - The action of doing something over

and over again.

Repeat - To do something again.

https://curriculum.code.org/csf-20/coursee/
https://studio.code.org/s/coursee-2020/stage/2/puzzle/1/

Teaching Guide

Warm Up (15 min)

Introduction

Students should have had plenty of introduction to loops at this point. Based on what you think your class could

benefit from, we recommend:

Creating a new stack design with loops just like in "My Loopy Robotic Friends"

Previewing a puzzle from this lesson

All of these options will either review loops or the artist, which will help prepare your class for fun with the online

puzzles!

Main Activity (30 min)

Online Puzzles

 Code Studio levels

Some students may discover where to add repeat loops by writing out the program without loops then circling

sections of repetitions. If the students in your class seem like they could benefit from this, have them keep paper

and pencils beside them at their machines. Students might also enjoy drawing some of the shapes and figures on

paper before they program it online. (When drawing stamps, it can be easier to symbolize those with simple shapes

like circles and squares.)

Wrap Up (15 min)

Artist Intro with JR Hildebrande 1 (click tabs to see student view)

Practice 2 3 (click tabs to see student view)

Loops with the Artist 4 (click tabs to see student view)

Practice 5 6 (click tabs to see student view)

Challenge 7 (click tabs to see student view)

Practice 8 9 10 (click tabs to see student view)

Challenge 11 (click tabs to see student view)

Levels Extra Extra (click tabs to see student view)

https://studio.code.org/docs/spritelab/codestudio_repeat/

Journaling

Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any

knowledge they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today’s lesson about?

How did you feel during today’s lesson?

What was the coolest shape or figure you programmed today? Draw it out!

What is another shape or figure you would like to program? Can you come up with the code to create it?

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 10

Ch. 4 11 12 13 Ch. 5 14 15 16 17 Ch. 6 18 Ch. 7 19

Lesson 3: Conditionals in Minecraft: Voyage
Aquatic

Overview

This lesson was originally created for the Hour of Code, alongside

the Minecraft team. Students will get the chance to practice ideas

that they have learned up to this point, as well as getting a sneak

peek at conditionals!

Purpose

This set of puzzles will work to solidify and build on the

knowledge of loops, and introduce conditionals. By pairing these

two concepts together, students will be able to explore the

potential for creating fun and innovative programs in a new and

exciting environment.

Agenda
Warm Up (15 min)

Introduction

Main Activity (30 min)

Online Puzzles

Wrap Up (15 min)

Journaling

Extended Learning

View on Code Studio

Objectives
Students will be able to:

Define circumstances when certain parts of

a program should run and when they

shouldn't.

Determine whether a conditional is met

based on criteria.

Preparation

Play through the puzzles associated with

this lesson to find any potential problem

areas for your class.

Make sure every student has a journal.

Vocabulary

Condition - Something a program checks

to see if it is true before allowing an action.

Conditionals - Statements that only run

under certain conditions.

https://curriculum.code.org/csf-20/coursee/
https://studio.code.org/s/coursee-2020/stage/3/puzzle/1/

Teaching Guide

Warm Up (15 min)

Introduction

Gather the class together and ask two volunteers to walk straight in some direction in the classroom. If they

encounter a chair out of place, they must step over it. If they reach a wall, they must sit down.

Once all of the students are sitting down, ask how you would program a robot to respond to a wall or a chair.

Remind students that you cannot simply say "Step over chair" unless you know there is a chair, and you will not

always know there is a chair. It might be helpful to translate the task into instructions like:

while there is a path ahead

walk forward

if there is a chair, step over it

sit down

Tell students they will be using conditionals during this lesson. Give the definition of:

Condition: A statement that a program checks to see if it is true or false. If true, an action is taken. Otherwise,

the action is ignored.

Conditionals: Statements that only run under certain conditions.

Open up a discussion of when you might use a conditional in your code.

Main Activity (30 min)

Online Puzzles

 Code Studio levels

Students are in for a real treat with this lesson. It's likely most of your students have heard of Minecraft, but give a

brief introduction for those that may not know.

Minecraft is a game of cubes. You can play as Alex or Steve as you work through mazes. You'll need to apick up

items, and explore in a world made up of cubes of things.

Demonstrate one of the puzzles to the class (we recommend puzzle 11.) Once all questions have been addressed,

transition students to computers and let them start pair programming.

Wrap Up (15 min)

Journaling

Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any

knowledge they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

Draw a feeling face to show how you felt during today’s lesson.

Draw something else you could have built in this minecraft world.

Can you draw a scene where someone is using a conditional?

Practice 1 2 3 4 5 6 7 8 9 10

 11 (click tabs to see student view)

Extended Learning

More Minecraft

If you find that your class really enjoys the Minecraft environment, here are some links to other Minecraft games

they can play online. These games will also teach basic coding skills.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://code.org/minecraft
https://creativecommons.org/
https://code.org/contact

COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 10

Ch. 4 11 12 13 Ch. 5 14 15 16 17 Ch. 6 18 Ch. 7 19

Lesson 4: Conditionals with the Farmer

Overview

This lesson introduces students to while loops and if / else

statements. While loops are loops that continue to repeat

commands as long as a condition is true. While loops are used

when the programmer doesn't know the exact number of times

the commands need to be repeated, but the programmer does

know what condition needs to be true in order for the loop to

continue looping. If / Else statements offer flexibility in

programming by running entire sections of code only if something

is true, otherwise it runs something else.

Purpose

A basic understanding of conditionals is a recommended

prerequisite for Course E. We created this introduction to give a

review for the students already familiar to conditionals and allow

practice for the students that are just learning. If you find that the

understanding of conditionals varies widely in your classroom, we

recommend a strategic pairing of students when completing this

online lesson.

Agenda
Warm Up (15 min)

Introduction

Main Activity (30 min)

Online Puzzles

Wrap Up (15 min)

Journaling

Extended Learning

View on Code Studio

Objectives
Students will be able to:

Define circumstances when certain parts of

a program should run and when they

shouldn't.

Determine whether a conditional is met

based on criteria.

Preparation

Play through the puzzles to find any

potential problem areas for your class.

Make sure ever student has a journal.

Vocabulary

Condition - Something a program checks

to see if it is true before allowing an action.

Conditionals - Statements that only run

under certain conditions.

While Loop - A loop that continues to

repeat while a condition is true.

https://curriculum.code.org/csf-20/coursee/
https://studio.code.org/s/coursee-2020/stage/4/puzzle/1/

Teaching Guide

Warm Up (15 min)

Introduction

Gather the class together and ask two volunteers to walk straight in some direction in the classroom. If they

encounter a chair out of place, they must step over it. If they reach a wall, they must sit down.

Once all of the students are sitting down, ask how you would program a robot to respond to a wall or a chair.

Remind students that you cannot simply say "Step over chair" unless you know there is a chair, and you will not

always know there is a chair. It might be helpful to translate the task into instructions like:

while there is a path ahead

walk forward

if there is a chair, step over it

sit down

Tell students they will be using conditionals to solve this problem on Code.org. Give the definition of:

Condition: A statement that a program checks to see if it is true or false. If true, an action is taken. Otherwise,

the action is ignored.

Conditionals: Statements that only run under certain conditions.

Open up a discussion of when you might use a conditional in your code.

Main Activity (30 min)

Online Puzzles

 Code Studio levels

While Loops with the Farmer 1 (click tabs to see student view)

Prediction 2 (click tabs to see student view)

Practice 3 4 5 6 (click tabs to see student view)

Repeat Unit Statements 7 (click tabs to see student view)

Practice 8 9 10 (click tabs to see student view)

"If/Else" with the Bee 11 (click tabs to see student view)

Challenge 12 (click tabs to see student view)

Practice 13 (click tabs to see student view)

The patterns in these puzzles may not be obvious to every student. We recommend that you play through these

levels beforehand to best understand any problem areas for your class. Also, watching and using the techniques

from Pair Programming - Student Video may be helpful for your class.

Wrap Up (15 min)

Journaling

Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any

knowledge they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today's lesson about?

How do you feel about today's lesson?

What is a conditional? Why would you program a conditional?

Give an example of using a conditional during your day? (ex. If I am hungry, I eat some food; While I am walking

across the street, I keep an eye out for cars)

Extended Learning

While We Play

Gather the class for some fun outside or in a gym with a ball! This could be done in a circle or as a team in a court

Rules:

While the ball is in play, we must all be ready to hit it

If the ball is hit to you, you must keep it in the air

If you hit the ball once, you cannot hit it again (only one touch per person per turn, no double hitting)

If the ball goes out of bound, every student must fall to the ground dramatically. The last kid to fall has to

retrieve the ball.

At the end of the first round, ask the students if they can identify the conditionals in the game. Can they come up

with others they might want in the game?

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://www.youtube.com/watch?v=vgkahOzFH2Q
https://creativecommons.org/
https://code.org/contact

COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 10

Ch. 4 11 12 13 Ch. 5 14 15 16 17 Ch. 6 18 Ch. 7 19

Lesson 5: Simon Says

Overview

In this lesson, students will play a game intended to get them

thinking about the way commands need to be given to produce

the right result. This will help them more easily carry over to

Sprite Lab in the upcoming lessons.

Purpose

This lesson is designed to prepare students to think about one of

the core programming concepts in Sprite Lab, behaviors.

Agenda
Warm Up (10 min)

Introduction

Main Activity (20 min)

Simon Says

Extension

Wrap Up (15 min)

Reflection

View on Code Studio

Preparation

Play through the puzzles to find any

potential problem areas for your class.

Make sure every student has a journal.

https://curriculum.code.org/csf-20/coursee/
https://studio.code.org/s/coursee-2020/stage/5/puzzle/1/

 Discussion Goal

Goal: Help students think about times when they must

keep track of multiple tasks or instructions

simultaneously. The main activity will get students

performing silly actions, either in sequence or

simultaneously. This will eventually lead to

connections about a new way to write programs, but

you don't need to get the discussion there yet.

Teaching Guide

Warm Up (10 min)

Introduction

 Think-Pair-Share: Think of hobby, sport, or activity

that you know how to do well. What does it take to do

it well? Are there times when you need think about

multiple things or perform different actions at the

same time?

What parts of your body are you using? Does this

change at different points?

Are there times when you need to stop one action

before you can begin another? (For example, you

must stop dribbling the basketball before you can

shoot.)

 Remarks

Today we're going to play a game where you'll need to keep track of multiple tasks simultaneously. It's a little bit

like Simon Says.

Main Activity (20 min)

Simon Says

 Remarks

In the game Simon Says, one player takes the roll of “Simon” or the leader who gives command to other players.

Players must follow the leader’s commands if and only if they are prefaced with the phrase “Simon Says”. The

point of the game is to think quickly and to distinguish between real and fake commands. In this version of the

game, the rules are a little different.

Rules

All commands should be prefaced with either “begin” or “stop”.

When players are told to “begin” a behavior, they should continue it until told to “stop”. For example, players

should not told be told to clap once, but might be told to “begin clapping”. Their clapping should continue until they

are told to “stop clapping” even if they are given other new behaviors in between.

The leader can also call for the players to “stop everything”.

This should result in everyone just standing at rest regardless of all previous commands.

You as the teacher should take on the role of the leader. You can try make up your own sequences, but here are

some you can try. Be sure to give a little space between commands. For each of these sections, consider running

through the entire sequence without any discussion and later repeating it again after everyone has had a chance to

debrief and process any confusion.

Basic:

Begin marching in place.

Stop marching in place.

Begin clapping.

Stop clapping.

Begin marching in place.

Begin clapping.

Stop everything.

Debrief: What happened when you were told to clap but you were already marching in place? What happens if you

are told to begin two different behaviors at once?

Intermediate:

Begin waving your arms in the air.

Begin bobbing your head.

Stop waving your arms in the air.

Stop bobbing your head.

Begin shaking your knees.

Begin flapping your arms like a bird.

Stop shaking your knees.

Begin bobbing your head.

Begin marching in place.

Stop flapping your arms like a bird.

Stop everything.

Debrief:

What kinds of instructions caused people to make mistakes?

What strategies do you think are helpful for making sure you follow instructions correctly?

Why is it important to keep track of each behavior separately?

Challenging

Begin crouching.

Begin tapping your head.

Stop crouching.

Stop tapping your head.

Begin jumping up and down.

Begin tapping your head.

Stop everything.

Begin clapping.

Begin flapping your arms like a bird.

Stop everything.

Begin crouching.

Begin jumping up and down.

Stop everything.

Begin tapping your knees.

Begin tapping your head.

Stop everything.

Begin spinning to the left.

Begin spinning to the right.

Stop spinning to the left.

Stop spinning to the right.

Debrief: What happens if two behaviors seem to conflict with each other?

What should you do when told to clap your hands and flap your arms at the same time?

How can you jump up and down while crouching?

What happens if you need to tap your knees and your head at the same time?

When you were told to spin in two opposite directions what did you see people do? What would happen if you were

told to spin left and right at the exact same time?

Extension

If you want to make things even more complicated, you can consider changing the rules so that only some players

follow some commands. For example, you could try commands like “All girls begin spinning to the left”, “All boys

begin clapping your hands”, or “Everyone stop everything.”

Wrap Up (15 min)

Reflection

Journal: Think back to the activity or hobby you discussed at the beginning of class. Using "begin" and "stop"

commands write down the instructions you could give someone if you wanted them to act like they were they were

doing it. Be sure to remember when they might need to stop something before beginning something new.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 10

Ch. 4 11 12 13 Ch. 5 14 15 16 17 Ch. 6 18 Ch. 7 19

Lesson 6: Swimming Fish with Sprite Lab

Overview

In this lesson, students will learn about the two concepts at the

heart of Sprite Lab: sprites and behaviors. Sprites are characters

or objects on the screen that students can move, change, and

manipulate. Behaviors are actions that sprites will take

continuously until they are stopped.

Purpose

This lesson is designed to introduce students to the core

vocabulary of Sprite Lab, and allow them to apply concepts they

learned in other environments to this tool. By creating a fish tank,

students will begin to form an understanding of the programming

model of this tool, and explore ways they can use it to express

themselves.

Agenda
Warm Up (10 min)

Introduction

Bridging Activity

Swimming Fish Teacher Sandbox

Main Activity (20 min)

Online Puzzles

Wrap Up (15 min)

Journaling

View on Code Studio

Objectives
Students will be able to:

Define “sprite” as a character or object on

the screen that can be moved and

changed.

Create new sprites and assign them

costumes and behaviors.

Preparation

Play through the puzzles to find any

potential problem areas for your class.

Make sure every student has a journal.

Vocabulary

Behavior - An action that a sprite performs

continuously until it’s told to stop.

Sprite - A graphic on the screen with a

location, size, and appearance.

Introduced Code

set background color

make new sprite

set sprite property

https://curriculum.code.org/csf-20/coursee/
https://studio.code.org/s/coursee-2020/stage/6/puzzle/1/
https://studio.code.org/docs/spritelab/gamelab_setBackground/
https://studio.code.org/docs/spritelab/gamelab_makeNewSpriteAnon/
https://studio.code.org/docs/spritelab/gamelab_setProp/

 Content Corner

Sprite Lab works differently in some ways from the

other online tools in the course. Most importantly, all

code runs in order and immediately unless attached to

an event block. Telling a sprite to begin and start the

same behavior won't result in any observable effect

because there is no time between each action.

If students bring up time, such as making a behavior

happen for a set duration, it can be helpful to reframe

things by asking "When should the behavior stop?"

Programs like this will rely on events to make things

start and stop as desired.

Teaching Guide

Warm Up (10 min)

Introduction

Today students will learn how to work with sprites in Sprite Lab.

Display: Pull up a previous puzzle from Code.org, ideally one containing a "main character" like Scrat from Ice Age

or one of the Angry Birds.

Discuss: Let the students know that this character on the screen is a "sprite." It is a graphic that is controlled by a

program. In this lesson, students will have the opportunity to choose their own sprites to control.

Bridging Activity

This demostration and discussion can help students make the connection from the previous unplugged lesson

"Simon Says" into the new Sprite Lab environment.

Swimming Fish Teacher Sandbox

 Using a projector, show the sandbox level to your

students. The goal is to make connections to the

previous lesson and show them some of the unique

ways that Sprite Lab works. Model writing a few

programs and ask students to share their

observations.

What blocks would we need to connect to make the

tumbleweed spin?

What would happen if we told the sprite to begin

two behaviors at once?

Will the sprite ever stop these behaviors on its

own?

If we want the sprite to stop a behavior when we

click it, how might we do that?

Before heading into the Main Activity, introduce or review today's lesson vocabulary.

Main Activity (20 min)

Online Puzzles

Goal: Today, students will be programming their own Fish Tank. They’ll begin by learning how to put some sprites on

the screen, then they will make them move. Finally, they’ll customize their fish tank to add whatever creatures and

objects they want.

 Transition: Move students to their machines. Encourage students to follow the instructions for each puzzle. Help

them realize that this is a creative activity, intended to help them learn Sprite Lab. It is not an assessment activity

of any sort.

https://studio.code.org/levels/18623

 Teaching Tip

Encourage students with questions/challenges to start

by asking their partner. Unanswered questions can be

escalated to a nearby group, who might already know

the solution. Have students describe the problem that

they’re seeing:

What is it supposed to do?

What does it do?

What does that tell you?

 Code Studio levels

Wrap Up (15 min)

Journaling

Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any

knowledge they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today's lesson about?

How do you feel about today's lesson?

How did it feel to make a scene that was more creative?

Was it difficult to finish a lesson where there was no clear "right" and "wrong"?

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

Introducing Sprite Lab 1 (click tabs to see student view)

Prediction 2 (click tabs to see student view)

Mini-Project: Swimming Fish 3 4 5 (click tabs to see student view)

How to Make a Sprite 6 (click tabs to see student view)

Mini-Project: Swimming Fish (continued) 7 8

(click tabs to see student view)

Free Play 9 (click tabs to see student view)

https://creativecommons.org/

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://code.org/contact

COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 10

Ch. 4 11 12 13 Ch. 5 14 15 16 17 Ch. 6 18 Ch. 7 19

Lesson 7: Alien Dance Party with Sprite Lab

Overview

This lesson features Sprite Lab, a platform where students can

create their own interactive animations and games. In addition to

behaviors, today students will incorporate user input as events to

create an "alien dance party".

Purpose

Students will use events to make characters move around the

screen, make noises, and change backgrounds based on user

input. This lesson offers a great introduction to events in

programming and even gives students a chance to show

creativity! At the end of the puzzle sequence, students will be

presented with the opportunity to share their projects.

Agenda
Warm Up (5 min)

Introduction

Main Activity (30 min)

Online Puzzles

Wrap Up (10 min)

Journaling

View on Code Studio

Objectives
Students will be able to:

Identify actions that correlate to input

events.

Create an interactive animation using

sprites, behaviors, and events.

Preparation

Play through the puzzles to find any

potential problem areas for your class.

Make sure every student has a journal.

Vocabulary

Event - An action that causes something to

happen.

Introduced Code

set background

random location

location picker

change color

remove color

sprite clicked

sprite touches sprite

https://curriculum.code.org/csf-20/coursee/
https://studio.code.org/s/coursee-2020/stage/7/puzzle/1/
https://studio.code.org/docs/spritelab/gamelab_setBackgroundImage/
https://studio.code.org/docs/spritelab/gamelab_randomLocation/
https://studio.code.org/docs/spritelab/gamelab_location_picker/
https://studio.code.org/docs/spritelab/gamelab_setTint/
https://studio.code.org/docs/spritelab/gamelab_removeTint/
https://studio.code.org/docs/spritelab/gamelab_spriteClicked/
https://studio.code.org/docs/spritelab/gamelab_whenTouching/

 Teaching Tip

Encourage students with questions/challenges to start

by asking their partner. Unanswered questions can be

escalated to a nearby group, who might already know

the solution. Have students describe the problem that

they’re seeing:

What is it supposed to do?

What does it do?

What does that tell you?

Teaching Guide

Warm Up (5 min)

Introduction

Today students will visit events in programming.

Demo: Ask the students to raise their hands in the air.

What you did was declare an event. When you say "raise your hands in the air" the students responded by raising

their hands. In coding, you would declare this by saying something like "when I say 'raise your hands,' you raise

your hands".

You can also think of cities as declaring events. There are laws that say "when there is a green light, cars move

through the intersection".

Discuss: Ask the students why they think this is an event.

Today, students will play in Sprite Lab, but the events they will be working on will be more like the video games

they are used to playing. Events will take the form of actions, such as clicking the screen or two characters running

into each other.

Display: Begin by showing Puzzle 1 to your students.

Think/Pair: Ask them to predict what will happen when the code is run, and to discuss with their neighbors. Run the

code, and discuss the outcome.

Main Activity (30 min)

Online Puzzles

 Goal: Today, students will be creating their own

alien dance party! They’ll begin by reviewing how to

put sprites on the screen, then they will assign them

behaviors and learn to change those behaviors when

an event is initiated.

Transition: Move students to their machines.

Encourage students to follow the instructions for each

puzzle. Help them realize that this is a creative

activity, intended to help them learn Sprite Lab. It is

not an assessment activity of any sort.

 Code Studio levels

Prediction 1 (click tabs to see student view)

Video 2 (click tabs to see student view)

Mini-Project: Alien Dance Moves 3 4 5 6

(click tabs to see student view)

Mini-Project: Alien Dance Party 7 8 9

Wrap Up (10 min)

Journaling

Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any

knowledge they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today's lesson about?

How do you feel about today's lesson?

How did it feel to have control over what your characters were able to do?

Did you change the program in any way to make it feel more like your own?

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

(click tabs to see student view)

https://creativecommons.org/
https://code.org/contact

COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 10

Ch. 4 11 12 13 Ch. 5 14 15 16 17 Ch. 6 18 Ch. 7 19

Lesson 8: Private and Personal Information

Overview

This lesson was originally created by Common Sense Education.

It's in our students' nature to share and connect with others. But

sharing online comes with some risks. How can we help kids build

strong, positive, and safe relationships online? Help your students

learn the difference between what's personal and what's best left

private.

Purpose

Common Sense Education created this lesson to teach students

what information about them is OK to share online.

Agenda
Warm Up: Stand Up, Sit Down (10 min)

Key Vocabulary

Analyze: Why Do People Share? (10 min)

Analyze: Private or Personal? (15 min)

Wrap Up: Exit Ticket (10 min)

Extended Learning

View on Code Studio

Objectives
Students will be able to:

Identify the reasons why people share

information about themselves online.

Explain the difference between private and

personal information.

Explain why it is risky to share private

information online.

Preparation

Review instructional materials.

Print handout(s) for each student.

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Private and Personal Information: Lesson

Slides - Slide Deck

Private and Personal Information: Lesson

Quiz Answer Key - Website

For the Students

Private and Personal Information: Private

and Personal Information - Student Video

(download)

Private and Personal Information: Exit

Ticket - Student Handout

Private and Personal Information: Lesson

Quiz - Form

Make a Copy

https://curriculum.code.org/csf-20/coursee/
https://curriculum.code.org/media/uploads/CommonSenseEducationShort400px.png
https://www.commonsense.org/education/digital-citizenship/curriculum
https://studio.code.org/s/coursee-2020/stage/8/puzzle/1/
https://drive.google.com/open?id=1g7JUvuosvwU2f5qixuTJg5sjZ0TAW2iN3oapWlSNqhM
https://www.commonsense.org/education/digital-citizenship/quiz/grade-4-private-and-personal-information-lesson-quiz-answers
https://www.commonsense.org/education/videos/private-and-personal-information
https://www.commonsense.org/education/video-download/4654856
https://docs.google.com/document/d/1xK_CFNeB3lQ_kJIQAl3Y0sowSyqMy8ac5P3MhCjfkgA/edit
https://docs.google.com/forms/d/1iXNQu1c_I19GGasTbz95xGmIBLz3YokGSErREzTukpQ/copy

Teaching Guide

Warm Up: Stand Up, Sit Down (10 min)

Key Vocabulary

hardwired: something you are born with

personal information: information about you that cannot be used to identify you because it is also true for many

other people (e.g. your hair color or the city you live in)

private information: information about you that can be used to identify you because it is unique to you (e.g. your

full name or your address)

register (online): to enter your information in order to sign up and get access to a website or app

Before the lesson: As an optional activity before the lesson, have students play the Share Jumper game in Digital

Passport™ by Common Sense Education. This will help introduce key concepts of this lesson. To see more, check

out the Digital Passport Educator Guide.

Say: Today we're going to start with a little game. For each statement that I read, if it is true about you, stand up. If

it isn't true, stay seated. After each statement, look around to see who else is standing or sitting. (Slide 4)

Read the statements below to your class, allowing time for students to stand or sit after each one. Prompt all

students to sit back down before moving on to the next statement.

Stand up if you or your family speak another language besides English.

Stand up if you have two or more siblings.

Stand up if you have a pet.

Stand up if you have ever been on YouTube.

Stand up if you have ever shared something about yourself online.

Have students all sit back down and ask: What did you learn from doing that activity? Did you enjoy it? Why or why

not?

Invite volunteers to share out. If necessary, follow up with students who share by asking to explain what they found

fun or not fun about it.

Say: The purpose of that activity was to have some fun getting to know each other better. There are many situations

where sharing information about yourself can be fun and positive. One of those situations is on the internet, where

sharing your likes, opinions, and other personal information -- but not private information -- can be positive and fun.

Analyze: Why Do People Share? (10 min)

Say: In today's lesson, we're going to talk about being online -- and ways that you can share things about yourself

that are fun and that connect you with others. We're also going to talk about ways that you can protect yourself so

that you don't share more than you should.

Project "Did You Know?" on Slide 5.

Ask: What do you observe in this slide? What's the main idea it's trying to show? Share your ideas with your partner.

Invite students to share their responses. If necessary, clarify the meaning of hardwired as something you're born

with, that sharing is something humans do naturally, and that there are many benefits to it.

Say: What is something about you that you might share with others that would give you one of these benefits? Take

turns sharing your idea with your partner.

Invite students to share out their answers. Follow up by asking them to explain which benefit the example would

give them (feel good, learn, connect, or persuade). If the student isn't sure, open it up to the rest of the class.

Examples may connect to more than one benefit.

https://www.digitalpassport.org/share-jumper.html
https://d1e2bohyu2u2w9.cloudfront.net/education/sites/default/files/tlr-asset/document-bundled-educator-guide-92018.pdf
https://docs.google.com/presentation/d/1P0Tx1SFou3XvAfgiL_JzNIv329degBTvO0APtk2vg3w/edit#slide=id.g3c5590bcca_0_283
https://docs.google.com/presentation/d/1P0Tx1SFou3XvAfgiL_JzNIv329degBTvO0APtk2vg3w/edit#slide=id.g3c5590bcca_0_93

Analyze: Private or Personal? (15 min)

Say: So there are lots of reasons to share information about yourself. However, not everything about you is OK to

share. We're going to watch a short video about sharing online. As we watch, think about what information is OK to

share and what isn't.

Project Slide 6 and show the video Private and Personal Information. After the video, invite students to respond to

the discussion question and prompt them to give examples of private and personal information. Clarify that private

information is the most risky to share because it can be used to identify you individually. (Slide 7)

Say: Now, we're going to play another little game. For each example that I say, discuss with your partner whether it

is private or personal. To decide, ask yourself, "Is this information that would also be true for many other people?" If

so, it is personal. If not, it is private. (Slide 8)

Read aloud the first example, "Age." Remind students to consider whether this is information that would be true of

many others. If it is, then it is personal. If not, it is private. Give students one minute to discuss and decide.

Say: If you think this is private information, stand up. If you think it is personal, stay seated.

After students stand or stay seated, invite students to explain why they chose the answer they did. Follow up by

prompting them to refer back to the definitions of private and personal. If necessary, help students clarify that

there are many people (in their school, in their city, even in the class) who are the same age as them.

Say: Everyone who is still seated, you are correct! This information is personal, not private.

Repeat the game above for each of the examples:

home address (private)

email address (private)

date of birth (private)

favorite music (personal)

how many brothers and sisters you have (personal)

phone numbers (private)

credit card information (private)

favorite food (personal)

name of your pet (personal)

name of your school (private) (Explain that although school name is something that is true for many people, it is

risky to share it with someone you don't know, and you should get permission from a trusted adult first.)

Wrap Up: Exit Ticket (10 min)

Distribute the Exit Ticket Student Handout to students.

Say: To close out, you're going to complete two short reflection questions about what we learned today. You'll have

five minutes to write. (Slide 9)

Give students five minutes to write their reflection. Invite volunteers to share with the class.

Collect everyone's handout before they leave to assess their understanding of private versus personal information.

Have students complete the Lesson Quiz.

Extended Learning

Here are additional resources you can provide students to enhance their learning:

Family Activity

Family Tips

Consider having students keep track of how many private or personal statements they get right. Offer the class a

reward for reaching a total number of cumulative points. Alternatively, students could compete against each

https://docs.google.com/presentation/d/1P0Tx1SFou3XvAfgiL_JzNIv329degBTvO0APtk2vg3w/edit#slide=id.g3ed1f0b992_10_0
https://docs.google.com/presentation/d/1P0Tx1SFou3XvAfgiL_JzNIv329degBTvO0APtk2vg3w/edit#slide=id.g3c5590bcca_0_376
https://docs.google.com/presentation/d/1P0Tx1SFou3XvAfgiL_JzNIv329degBTvO0APtk2vg3w/edit#slide=id.g3c5590bcca_0_501
https://drive.google.com/open?id=1xK_CFNeB3lQ_kJIQAl3Y0sowSyqMy8ac5P3MhCjfkgA
https://docs.google.com/presentation/d/1P0Tx1SFou3XvAfgiL_JzNIv329degBTvO0APtk2vg3w/edit#slide=id.g3c5590bcca_0_594
https://docs.google.com/forms/u/2/d/1iXNQu1c_I19GGasTbz95xGmIBLz3YokGSErREzTukpQ/copy
https://drive.google.com/open?id=1jzZbfj0Y1GJa6WWTHp2EEzr7t0m-Hof-qIb-QLiAcpA
https://www.commonsense.org/education/family-tips/k-5-privacy-and-security

other for an individual reward.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

NI - Networks & the Internet

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 10

Ch. 4 11 12 13 Ch. 5 14 15 16 17 Ch. 6 18 Ch. 7 19

Lesson 9: About Me with Sprite Lab

Overview

By creating an interactive poster with SpriteLab, students will

apply their understanding of sharing personal and private

information on the web.

Purpose

This lesson is meant to make the previous lesson on personal and

private information personally relevant for students. With SAFE

(personal) and UNSAFE (private) examples in mind, students

practice safe self-expression on the web, using SpriteLab to

fashion their own sprite costumes and generate text.

Agenda
Warm Up (10 min)

Introduction

Review of "Personal and Private Information"

Main Activity (30 min)

Application - Interactive Poster

Wrap Up (15 min)

Journaling

View on Code Studio

Objectives
Students will be able to:

Choose what information about themselves

is safe to share online.

Create an interactive computer program

that expresses who they are with text and

custom images.

Preparation

Play through the puzzles to find and

potential problem areas for your class.

Consider making an example project

yourself to share with the class.

Make sure every student has a journal.

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Pause and Think Online - Video

Introduced Code

print

https://curriculum.code.org/csf-20/coursee/
https://studio.code.org/s/coursee-2020/stage/9/puzzle/1/
https://www.youtube.com/watch?v=rgbZAWnOWOo
https://studio.code.org/docs/spritelab/gamelab_printText/

 Teaching Tip

Before beginning, be sure to review your classroom's

policy on appropriate language and behavior. Students

will be creating custom text and images for this

lesson. This means they should be mindful of concepts

covered in the personal and private information

lesson, as well as general classroom etiquette. As

students work, be sure to verify that their posters do

not violate your classroom policies.

Teaching Guide

Warm Up (10 min)

Introduction

Today students will apply what they've learned about personal and private information to design an interactive

poster about themselves with SpriteLab.

Review of "Personal and Private Information"

Remind students of information that is safe to share online and information that is strictly private.

SAFE - Personal Information UNSAFE - Private Information

Your favorite food

Your opinion

(though it shoud be done respectfully)

First name

(with permission)

Mother's maiden name

Social Security number

Your date of birth

Parents' credit card information

Phone number

Discuss other examples of the two categories above.

Main Activity (30 min)

Application - Interactive Poster

 Goal: Today, students will be creating their own

interactive posters with SpriteLab! They'll begin by

working through a few examples centered on "Rikki",

a fictional girl who needs their help deciding what

information she should share on her poster. Then,

after a quick introduction on creating custom sprite

costumes, students will be free to create their posters

to their liking.

Model: Show students the first two or three levels

from today's online puzzles. Demonstrate how the

new print block works, along with how they can use the Costumes tab to create and edit costumes. If you have

already gone through the entire lesson yourself, you can show them your own finished poster for inspiration!

Transition: Move students to their machines. Encourage students to follow the instructions for each puzzle.

Reminder: Remind the students to only share their work with their close friends or family. For more information

watch or show the class Pause and Think Online - Video.

 Code Studio levels

Free Play 1 (click tabs to see student view)

Mini-project: Interactive Poster 2 3 4 5 6

(click tabs to see student view)

https://studio.code.org/docs/spritelab/gamelab_printText/

Wrap Up (15 min)

Journaling

Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any

knowledge they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today's lesson about?

How do you feel about today's lesson?

What else would you like to add to your poster?

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

IC - Impacts of Computing

NI - Networks & the Internet

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 10

Ch. 4 11 12 13 Ch. 5 14 15 16 17 Ch. 6 18 Ch. 7 19

Lesson 10: Digital Sharing

Overview

Loaned to Computer Science Fundamentals by the team over at

Copyright and Creativity, this lesson exists to help students

understand the challenges and benefits of respecting ownership

and copyright, particularly in digital environments. Students

should be encouraged to respect artists’ rights as an important

part of being an ethical digital citizen.

Purpose

Students will soon be creating projects to share and most of

these projects will contain either code or imagery that students

did not create themselves. This lesson is here to show students

the proper way to handle the use of content that is not their own.

Agenda
Warm-Up (Optional) (15 min)

Write a Character Sketch

Ethical Sharing (30 min)

To Share or Not to Share?

Okay to Share

Not Okay to Share

Wrap-Up (10 min)

Journaling / Flash Chat

Extended Learning

View on Code Studio

Objectives
Students will be able to:

Interpret ethical sharing of copyrighted

material vs. sharing that is not ethical.

Understand their own rights regarding

materials that they have created

Preparation

Locate the copyright sharing video at

Digital Sharing Ethics (Video) - Video

Download and review the complete

Digital Sharing Lesson Plan from

Copyright and Creativity

As the teacher, create a piece of art for

the lesson (picture, song, slideshow, etc.)

You will need a tablet or smart phone to

replicate the sharing of that item

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Digital Sharing Lesson Plan

For the Students

Digital Sharing Ethics (Video) - Video

Vocabulary

Copyright - the exclusive legal right to

print, publish, perform, film, or record

literary, artistic, or musical material, and to

authorize others to do the same

https://curriculum.code.org/csf-20/coursee/
https://studio.code.org/s/coursee-2020/stage/10/puzzle/1/
https://www.youtube.com/watch?v=6RFY5YnA8iY
https://drive.google.com/file/d/172e_kwEu-5BV3DVtOdefEZTOxBcSx8Xc/view?usp=sharing
https://drive.google.com/file/d/172e_kwEu-5BV3DVtOdefEZTOxBcSx8Xc/view?usp=sharing
https://www.youtube.com/watch?v=6RFY5YnA8iY

Teaching Guide

Warm-Up (Optional) (15 min)

The following writing exercises are designed to create context, help students engage with the topic, and prepare

them for the lesson discussion.

Watch: Have students watch the one-minute Digital Sharing Ethics (Video) - Video. You may need to play it two or

three times.

Write a Character Sketch

Ask students to write a character sketch about one or both of the characters in the video. Be as creative as you

can. There are no wrong answers. Give these characters a life of their own, whatever you want it to be.

Prompt with questions:

Who is your character?

What is his/her name?

Who are his/her friends?

How long have they known each other?

Who are the people in his/her family? What are they like?

What’s his/her backstory?

Where does he/she live?

Where did he/she used to live?

What exciting thing might have happened to them back in kindergarten, first grade, etc.?

What is he/she looking forward to?

What is he/she afraid of?

NOTE: These exercises may also be done orally as a class discussion before the copyright lesson. Write the story or

character sketch on the board as students contribute ideas.

Ethical Sharing (30 min)

Activity: Have all of your students stand up. Begin reading the list of ways to create content below. Instruct

students to sit down as soon as they can answer “Yes” to one of the prompts.

Have you ever made a video (on a camera, phone, iPad, or computer) and sent it to a family member or posted it

online?

Have you taken a photo and sent to a family member or posted it online?

Have you created a piece of art to share with your family and friends?

Have you made up a song to make your friends laugh? Or a sad song to make them cry?

Have you written a poem for your mom or dad on their birthday?

Keep asking similar questions until the entire class is seated.

Discuss:

How did it feel to produce something creative?

How did you feel when you were able to share your creation with others?

How do you feel when you view or listen to other people’s creations?

Encourage all responses.

Help students feel the joy of creating something. Creating can be a lot of hard work, but it is one of the most

rewarding things we do. Sharing what we create is fun, and it can encourage more creativity and art. As we get

older, we have more and more opportunities to share our work and explore media and art that other people have

created. We want to make sure we are always fair when using others’ art and creative work.

https://www.youtube.com/watch?v=6RFY5YnA8iY

Say: Remember, copyright protects all kinds of creative work so that artists/creators can get paid for their effort.

This includes, original writing (stories), art, photographs, audio, images, music, song lyrics, even the doodle you

drew on your napkin at lunch. It doesn't matter if it was created by a famous artist or by you. When you make an

original work, you get to decide who can:

make copies

distribute copies

display or perform the work in public

make spin‐offs; we call these derivatives (for example, like a book being made into a movie)

These rights are given to artists and creators to encourage them to make even more creative work.

Think: Have students think back to the art creation prompt where they first sat down. Inform them that they

created an original work with legal protection. Congratulations!

Pair:

How might you know if something is copyrighted?

[The circle © indicates copyright, but copyright protection exists even without the symbol. Creators have

ownership over their work, unless they sell it to someone else.]

Where have you seen the copyright symbol?

[At the front of books, in movies, on images, posters, etc.]

Share: Encourage students to share their answers with the class.

Demonstrate: Show students how to draw a copyright symbol and write the year next to it. When you make

something creative like this, it’s automatically protected by copyright, even without the copyright symbol.

Discuss:

How does it feel when you share your things with someone else?

What does it feel like when someone takes your things and shares them without your permission?

The same principles of respect and fairness apply when we share our work or someone else’s work online.

To Share or Not to Share?

Demonstrate: Pull out the instructor’s creative work: picture, song, story, video, recipe.

 Watch: Have students watch the one-minute Digital Sharing Ethics (Video) - Video. You may need to play it

two or three times.

As we watch the video, decide if the music is OK to share or not.

Discuss: What did you think of that? How do you think you would feel if you wrote a song and people shared it

without asking for your permission? When we share digital files by:

sending pictures or songs through email

copying songs from our MP3 player to our friend’s computer

copying a movie from a DVD to all our friends’ computers

 That's not just sharing, it's making new copies!

Discuss: If you were one of these characters in the video, what could you do to share fairly? What about other

sharing situations? What other ethical considerations are there?

(Some acceptable responses:) - Send your friend a link to the artist’s YouTube channel where she can listen to the

song. - Help your friend buy the song from an online store that you can trust because it’s used by a large online

community, like iTunes or Amazon.

Ask yourself: Who owns this? Do I have permission to share? Do I have a right to make a copy? Am I being fair to

everyone involved?]

Wrap-Up (10 min)

https://www.youtube.com/watch?v=6RFY5YnA8iY

 Discussion Goal

Okay to Share

I made this. That means I own it. I think I’m going to

share it. I’m going to take out my phone (iPad,

camera, etc.) to get a picture. I think I want to share

it on my blog where I might make some money

advertising on[Use the site of your choice.] Is this

fair?

[Yes, this is OK to share because I made it — I

own the copyright.]

What about a song I wrote? Can I share that? . . .

Who gets to decide?

[“That’s right, I do.”]

What will happen when I share it?

[Take responses: “It’s fun, . . . I’ll get a bunch of

‘likes’ . . . People will want to use it for

mashups.”]

Let’s say you draw a picture to sell at a school art

show. The money from the art sale will go to buy

new library books. Is this a good share . . . is it

ethical?

[Yes.]

Why is this share OK?

[Take responses: “It’s yours!”, “You made it.

You own it. You can choose to share it.”]

 Discussion Goal

Not Okay to Share

Have you ever transferred songs to your friend’s

MP3 player? Is that OK?

[If it’s a song you hear on the radio, it’s most

likely protected by copyright and NOT OK to

share, copy, and give away.]

What if your friend invites you to his house to watch

a movie that just came out on DVD? This is one of

your favorite movies. You want it on your phone, so

you can watch it whenever you want. So, you take

out your phone and record the movie. Is this a fair

way to get a copy of the movie?

[No. This is not OK to share/copy. Why? Because

you don’t own the right to make a copy and give

it away.]

How else could you get an authorized (legal) copy

of the movie for your phone?

[iTunes or Amazon sell movies legally.]

Remember, copyright is a protection given to writers

and artists for a limited time to let them receive

payment for their work. It’s intended to foster more

creativity. As we share and use, we need to respect

each other’s work and the laws of copyright. Just

because we own a copy of something does not mean

we have the right to make more copies to give or sell

to other people. Copyright gives us some protection

over how our art will be used and shared by others.

Journaling / Flash Chat

Having students write about what they learned, why

it’s useful, and how they feel about it can help solidify

any knowledge they obtained today and build a

review sheet for them to look to in the future.

Journal Prompts:

What was today’s lesson about?

How did you feel during today’s lesson?

Give an example of a way that you have seen other

creators share or remix someone's work. Do you

believe that was fair? Why or why not?

Extended Learning

Please be sure to visit Copyright & Creativity to find

more lessons on digital sharing and creative rights.

https://copyrightandcreativity.org/

 Teaching Tip

Demonstrate the following by handing a book to a

student:

Sharing a digital file is different from face‐to‐face

sharing. If I hand you my book to share it with you,

you have the book and I don’t—that’s sharing. If I hand

you my iPod, so you can listen to my music, that is

sharing. If I share a digital file with you—like a song or

a movie or computer game—we both end up with the

file. In that case, we made a copy. If I copy my songs

for you to put on your iPod, that is not sharing—it’s

copying. Making copies of copyrighted work hurts the

artist/creators. In addition, P2P sharing and torrent

sites can put your computer at risk for bad stuff:

malware, ads, and worse.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 10

Ch. 4 11 12 13 Ch. 5 14 15 16 17 Ch. 6 18 Ch. 7 19

Lesson 11: Nested Loops in Maze

Overview

In this online activity, students will have the opportunity to push

their understanding of loops to a whole new level. Playing with

the Bee and Plants vs Zombies, students will learn how to

program a loop to be inside of another loop. They will also be

encouraged to figure out how little changes in either loop will

affect their program when they click Run .

Purpose

In this introduction to nested loops, students will go outside of

their comfort zone to create more efficient solutions to puzzles.

In earlier puzzles, loops pushed students to recognize repetition.

Here, students will learn to recognize patterns within repeated

patterns to develop these nested loops. This stage starts off by

encouraging students try to solve a puzzle where the code is

irritating and complex to write out the long way. After a video

introduces nested loops, students are shown an example and

asked to predict what will happen when a loop is put inside of

another loop. This progression leads into plenty of practice for

students to solidify and build on their understanding of looping in

programming.

Agenda
Warm Up (10 min)

Introduction

Main Activity (30 min)

Online Puzzles

Wrap Up (15 min)

Journaling

View on Code Studio

Objectives
Students will be able to:

Break complex tasks into smaller

repeatable sections.

Recognize large repeated patterns as made

from smaller repeated patterns.

Identify the benefits of using a loop

structure instead of manual repetition.

Preparation

Play through the puzzles to find any

potential problem areas for your class.

Make sure every student has a journal.

Vocabulary

Loop - The action of doing something over

and over again.

Repeat - To do something again.

https://curriculum.code.org/csf-20/coursee/
https://studio.code.org/s/coursee-2020/stage/11/puzzle/1/

Teaching Guide

Warm Up (10 min)

Introduction

Briefly review with the class what loops are and why we use them.

What do loops do?

Loops repeat a set of commands. (see vocabulary on command if students don't recognize it)

How do we use loops?

We use loops to create a pattern made of repeated actions.

Tell the class that they will now be doing something super cool: using loops inside loops. Ask the class to predict

what kinds of things we would be using a loop inside of a loop for.

"If a loop repeats a pattern, then looping a loop would repeat a pattern of patterns!"

Students don't need to understand this right away, so feel free to move on to the online puzzles even if students

still seem a little confused.

Main Activity (30 min)

Online Puzzles

We highly recommend Pair Programming - Student Video in this lesson. This may not be an easy topic for the

majority of your students. Working with a partner and discussing potential solutions to the puzzles might ease the

students' minds.

Also, have paper and pencils nearby for students to write out their plan before coding. Some puzzles have a limit on

the number of certain blocks you can use, so if students like to write out the long answer to find the repeats, paper

can be useful.

 Code Studio levels

Practice 1 2 (click tabs to see student view)

Nested Loops with the Bee 3 (click tabs to see student view)

Prediction 4 (click tabs to see student view)

Practice 5 6 7 8 9 (click tabs to see student view)

Challenge 10 (click tabs to see student view)

Practice 11 12 (click tabs to see student view)

Prediction 13 (click tabs to see student view)

https://www.youtube.com/watch?v=vgkahOzFH2Q

Wrap Up (15 min)

Journaling

Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any

knowledge they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today's lesson about?

How did you feel about today's lesson?

What is a nested loop?

Can you draw a puzzle that would use a nested loop? Try coding the solution to your own puzzle.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

Levels Extra Extra (click tabs to see student view)

https://creativecommons.org/
https://code.org/contact

COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 10

Ch. 4 11 12 13 Ch. 5 14 15 16 17 Ch. 6 18 Ch. 7 19

Lesson 12: Fancy Shapes using Nested Loops

Overview

Students will create intricate designs using Artist in today's set of

puzzles. By continuing to practice nested loops with new goals,

students will see more uses of loops in general. This set of

puzzles also offers a lot more potential for creativity with an

opportunity for students to create their own design at the end of

the stage.

Purpose

In this online activity, students will create designs in Artist that

they can proudly share with their loved ones.

The purpose of this activity is to utilize nested loops as a way to

inspire students with artistic minds to see coding as another

creative outlet. This set of puzzles was built to develop critical

thinking skills, an understanding of elementary geometry, and

creativity -- all within the scope of nested loops!

Agenda
Warm Up (10 min)

Introduction

Main Activity (30 min)

Online Puzzles

Wrap Up (15 min)

Flash Chat: What did you make today?

Journaling

Extended Learning

View on Code Studio

Objectives
Students will be able to:

Combine simple shapes into complex

designs with nested loops.

Count the number of times an action

should be repeated and represent it as a

loop.

Break complex tasks into smaller

repeatable sections.

Preparation

Play through the puzzles to find any

potential problem areas for your class.

Make sure every student has a journal.

Consider what supports your students

might need with turns and angles.

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Students

Turns & Angles - Student Handout

Turns & Angles - Student Video

Vocabulary

Loop - The action of doing something over

and over again.

Repeat - To do something again.

Make a Copy

https://curriculum.code.org/csf-20/coursee/
https://studio.code.org/s/coursee-2020/stage/12/puzzle/1/
https://drive.google.com/open?id=1JDeb07W7myaLu7Wjd-fPM8whSaO8aw37m9SJ_7B4Su4
https://www.youtube.com/watch?v=sPKXZBL_Yvs

 Teacher Tip

Students will have the opportunity to share their own

work at the end of this stage. These pieces of artwork

can be shared virtually or printed out. We recommend

printing out the class's work and displaying it for the

students' loved ones to see.

Teaching Guide

Warm Up (10 min)

Introduction

Review using nested loops in Maze.

Ask the students how they felt about nested loops.

What did they like and dislike about them?

What are some advantages of using nested loops?

Tell the students that they will be using nested loops again, but in Artist this time. They will be making amazing

projects today!

Main Activity (30 min)

Online Puzzles

Students might benefit from having a puzzle done as

a class. If you believe your class could benefit from

that, we recommend puzzle 2 of stage 5.

We highly recommend Pair Programming - Student

Video in this lesson. This may not be an easy topic for

the majority of your students. Working with a partner

and discussing potential solutions to the puzzles

might ease the students' minds.

Be sure to have paper and pencils nearby for students to write out their plan before coding. Some puzzles have a

limit on the number of certain blocks, so paper can be helpful if students like to write out the long answer before

searching for repeating patterns.

 Code Studio levels

Practice 1 2 (click tabs to see student view)

Video 3 (click tabs to see student view)

Practice 4 5 6 7 8 9 (click tabs to see student view)

Challenge 10 (click tabs to see student view)

Practice 11 (click tabs to see student view)

Prediction 12 (click tabs to see student view)

Free Play 13 (click tabs to see student view)

https://www.youtube.com/watch?v=vgkahOzFH2Q

Wrap Up (15 min)

Flash Chat: What did you make today?

Get the class together and allow time for students to show off their Artist drawings! Make sure everyone feels

included by checking that every student is done with their Artist drawing before starting the presentations. Discuss

how each drawing was made and what was in the student's nested loop.

Journaling

Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any

knowledge they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today's lesson about?

How did you feel during today's lesson?

Draw something you used nested loops to make.

How do nested loops help you code complex images?

Extended Learning

Together We Draw

Have the students pair up with two pieces of paper. Partners should individually draw a shape or simple pattern.

Once the simple pattern has been drawn, have the partners switch papers. Now each partner must repeat that

pattern how ever many times they want. For example, if one partner draws a square, the other partner can make a

rectangle made up of squares! If one partner draws a staircase pattern, the other student can fill the page with

staircases! Each pair will have a set of unique drawings. If there's time, have students discuss how they might code

their drawings.

Here are some examples:

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

Levels Extra Extra (click tabs to see student view)

https://cdo-curriculum.s3.amazonaws.com/media/uploads/D.5-Examples.jpg

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 10

Ch. 4 11 12 13 Ch. 5 14 15 16 17 Ch. 6 18 Ch. 7 19

Lesson 13: Nested Loops with Frozen

Overview

Now that students know how to layer their loops, they can create

so many beautiful things. This lesson will take students through a

series of exercises to help them create their own portfolio-ready

images using Anna and Elsa's excellent ice-skating skills!

Purpose

In this series, students will get practice nesting loops while

creating images that they will be excited to share.

Beginning with a handful of instructions, students will make their

own decisions when it comes to creating designs for repetition.

They will then spin those around a variety of ways to end up with

a work of art that is truly unique.

Agenda
Warm Up (15 min)

Introduction

Main Activity (30 min)

Code Studio

Wrap Up (15 min)

Journaling

View on Code Studio

Objectives
Students will be able to:

Describe when a loop, nested loop, or no

loop is needed.

Recognize the difference between using a

loop and a nested loop.

Break apart code into the largest

repeatable sequences using both loops and

nested loops.

Preparation

Play through the puzzles to find and

potential problem areas for your class.

Make sure every student has a journal.

Vocabulary

Loop - The action of doing something over

and over again.

Repeat - To do something again.

https://curriculum.code.org/csf-20/coursee/
https://studio.code.org/s/coursee-2020/stage/13/puzzle/1/

Teaching Guide

Warm Up (15 min)

Introduction

Ask the class to discuss the last set of puzzles.

What did they like/dislike?

Which puzzles were hard? Why?

Which puzzles were easy? Why?

If you were to teach nested loops to a friend, what would you say to help them understand?

If there's time, give an introduction to the main characters of today's puzzles, Anna and Elsa from Frozen. Give the

class the sister's back story if the class doesn't already know. To build excitement, tell the class they will be using

nested loops to make some fantastic drawings with Anna and Elsa's ice skates!

Main Activity (30 min)

Code Studio

 Code Studio levels

This set of puzzles is set up as a progression. This means every puzzle builds a foundation for the next puzzle.

Students will enjoy making more and more interesting designs by making small and simple changes to code they

have already written.

Wrap Up (15 min)

Journaling

Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any

knowledge they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today’s lesson about?

How did you feel during today’s lesson?

When do you use a loop? When do you use a nested loop?

Thought exercise: Can you make everything a nested loop can with just a normal loop? Can you draw out an

example?

Answer: Yes, you can, but it is a lot more difficult. Nested loops make programs simpler.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

Mini-Project: Snowflake #1 1 2 3 4 5

(click tabs to see student view)

Mini-Project: Snowflake #2 6 7 8 9

(click tabs to see student view)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 10

Ch. 4 11 12 13 Ch. 5 14 15 16 17 Ch. 6 18 Ch. 7 19

Lesson 14: Songwriting

Overview

One of the most magnificent structures in the computer science

world is the function. Functions (sometimes called procedures)

are mini programs that you can use over and over inside of your

bigger program. This lesson will help students intuitively

understand why combining chunks of code into functions can be

such a helpful practice.

Purpose

The use of functions helps simplify code and develop the

student's ability to organize their program. Students will quickly

recognize that writing functions can make their long programs

easier to read and easier to debug if something goes wrong.

Agenda
Warm Up (20 min)

Vocabulary

Sing a Song

Main Activity (20 min)

Functions Unplugged: Songwriting - Worksheet

Wrap Up (5 min)

Flash Chat: What did we learn?

Journaling

Assessment (5 min)

Functions Unplugged: Songwriting - Assessment

Extended Learning

View on Code Studio

Objectives
Students will be able to:

Locate repeating phrases inside song lyrics.

Identify sections of a song to pull into a

function.

Describe how functions can make

programs easier to write.

Preparation

(Optional) Watch the Lesson in Action

Video.

Print several worksheets for each group.

Print one assessment for each student.

Secure access to songs and lyrics for

activity.

Make sure every student has a journal.

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Functions Unplugged: Songwriting -

Lesson in Action Video

Functions Unplugged: Songwriting -

Assessment Answer Key

For the Students

Songwriting with Functions - Unplugged

Video (download)

Functions Unplugged: Songwriting -

Worksheet

Functions Unplugged: Songwriting -

Assessment

Vocabulary

Function - A piece of code that you can

easily call over and over again.

Make a Copy

Make a Copy

https://curriculum.code.org/csf-20/coursee/
https://studio.code.org/s/coursee-2020/stage/14/puzzle/1/
https://www.youtube.com/watch?v=QuIMLel1mmw
https://docs.google.com/document/d/1L9YwWrsDBbTOZEVFCBhDxIIrYjkzZY3o1ZARKqa6lxw/edit
https://youtu.be/5iDCKkI6y2Y
http://videos.code.org/2014/C3-songwriting-with-parameters.mp4
https://docs.google.com/document/d/130ah2vRMrvuEj6Y-t1ThAHrHSVvLMnd94Qv9TLgZPMM/edit
https://docs.google.com/document/d/1rtEJBrVNR2R09wAETeJTJLm6QENJGDujJ0HJc1mZBSA/edit

 Teaching Tip

Little Bunny Foo Foo is being used here as an example

only. If your students know this song, feel free to use

it. Otherwise, choose an appropriate song that they

might be more familiar with (either from music class or

the radio.)

Teaching Guide

Warm Up (20 min)

Vocabulary

This lesson has one new and important word:

Function - Say it with me: Func-shun

A piece of code that you can call over and over again.

Sing a Song

Let the class know that today is song day!

We're going to learn a song together.

Start with a simple song, either written out or projected on the screen.

Point to the chorus and be sure that the class knows how it goes before you begin on the song.

Blast through the song, singing it with them in the beginning, then see what happens when you get to the part

where it calls the chorus.

 Chorus:

Little bunny Foo Foo

Hopping through the forest

Scooping up the field mice

And bopping ‘em on the head

Down came the Fairy

And she said

“Little bunny Foo Foo

I don’t wanna see you

Scooping up the field mice

And bopping ‘em on the head”*

Song:

Chorus

I’ll give you 3 chances.

Then I’ll turn you into a goon!

The next day. . .

Chorus

I’ll give you 2 chances.

Then I’ll turn you into a goon!

The next day. . .

Chorus

I’ll give you 1 chance.

Then I’ll turn you into a goon!

The next day. . .

Chorus

"I gave you two chances.

Now I’ll turn you into a goon!”

(POOF!)

And the moral of the story is:

Hare today, goon tomorrow!

 Lesson Tip

To hit this point home, you can look up the lyrics for

some popular songs on the Internet. Show the

students that the standard for repeating lyrics is to

define the chorus at the top and call it from within the

body of the song.

 Lesson Tip

It's most exciting for students to do this lesson with

popular music from the radio, but if you're having a

hard time finding appropriate songs where the lyrics

repeat exactly, here are a few timeless options:

You Are My Sunshine

Boom, Boom, Ain't it Great

How Much Is That Doggie in the Window

I Love Trash

It's quite likely that the majority of the class will sing the lyrics for the chorus when you point to that bit.

Stop the song once that happens, and explicitly highlight what just happened.

You defined the chorus.

You called the chorus.

They sang the chorus.

Ask the class why they suppose you only wrote the chorus once at the top of the paper instead of writing it over

and over in each place where it is supposed to be sung.

What are other benefits of only writing the chorus once when you sing it many times?

Now, imagine that this song is a computer program.

Defining a title (like "chorus") for a little piece of code

that you use over and over again is called creating a

function.

This is helpful to computer scientists for some of the

same reasons that it is helpful to songwriters.

It saves time not having to write all the code over

and over in the program.

If you make a mistake, you only have to change it one place.

The program feels less complicated with the repeating pieces defined just once at the top.

We are going to play with songs a little more, to try to really understand how often this technique is used!

Main Activity (20 min)

Functions Unplugged: Songwriting - Worksheet

A fantastic way to compare functions to something we see in our everyday lives is to look at songs. Songs often

have certain groups of lyrics that repeat over and over. We call such a group a "chorus."

Directions:

Divide into groups of 4, 5, or 6.

Give each group several copies of the Songwriting

Worksheet.

Play a short song for the class that contains a clear

chorus that does not change from verse to verse.

Challenge the class to identify (and write down) the

chorus.

Compare results from each group.

Did everyone get the same thing? Sing your choruses

together to find out! Play this game over and over

until the class has little trouble identifying the

choruses.

It is often easier just to have the class listen to (or watch) the song, then vote on what the chorus is by singing it

together, rather than writing the whole thing down. If you choose this method, consider having the class do a

written chorus for the final song selection to be sure that the visual learners get proper reinforcement.

Wrap Up (5 min)

Flash Chat: What did we learn?

Would you rather write lyrics over and over again or define a chorus?

Do you think it's possible to make multiple choruses for the same song?

Does it make sense to make a new chorus for every time it's needed in a song?

https://www.youtube.com/watch?v=OnqhP-ZayOU
https://www.youtube.com/watch?v=usaa6AJFtOE
https://www.youtube.com/watch?v=iApAn0whVZE
https://www.youtube.com/watch?v=rxgWHzMvXOY
https://docs.google.com/document/d/130ah2vRMrvuEj6Y-t1ThAHrHSVvLMnd94Qv9TLgZPMM/edit

 Lesson Tip

Flash Chat questions are intended to spark big-picture

thinking about how the lesson relates to the greater

world and the students' greater future. Use your

knowledge of your classroom to decide if you want to

discuss these as a class, in groups, or with an elbow

partner.

Journaling

Having students write about what they learned, why

it’s useful, and how they feel about it can help solidify

any knowledge they obtained today and build a

review sheet for them to look to in the future.

Journal Prompts:

What was today's lesson about?

How do you feel about today's lesson?

What is a function and how do you use it?

Can you think of another activity where you might want to call a special group of instructions several times?

Assessment (5 min)

Functions Unplugged: Songwriting - Assessment

Hand out the assessment worksheet and allow students to complete the activity independently after the

instructions have been well explained. This should feel familiar, thanks to the previous activities.

Extended Learning

Use these activities to enhance student learning. They can be used as outside of class activities or other

enrichment.

Functional Suncatchers Visit the CS Fundamentals Unplugged Table or click on the link for Functional Suncatchers.

This activity does take a few supplies from the craft store, but it helps students to see the value of calling multiple

functions.

Create Your Song

Start by creating a chorus together, then repeat it between verses of a song that you develop around it.

Make a change to the chorus, and ponder how much easier it is to change in just one place.

Change the chorus again, making it much longer than it was originally.

Add a second chorus and alternate between them in your verses.

Songwriting a Program

What if we acted out songs instead of singing them? All of a sudden, our chorus would be a function of repeated

actions, rather than words.

Use the concepts of the arrows from the Graph Paper Programming lesson and create a program with lots of

repeating instructions.

Circle those repeating actions so that the class can see where they are.

Define a function called "Chorus" above the program.

Cross out everywhere the repeating actions appear in the program and write "Chorus" instead.

Repeat until the class can go through this process with little direction.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://docs.google.com/document/d/1rtEJBrVNR2R09wAETeJTJLm6QENJGDujJ0HJc1mZBSA/edit
https://code.org/curriculum/unplugged
https://studio.code.org/s/course3/stage/4/puzzle/1
https://creativecommons.org/
https://code.org/contact

COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 10

Ch. 4 11 12 13 Ch. 5 14 15 16 17 Ch. 6 18 Ch. 7 19

Lesson 15: Functions in Minecraft

Overview

Students will begin to understand how functions can be helpful in

this fun and interactive Minecraft adventure!

Purpose

Students will discover the versatility of programming by

practicing functions in different environments. Here, students will

recognize reusable patterns and be able to incorporate named

blocks to call pre-defined functions.

Agenda
Warm Up (10 min)

Introduction

Bridging Activity - Functions (15 min)

Unplugged Activity Using Some Blockly

Preview of Online Puzzles

Main Activity (30 min)

Online Puzzles

Wrap Up (15 min)

Journaling

View on Code Studio

Objectives
Students will be able to:

Use functions to simplify complex

programs.

Use pre-determined functions to complete

commonly repeated tasks.

Preparation

Play through the puzzles to find any

potential problem areas for your class.

Make sure every student has a journal.

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Students

Unplugged Blocks (Courses C-F) -

Manipulatives

Vocabulary

Function - A piece of code that you can

easily call over and over again.

https://curriculum.code.org/csf-20/coursee/
https://studio.code.org/s/coursee-2020/stage/15/puzzle/1/
https://docs.google.com/document/d/1cRPELQ28TZMJhc68-eYP1D26Uqzcyfx4RDYuThZJGLo/edit

 Lesson Tip

Function blocks:

The block to the left is a function declaration, a block

that students will name and use to fill in the function.

The block to the right is a function call, a block that

makes the function code run. Students will need

multiple of the function call blocks.

Teaching Guide

Warm Up (10 min)

Introduction

Help the class understand that functions are simply a chunk of code that has a name. Once defined, you can use

that name over and over in your program to tell the computer to run the chunk of code that you assigned to it.

Bridging Activity - Functions (15 min)

This activity will help bring the unplugged concepts from "Functions Unplugged: Songwriting" into the online world

that the students are moving into. Choose one of the following to do with your class:

Unplugged Activity Using Some
Blockly

Pick a song to play that the students enjoy and print

out the lyrics. You can use the same song from

"Functions Unplugged: Songwriting." Break your class

into groups or pairs. Pass out the printed out lyrics

(including the repeated chorus) and the basic function

blocks from Unplugged Blocks (Courses C-F) -

Manipulatives to each group or pair of students. See

lesson tip for details.

Ask the students to cross out any part of the song

that can be made into a function (the chorus is a

good example) and put it into the function blocks provided. Students should fill in the function declaration with a

function name and the words of the repeated lyrics. Once the function declaration is done, ask the students to fill in

the function calls and place them on top of the crossed out lyrics.

Once every group or pair is done, ask the class where they put their functions and why. Did everyone make the

same function? How often is the function repeated?

Preview of Online Puzzles

Pull up a puzzle from the lesson. We recommend puzzle 9. As a class, work through the puzzle without using

functions. Once you have gotten the solution, display it on a white board or overhead. Ask the class to point to the

repeated code. Ask the class how they would simplify the program. Why can you not just use a loop?

On the white board or overhead, rewrite the program without the repeated code, but leaving one line space. In

that/those line space(s), call a function. Off to the side, declare the function like the left example block in the lesson

tip. Ask the class what they think the code will do now.

Open up a discussion with the class on why functions could be useful in programming. Invite students to discuss

the difference between functions and loops.

Main Activity (30 min)

Online Puzzles

 Code Studio levels

Practice 1 2 3 4 5 6 7 8 9 10

https://cdo-curriculum.s3.amazonaws.com/media/uploads/E.7-lesson-hint.png
https://docs.google.com/document/d/1cRPELQ28TZMJhc68-eYP1D26Uqzcyfx4RDYuThZJGLo/edit

We recommend providing paper and pencils for students to write (or draw) out ideas. Also, if students are having

trouble recognizing patterns, have them work with a partner on the harder puzzles.

Wrap Up (15 min)

Journaling

Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any

knowledge they obtained today and build a review sheet for them to look to in the future.

What was today's lesson about?

How do you feel about today's lesson?

What did your functions do in the programs you wrote today? How did that help you?

When should you use a function instead of a loop?

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

 11 (click tabs to see student view)

Free Play 12 (click tabs to see student view)

https://creativecommons.org/
https://code.org/contact

COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 10

Ch. 4 11 12 13 Ch. 5 14 15 16 17 Ch. 6 18 Ch. 7 19

Lesson 16: Functions with Harvester

Overview

Students have practiced creating impressive designs in Artist and

navigating mazes in Bee, but today they will use functions to

harvest crops in Harvester. This lesson will push students to use

functions in the new ways by combining them with while loops

and if / else statements.

Purpose

This lesson is meant to further push students to use functions in

more creative ways. By also using conditionals and loops,

students will learn there are many ways to approach a problem,

but some are more efficient than others. These puzzles are

intended to increase problem solving and critical thinking skills.

Agenda
Warm Up (10 min)

Introduction

Main Activity (30 min)

Online Puzzles

Wrap Up (15 min)

Journaling

View on Code Studio

Objectives
Students will be able to:

Recognize when a function could help to

simplify a program.

Use pre-determined functions to complete

commonly repeated tasks.

Preparation

Play through the puzzles to find any

potential problem areas for your class.

Make sure ever student has a journal.

Vocabulary

Function - A piece of code that you can

easily call over and over again.

https://curriculum.code.org/csf-20/coursee/
https://studio.code.org/s/coursee-2020/stage/16/puzzle/1/

Teaching Guide

Warm Up (10 min)

Introduction

At this point, your students should already be introduced to functions. Take this time to have them discuss the

advantages and disadvantages of using functions in a program. Either have them pair share or discuss as a class.

Try using examples of hard or easy puzzles in either Artist or Bee.

Ask the class:

When would you use a function?

Why does a function help to simplify your program?

Do you think functions make programming easier or harder? Why?

Main Activity (30 min)

Online Puzzles

 Code Studio levels

Some puzzles will have a function pre-declared for the students to fill in. It may be helpful for the students to write

the entire program without a function first, then determine where a function would be useful in the program.

It's important to make sure that every student is completing each puzzle with a dark green dot. If some of your

students are struggling to simplify code and use functions, set up teams of expert students within your class to go

around and answer questions.

Don't forget to provide pencils and paper to help students sketch out possible solutions.

Wrap Up (15 min)

The Harvester 1 (click tabs to see student view)

Practice 2 3 4 5 6 7 (click tabs to see student view)

How to Create a Simple Function 8 (click tabs to see student view)

Practice 9 10 11 (click tabs to see student view)

Challenge 12 (click tabs to see student view)

Practice 13 (click tabs to see student view)

Prediction 14 (click tabs to see student view)

Journaling

Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any

knowledge they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today's lesson about?

How did you feel about today's lesson?

What makes you realize a function could help your program?

How do while loops and if / else statements help your program?

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 10

Ch. 4 11 12 13 Ch. 5 14 15 16 17 Ch. 6 18 Ch. 7 19

Lesson 17: Functions with Artist

Overview

Students will be introduced to using functions with the Artist.

Magnificent images will be created and modified. For more

complicated patterns, students will learn about nesting functions

by calling one function from inside another.

Purpose

One of the most important components to this lesson is providing

students with a space to create something they are proud of.

These puzzles progress to more and more complex images, but

each new puzzle only builds off the previous puzzle. At the end of

this lesson, students will feel confident with themselves and

proud of their hard work.

Agenda
Warm Up (15 min)

Introduction

Main Activity (30 min)

Online Puzzles

Wrap Up (15 min)

Journaling

Extended Learning

View on Code Studio

Objectives
Students will be able to:

Categorize and generalize code into useful

functions.

Recognize when a function could help to

simplify a program.

Preparation

Play through the puzzles to find any

potential problem areas for your class.

Make sure ever student has a journal.

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Students

Unplugged Blocks (Courses C-F) -

Manipulatives

Vocabulary

Function - A piece of code that you can

easily call over and over again.

https://curriculum.code.org/csf-20/coursee/
https://studio.code.org/s/coursee-2020/stage/17/puzzle/1/
https://docs.google.com/document/d/1cRPELQ28TZMJhc68-eYP1D26Uqzcyfx4RDYuThZJGLo/edit

Teaching Guide

Warm Up (15 min)

Introduction

Ask the class to think back to "Functions Unplugged: Songwriting" and recall what a function is. Open a discussion

about when to use a function when writing a song.

Tell the class that there are two main components to using functions.

1. The Declaration: Function declarations are what create a function. In a function declaration, you fill in the

function with code and you give the function a name. You must declare a function before you can use it.

2. The Call: Function calls are what makes the program run the code in the function. To call a function, you place

the name of the function in your program. Make sure your function is properly defined before calling it in your

program.

The class can use songwriting as an example to understand these two components. In the unplugged activity, the

function containing the lyrics to the chorus was named "chorus". When we first made this function, we circled the

lyrics that would go in the function. Once we named the function, we could read through the lyrics and replace the

repeated chorus lyrics with a function call to "chorus".

Continue the conversation until students have a basic understanding of functions being declared and called. If

students don't get to this point, make sure to do one of the bridging activities before moving into the Code.org

puzzles.

Main Activity (30 min)

Online Puzzles

 Code Studio levels

Prediction 1 (click tabs to see student view)

Practice 2 3 4 5 6 7 8 9

(click tabs to see student view)

Challenge 10 (click tabs to see student view)

Practice 11 (click tabs to see student view)

Prediction 12 (click tabs to see student view)

Practice 13 (click tabs to see student view)

Levels Extra Extra (click tabs to see student view)

Students may benefit from writing code without functions then creating functions from the repeated code. If

students don't enjoy doing this in the Code.org workspace, we recommend providing paper and pencils for students

to write (or draw) out their ideas.

Wrap Up (15 min)

Journaling

Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any

knowledge they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today’s lesson about?

How do you feel about today’s lesson?

What are some differences between functions and loops?

Sketch out a drawing you made today. Can you write the code needed to create this?

Draw a picture you would like to create with code. Try writing or drafting the code that would make that drawing.

Extended Learning

Draw by Functions

Break the class into groups of 2-3 students. Have each group write a function that draws some kind of shape and a

program that uses that function. Depending on the creativity or focus the groups, students might need to be

assigned a shape to create. Once every group is done, have the groups switch programs. On a separate piece of

paper, each group should draw what the program creates. The groups should then return the programs and

drawings to the original group.

Did every group get the drawing they expected? If not, what went wrong? Have the class go through the debugging

process and try again.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 10

Ch. 4 11 12 13 Ch. 5 14 15 16 17 Ch. 6 18 Ch. 7 19

Lesson 18: Designing for Accessibility

Overview

In this lesson, students will learn about accessibility and the value

of empathy through brainstorming and designing accessible

solutions for hypothetical apps.

Purpose

Through learning about accessibility, students recognize the

impacts of computing beyond their own lives. Accessibility might

not seem like a relevant CS topic, but creating technology that is

accessible for underserved users helps make tech better for

everyone else as well.

Agenda
Warm Up (5 min)

Background and Motivation

Main Activity (35 min)

Designing for Accessibility Scenarios (10 min)

App Redesign Activity (25 min)

Wrap Up (5 min)

View on Code Studio

Objectives
Students will be able to:

In their own words, describe the impact of

mobile apps on the modern world.

Explain why accessibility is an important

part of designing an app for users.

Improve upon an existing app design by

addressing the accessibility needs of users.

Preparation

For context, read about the types of

disabilities here

Read through the speaker notes in the

slide deck.

Prepare enough sketching/drawing

supplies for all students.

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Students

Designing for Accessibility - Slide Deck

https://curriculum.code.org/csf-20/coursee/
https://studio.code.org/s/coursee-2020/stage/18/puzzle/1/
https://www.w3.org/WAI/people-use-web/abilities-barriers/
https://docs.google.com/presentation/d/1hgMk91Ij1UxeobZ74uMiucJ0261yaHf5WLU9ItoQKZA/edit?usp=sharing

Teaching Guide

Warm Up (5 min)

Background and Motivation

Discuss: Ask students to define the term "app" in their own words. What is an app? What kinds of apps are there?

Where do we use apps? While discussing, show screenshots or examples of apps on your smartphone or tablet if

possible.

Say: Ensure that all students are on the same page regarding this topic by introducing some key terms and

concepts.

In this course we have been learning how to code. Code is used to create computer applications. Games, web

browers, media players... the list of applications goes on and on!

App is short for application. Usually, apps more specifically refer to applications running on small computers

called mobile devices.

Smartphones and tablets are examples of mobile devices.

Discuss: Apps are everywhere! Ask students why they think apps have become so popular. Here are some example

explanations:

Many people can more easily access or afford a mobile device (e.g., smartphone) than a larger computer with a

keyboard, mouse, and so forth.

Apps can address a variety of needs. For example, if I need a ride somewhere, I might try a ride sharing app and

get there quickly. If I want to know what movies I should watch, there's probably an app that can help me decide.

And of course, if I want to call or text someone on my phone, I use apps for those as well!

Say: Introduce accessibility with the remarks below.

As apps become used by more and more people, app developers often come across issues that they had not

considered, likely because they have never experienced those issues in their own lives.

Many of these issues are related to accessibility. In the world of computer science, accessibility is about creating

technology for people with disabilities.

Disabilities include physical, auditory, visual, and many others.

Disabilities are diverse and impact people in different ways. For example, someone who is slightly visually

impaired might simply wear glasses. Someone who is severely visually impaired might be considered "blind" and

will need more assistance.

Transition: Tell students you'd like to introduce them to a few kids who, even though they have disabilities, are just

like them.

Main Activity (35 min)

Designing for Accessibility Scenarios (10 min)

Display: Display each scenario from the Designing for Accessibility Slide Deck. While displaying a scenario image,

read its accompanying script to the class (see below). Discussion questions are included in relevant slides.

 Designing for Accessibility Scenarios

Slide 1: Meet Wei

Wei is a talented kid who LOVES music. She plays piano and sings very well!

Wei is visually impaired. While she is not completely blind, it is very difficult for her to see things, even if they

are near to her eyes.

Wei has had to learn piano differently from kids who aren’t visually impaired, but that hasn’t stopped her from

becoming a great musician!

Wei recently began creating her own music. She is very proud of it! She would like to record and share her

music with her friends.

Slide 2: Introducing Grammaphone!

Grammaphone is a popular new app that allows people to upload and share their own music with friends.

Here is a screenshot of the home screen. What do you think about it? How do you think this app works?

Slide 3: Wei’s Problem

Wei needs to use Grammaphone to share her music. After all, it’s the most popular music sharing app!

However, she’s having a difficult time using the app. Why do you think that is?

Slide 4: Meet Roger

Roger is an energetic kid who loves video games! He especially likes playing sports games with his friends.

Things have been hard for Roger lately, though. Due to an accident a few years ago, Roger’s hand had to be

“amputated” (surgically removed).

Thankfully, computer scientists, engineers, and doctors are working hard to provide Roger with a cool-looking

robotic “prosthetic hand”, which will be awesome!

But for now, Roger wants to play sports video games with his friends!

Slide 5: Introducing Football Frenzy!

Football Frenzy is a new mobile game that everyone loves!

It has cool graphics, awesome sound effects, tight controls, and amazing action!

Here’s a screenshot of the game in action. Based on the interface, how do you think this game is played?

Slide 6: Roger’s Problem

All of Roger’s friends play Football Frenzy. It’s connected online so you can play it anywhere!

Roger wants to play Football Frenzy with them, but he is having a difficult time. Why do you think that is?

Slide 7: I Wish...

Neither of these apps were designed with people like Wei and Roger in mind.

When it comes to these apps, what specific features do you think Wei and Roger wish for?

Let’s make their wishes come true by redesigning these apps!

App Redesign Activity (25 min)

The final scenario allows students to sketch a redesign of one app from the scenarios ("Grammaphone" for Wei or

"Football Frenzy" for Roger).

Students should primarily focus their efforts on making their redesigned app more accessible for either of them,

along with any other accessibility features they can think of. Students can design as many screens for the app as

they wish, and they do not need to make their app look anything like the original examples.

If there is time, students may redesign apps for both characters.

Distribute: Pass out crayons/pencils/etc to each student as they open their Thinkspot Journals.

Share: After designing, students share their app design with a neighbor, or if there is time, some students can share

with the whole class. Each student should answer how their app design addresses the need of the user in question.

Wrap Up (5 min)

Discuss: Discuss real-world examples of how apps and other technology can be made more accessible. Ask

students how they think making something more accessible can also make it better for others. One example is

wheelchair ramps near building entrances. These were originally made for people with wheelchairs, but they are

also convenient for people with baby strollers, dollies, and other wheeled equipment.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CS - Computing Systems

IC - Impacts of Computing

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 10

Ch. 4 11 12 13 Ch. 5 14 15 16 17 Ch. 6 18 Ch. 7 19

Lesson 19: End of Course Project

Overview

The next four lessons provide an opportunity for students to put

their coding skills to use in a capstone project. This project will

help individuals gain experience with coding and produce an

exemplar to share with peers and loved ones. Intended to be a

multi-lesson or multi-week experience, students will spend time

exploring brainstorming, learning about the design process,

building, and presenting their final work.

In the explore stage, students will play with pre-built examples of

projects in both Artist and Sprite Lab for inspiration. Next,

students will learn about the design process and how to

implement it in their own projects. They will then be given the

space to create their own project in Artist, Sprite Lab, or another

interface that they have become familiar with (this is likely the

longest stage of the project). Finally, students will be able to

present their finished work to their peers.

Purpose

Students may be ready to jump straight into building their

projects, but this lesson will help shape their ideas into plans.

This structure will keep the dreamers grounded and illuminate a

path for those feeling left in the dark. Provide students with

ample time to build and revise their projects. The trial and error

inevitably involved in this lesson will teach problem solving and

persistence.

Agenda
Day 1 - Explore Project Ideas (45 min)

Example Projects

Day 2 - The Design Process (45 min)

Define and Prepare

Day 3 - Build Your Project (45 min)

Try

Day 4 & 5 - Present Your Project (45 min each)

Presentations

Extension Activity

Reflect and Try Again (45 min)

Other

View on Code Studio

Objectives
Students will be able to:

Learn to plan in advance for an ongoing

assignment.

Explain how system limitations can affect

project design.

Describe how compromise can help keep a

project on track and inspire creativity.

Draft and implement plans to resolve any

issues in their code.

Articulate the design process and how it

helped shape the finished culminating

project.

Preparation

Spend time making your own project

with both the Artist and Sprite Lab.

Familiarize yourself with the capabilities

and limitations of each tool.

Modify the rubric to fit your class goals

and print out a copy for each student.

Modify the project design worksheet to

fit your class and print one packet for each

student.

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

CS Fundamentals Final Project - Rubric

Design Process - Teacher Prep Guide

For the Students

End of Course Project Guide - Worksheet

Vocabulary

Define - Figure out the details of the

problems that you are trying to solve

Make a Copy

Make a Copy

https://curriculum.code.org/csf-20/coursee/
https://studio.code.org/s/coursee-2020/stage/19/puzzle/1/
https://docs.google.com/document/d/1QVcQX7czu6T2OL7742hRu-gXB_Fat_Q4bHM6zgb7bq0/
https://docs.google.com/document/d/18hBG-cWRYOkpNXFelRFUVgRrMd4XQsvZziH-mtNKbec/
https://docs.google.com/document/d/1W3k1Hj7FRDCf1qJsgYxnnjZBCXcGGtVbIK-BSGqd3ko/edit

Prepare - Research, plan, and acquire

materials for the activity you are about to

do

Reflect - Carefully think back on something

with the intention of improving the

outcome in the future

Try - Attempt to do something

 Lesson Tip

Save 5 minutes or so at the end of the day to have

students trade their project guide to look at each

other’s work. This will help make sure that nothing is

omitted or overlooked.

Teaching Guide

Day 1 - Explore Project Ideas (45 min)

Example Projects

Goal: This part of the process is an exploration. Students will sit down with a stage full of example projects to remix

and learn. Not only will this give students an idea of what is possible, it will also help them see the limitations of the

tool.

Give students a day to play with and remix the example projects found in the lesson. Have them use their journals

(or notebook paper) to keep track of thoughts and ideas as they go.

This activity should be done in the same pairs/groups that will be working on projects together over the next

several lessons.

Make sure your class understands that they will be working with projects of their own, so they should pay close

attention to how these programs were written, as well as the concepts that they use.

 Code Studio levels

Day 2 - The Design Process (45 min)

Define and Prepare

Students will come up with a project and plan their strategy for programming that project in a single day. Students

should have a project sketch and a description by the time the day is done.

Preparing Students for the Process:

The most important responsibility you have in kicking off this segment is to help your class understand the scope of

this project. Students should be clear about the various expectations over the coming weeks so that they can

prepare for their presentations appropriately.

To help your class manage this multi-stage undertaking, they should be given both the project guide and the CS

Fundamentals Final Project - Rubric on the first day of planning. Students will then be able to follow the rubric each

step of the way to predict what their project grade will be in the end.

The project guide will provide a place for students to capture relevant thoughts and processes as they go, so they

are more prepared for their presentations in the end.

As the teacher, you should decide which elements of these documents are important to you and be sure to edit or

remove anything that you do not intend to draw student focus.

Define and Prepare:

Now that the class has their project guide in hand,

they should start filling out the questions under Day 1.

Students will likely need to refer back to their notes

from playing with the example projects, especially if

they don’t have access to online Artist or Play Lab

project levels while they plan.

Example Projects 1 (click tabs to see student view)

End of Course Project 2 2a 2b 2c

https://docs.google.com/document/d/1QVcQX7czu6T2OL7742hRu-gXB_Fat_Q4bHM6zgb7bq0/

 Lesson Tip:

If you are looking for a section of this series to assign

as homework, this is it! Projects do not have to be

presented in electronic form, so this is a great offline

option. Other ways to present projects (both online

and offline) include:

Report

Blog post

Online

In front of the class with a poster

Students should focus on defining and planning their project during Day 1, and not cross over into building until

their ideas have been written up and/or drawn out.

If students get stuck, help them work through ideas by asking questions and recalling examples, rather than

offering solutions.

Day 3 - Build Your Project (45 min)

Try

Students will use this day to build an initial version of their project.

Equipped with their Final Project Design - Worksheet, students should head to the computers to start bringing their

projects to life.

This process will come complete with plenty of trial and error. Projects are likely to become truncated versions of

the original scope (if not morphed altogether). Remind students that this kind of compromise is common in

software design, but they need to be sure to document the reasons for the changes in their product.

Don’t let the class forget to fill out their Final Project Design - Worksheet as they go. It might be helpful to suggest

that pairs/groups take a worksheet break to begin discussing these questions about halfway through their lab time.

Alternatively, the navigator can keep their eyes open for pertinent answers while the driver codes.

Be sure that each team member has their own Final Project Design Worksheet, as there are questions about each

student’s own individual thoughts and behaviors that need to get captured along the way.

Day 4 & 5 - Present Your Project (45 min each)

Presentations

Students will create and present their projects in an approved manner (written, oral, or using multimedia).

Create:

Ideally, you will have class time available to give

students to work on their presentations. This will

allow them to incorporate rich multimedia

components, like Google Slides. For other

presentation ideas, visit 72 Creative Ways for Your

Students to Show What They Know - Website.

Encourage students to include all of the information

from Section J of the Final Project Design Worksheet

into their presentation, as well as two or more

questions from Section K.

Present:

Students should showcase their apps first, then they can discuss the questions that they covered in their

presentations.

It can be very helpful to have students sign up for a specific order in which to give their presentations, so that they

are able to enjoy the demonstrations of their classmates without worrying about whether they will be called on

next.

Extension Activity

Reflect and Try Again (45 min)

Students will work with another group to give and receive feedback in an effort to make each other’s projects

stronger.

https://docs.google.com/document/d/1sVrwglrvfm-cq9dzbvB9Cn2iuztrs3_VdWjluYPNaDE/
https://docs.google.com/document/d/1sVrwglrvfm-cq9dzbvB9Cn2iuztrs3_VdWjluYPNaDE/
https://www.google.com/slides/about/
http://minds-in-bloom.com/72-creative-ways-for-students-to-show/

 Lesson Tip:

Teachers should avoid assigning the final bit of project

work as homework unless they are certain that

students both live within a close proximity to one

another and have internet access at home.

Reflect:

For reflections, have each group pair up with another group to try each other’s projects. After about 10 minutes,

have the groups discuss the questions in the Final Project Design Worksheet.

Encourage students to ask the questions on the Final Project Design Worksheet and write down feedback provided

by their reviewing teams so that they can refer back to it later. This portion should take approximately 15 more

minutes.

Try Again:

With their new reflections in hand, students can head

back to their machines to make a handful of edits.

With just 10 minutes left, they will likely have to

select only the most important feedback to

incorporate.

Other

If your students are already comfortable with coding concepts, try having them create their projects in another

platform, like Scratch or Alice.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

IC - Impacts of Computing

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://scratch.mit.edu/
http://www.alice.org/index.php
https://creativecommons.org/
https://code.org/contact

