
 
COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9

Ch. 4 10 Ch. 5 11 12 13 Ch. 6 14 15 16 17 Ch. 7

18

Course E
Created with fourth grade students in mind, this course begins with a brief review of concepts previously taught in courses
C and D. This introduction is intended to inspire beginners and remind the experts of the wonders of computer science.
Students will practice coding with algorithms, loops, conditionals, and events before they are introduced to functions. At the
end of the course, students will have the opportunity to create a capstone project that they can proudly share with peers
and loved ones.

Journaling
The lessons in this course include journaling prompts. Journals are also useful as scratch paper for building, debugging,
and strategizing. Journals can become a fantastic resource for referencing previous answers when struggling with more
complex problems.

Think Spot Journal Student Handout

Debugging
From beginners to professionals, debugging is an essential yet often underrated practice. It is likely that your students will
find most of their "coding" time is actually spent fixing bugs! To encourage students to take ownership of this practice, we
provide this handy reference they can use while coding. Please consult the "Debugging" section of our CS Fundamentals
Curriculum Guide for more information on this, as well as other debugging facilitation strategies for your classroom.

Debugging Guide Student Handout

Chapter 1: Ramp Up
Lesson 1: Sequencing in the Maze
Skill Building | Ramp Up

In this lesson, you will learn how to write your very own programs!

Lesson 2: Drawing with Loops
Skill Building | Ramp Up

In this lesson, loops make it easy to make even cooler images with Artist!

Lesson 3: Conditionals in Minecraft: Voyage Aquatic
Skill Building | Ramp Up

Here you will learn about conditionals in the world of Minecraft.

Lesson 4: Conditionals with the Farmer
Skill Building | Ramp Up

You will get to tell the computer what to do under certain conditions in this fun and
challenging series.

https://docs.google.com/document/d/1IwPCkbZen2Md6MsbaOO5wYA93e8qrgrna2pozTGazjY/edit?usp=sharing
https://drive.google.com/open?id=1z2FgBWwUq6vxwWbnbiQC0EaEKxwgAqBdtTZzVi98xHA
file:///csf-19/coursee/
file:///csf-19/coursee/
file:///csf-19/coursee/
file:///csf-19/coursee/
file:///csf-19/coursee/
file:///csf-19/coursee/
file:///csf-19/coursee/
file:///csf-19/coursee/
file:///csf-19/coursee/
file:///csf-19/coursee/
file:///csf-19/coursee/
file:///csf-19/coursee/
file:///csf-19/coursee/
file:///csf-19/coursee/
file:///csf-19/coursee/
file:///csf-19/coursee/
file:///csf-19/coursee/
file:///csf-19/coursee/


Chapter Commentary
Ramp Up

Chapter 2: Sprites
Lesson 5: Simon Says
Unplugged | Behaviors

Play a game and think about what commands are needed to get the right result.

Lesson 6: Swimming Fish with Sprite Lab
Skill Building | Sprites

Learn how to create and edit sprites.

Lesson 7: Alien Dance Party with Sprite Lab
Skill Building | Sprites

Create an interactive project that can be shared with classmates.

Chapter Commentary
Sprites

Chapter 3: Digital Citizenship
Lesson 8: Private and Personal Information
Unplugged | Online Safety

The internet is fun and exciting, but it's important to stay safe too. This lesson teaches you the
difference between information that is safe to share and information that is private.

Lesson 9: About Me with Sprite Lab
Application | Online Safety

By creating an interactive poster with SpriteLab, students will apply their understanding of
sharing personal and private information on the web.

Chapter Commentary
Digital Citizenship



Chapter 4: Impacts of Computing
Lesson 10: Designing for Accessibility
Unplugged | Impacts of Computing

In this lesson, students will learn about accessibility and the value of empathy through
brainstorming and designing accessible solutions for hypothetical apps.

Chapter Commentary
Impacts of Computing

Chapter 5: Nested Loops
Lesson 11: Nested Loops in Maze
Skill Building | Nested Loops

Loops inside loops inside loops. What does this mean? This lesson will teach you what
happens when you place a loop inside another loop.

Lesson 12: Fancy Shapes using Nested Loops
Skill Building | Nested Loops

More nested loops! This time, you get to make some AMAZING drawing with nested loops.

Lesson 13: Nested Loops with Frozen
Application | Nested Loops

Anna and Elsa have excellent ice-skating skills, but need your help to create patterns in the
ice. Use nested loops to create something super COOL.

Chapter Commentary
Nested Loops

Chapter 6: Functions
Lesson 14: Songwriting
Unplugged | Functions

Even rockstars need programming skills. This lesson will teach you about functions using
lyrics from songs.



Lesson 15: Functions in Minecraft
Skill Building | Functions

Can you figure out how to use functions for the most efficient code?

Lesson 16: Functions with Harvester
Skill Building | Functions

Functions will save you lots of work as you help the farmer with her harvest!

Lesson 17: Functions with Artist
Skill Building | Functions

Make complex drawings more easily with functions!

Chapter Commentary
Functions

Chapter 7: End of Course Project
Lesson 18: End of Course Project
End of Course Project

Projects this big take time and plenty of planning. Find your inspiration, develop a plan, and
unleash your creativity!

Chapter Commentary
End of Course Project



If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
file://code.org/contact


COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 Ch. 4

10

Ch. 5 11 12 13 Ch. 6 14 15 16 17 Ch. 7 18

Lesson 1: Sequencing in the Maze
Overview
In this set of puzzles, students will begin with an introduction (or
review depending on the experience of your class) of Code.org's
online workspace. There will be videos pointing out the basic
functionality of the workspace including the Run , Reset , and Step

buttons. Also discussed in these videos: dragging Blockly blocks,
deleting Blockly blocks, and connecting Blockly blocks. Next, students
will practice their sequencing and debugging skills in the maze.
Debugging is an essential element of learning to program. Students
will encounter some puzzles that have been solved incorrectly. They
will need to step through the existing code to identify errors, including
incorrect loops, missing blocks, extra blocks, and blocks that are out
of order.

Purpose
We recognize that every classroom has a spectrum of understanding
for every subject. Some students in your class may be computer
wizards, while others haven't had much experience at all. In order to
create an equal playing (and learning) field, we have developed these
ramp-up lessons. This can be used as either an introduction or a
review of how to use Code.org and basic computer science concepts.
Students in your class might become frustrated with this lesson
because of the essence of debugging. Debugging is a concept that
is very important to computer programming. Computer scientists have
to get really good at facing the bugs in their own programs. Debugging
forces the students to recognize problems and overcome them while
building critical thinking and problem solving skills.

Agenda
Warm Up (15 min)

Introduction
Vocabulary

Main Activity (30 min)

Online Puzzles

Wrap Up (5 - 10 min)

Journaling

Extended Learning

View on Code Studio

Objectives
Students will be able to:

Order movement commands as sequential
steps in a program.
Modify an existing program to solve errors.
Break down a long sequence of instructions
into the largest repeatable sequence.
Predict where a program will fail.
Modify an existing program to solve errors.
Reflect on the debugging process in an age-
appropriate way.

Preparation
Play through the puzzles yourself to find

any potential problem areas for your class.
(Optional) Pick a couple of puzzles to do as

a group with your class.
Make sure every student has a journal.
Review Debugging Recipe - Student

Handout with the class.

Links
Heads Up! Please make a copy of any
documents you plan to share with students.

For the Students

Unplugged Blocks (Courses C-F) -
Manipulatives 

Debugging Recipe - Student Handout

Vocabulary
Bug - Part of a program that does not work
correctly.
Debugging - Finding and fixing problems in
an algorithm or program.
Program - An algorithm that has been coded
into something that can be run by a machine.

Make a Copy 

Make a Copy 

https://studio.code.org/s/coursee-2019/stage/1/puzzle/1/
https://docs.google.com/document/d/1mvczixGJKW6449WNmmc-r3RL3_2PU0yViiQSsRcTTNY/edit?usp=sharing
https://docs.google.com/document/d/1cRPELQ28TZMJhc68-eYP1D26Uqzcyfx4RDYuThZJGLo/edit
https://docs.google.com/document/d/1mvczixGJKW6449WNmmc-r3RL3_2PU0yViiQSsRcTTNY/edit?usp=sharing


Programming - The art of creating a
program.



 Teacher Tip:

Show the students the right way to help classmates:

Don’t sit in the classmate’s chair
Don’t use the classmate’s keyboard
Don’t touch the classmate’s mouse
Make sure the classmate can describe the solution to
you out loud before you walk away

Teaching Guide
Warm Up (15 min)

Introduction
Ask students to think about problems they have to solve in everyday life.

How do you fix something that isn't working?
Do you follow a specific series of steps?
Some puzzles in this lesson have already been solved for you (yay!), but they don't seem to be working (boo!)
We call the problems in these programs "bugs," and it will be your job to "debug" them.

Students will either be learning a lot of new concepts or reviewing a lot of basic concepts. Based on your class's experience,
you can cover the following vocabulary. We recommend using the following words in sentences if the definitions aren't
explicitly covered.

Vocabulary
This lesson has four new and important vocabulary words:

Program - Say it with me: Pro - Gram An algorithm that has been coded into something that can be run by a machine.

Programming - Say it with me: Pro - Gramm - ing The art of creating a program.

Bug - Say it with me: Bug An error in a program that prevents the program from running as expected.

Debugging - Say it with me: De - Bugg - ing Finding and fixing errors in programs.

Say:

Debugging is a process. First, you must recognize that there is an error in your program. You then work through the
program step by step to find the error. Try the first step, did it work? Then the second, how about now? If you make sure
that everything is working line by line, then when you get to the place that your code isn't doing what it's supposed to, you
know that you've found a bug. Once you've discovered your bug, you can work to fix (or "debug") it!

If you think it will build excitement in the class you can introduce the character of today's puzzles, Scrat from Ice Age. If
students aren't familiar with Scrat, show some videos  of the quirky squirrel running into trouble.

Main Activity (30 min)

Online Puzzles
Teachers play a vital role in computer science education
and supporting a collaborative and vibrant classroom
environment. During online activities, the role of the
teacher is primarily one of encouragement and support.
Online lessons are meant to be student-centered, so
teachers should avoid stepping in when students get
stuck. Some ideas on how to do this are:

Utilize Pair Programming - Student Video
whenever possible during the activity.
Encourage students with questions/challenges to start
by asking their partner.
Unanswered questions can be escalated to a nearby group, who might already know the solution.
Remind students to use the debugging process before you approach.
Have students describe the problem that they’re seeing. What is it supposed to do? What does it do? What does that tell

http://www.iceagemovies.com/uk/characters/scrat
https://www.youtube.com/watch?v=vgkahOzFH2Q


you?
Remind frustrated students that frustration is a step on the path to learning, and that persistence will pay off.
If a student is still stuck after all of this, ask leading questions to get the student to spot an error on their own.

Before letting the students start on the computer, remind them of the advantages of Pair Programming - Student Video
and asking their peers for help. Sit students in pairs and recommend they ask at least two peers for help before they come
to a teacher.

 Code Studio levels

As mentioned in the purpose of this lesson, make sure the students are aware that they will face frustrating puzzles. Tell
them it is okay to feel frustrated, but it is important to work through the problem and ask for help. As the students work
through the puzzles, walk around to make sure no student is feeling so stuck that they aren't willing to continue anymore.

Wrap Up (5 - 10 min)

Journaling
Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any knowledge
they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today’s lesson about?
How did you feel during today’s lesson?
What kind of bugs did you find today?
Draw a bug you encountered in one of the puzzles today. What did you do to "debug" the program?

Extended Learning

Use these activities to enhance student learning. They can be used as outside of class activities or other enrichment.

Planting bugs

Have students go back through previous levels, purposefully adding bugs to their solutions. They can then ask other
students to debug their work. This can also be done with paper puzzles.

Maze Intro: Programming with Blocks  1 (click tabs to see student view)

Practice  2  3  4 (click tabs to see student view)

Debugging with the Step Button  5 (click tabs to see student view)

Practice  6  7  8  9 (click tabs to see student view)

Challenge  10 (click tabs to see student view)

Practice  11  12 (click tabs to see student view)

https://www.youtube.com/watch?v=vgkahOzFH2Q


When other students are debugging, make sure that the criticisms are constructive. If this could be a problem for your
class, go over respectful debugging before this activity by role playing with another student.

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
file://code.org/contact


COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 Ch. 4

10

Ch. 5 11 12 13 Ch. 6 14 15 16 17 Ch. 7 18

Lesson 2: Drawing with Loops
Overview
Watch student faces light up as they make their own gorgeous
designs using a small number of blocks and digital stickers! This
lesson builds on the understanding of loops from previous lessons
and gives students a chance to be truly creative. This activity is
fantastic for producing artifacts for portfolios or parent/teacher
conferences.

Purpose
This series highlights the power of loops with creative and personal
designs.

Offered as a project-backed sequence, this progression will allow
students to build on top of their own work and create amazing
artifacts.

Agenda
Warm Up (15 min)

Introduction

Main Activity (30 min)

Online Puzzles

Wrap Up (15 min)

Journaling

View on Code Studio

Objectives
Students will be able to:

Identify the benefits of using a loop structure
instead of manual repetition.
Differentiate between commands that need to
be repeated in loops and commands that
should be used on their own.

Preparation
Play through the puzzles to find any

potential problem areas for your class.
Make sure every student has a journal.

Vocabulary
Loop - The action of doing something over
and over again.
Repeat - Do something again

https://studio.code.org/s/coursee-2019/stage/2/puzzle/1/


Teaching Guide
Warm Up (15 min)

Introduction
Students should have had plenty of introduction to loops at this point. Based on what you think your class could benefit
from, we recommend:

Creating a new stack design with loops just like in "My Loopy Robotic Friends"
Previewing a puzzle from this lesson

All of these options will either review loops or the artist, which will help prepare your class for fun with the online puzzles!

Main Activity (30 min)

Online Puzzles

 Code Studio levels

Some students may discover where to add repeat  loops by writing out the program without loops then circling sections of

repetitions. If the students in your class seem like they could benefit from this, have them keep paper and pencils beside
them at their machines. Students might also enjoy drawing some of the shapes and figures on paper before they program it
online. (When drawing stamps, it can be easier to symbolize those with simple shapes like circles and squares.)

Wrap Up (15 min)

Artist Intro with JR Hildebrande  1 (click tabs to see student view)

Practice  2  3 (click tabs to see student view)

Loops with the Artist  4 (click tabs to see student view)

Practice  5  6 (click tabs to see student view)

Challenge  7 (click tabs to see student view)

Practice  8  9  10 (click tabs to see student view)

Challenge  11 (click tabs to see student view)

Levels  Extra  Extra (click tabs to see student view)

file://docs.code.org/spritelab/codestudio_repeat/


Journaling
Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any knowledge
they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today’s lesson about?
How did you feel during today’s lesson?
What was the coolest shape or figure you programmed today? Draw it out!
What is another shape or figure you would like to program? Can you come up with the code to create it?

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
file://code.org/contact


COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 Ch. 4

10

Ch. 5 11 12 13 Ch. 6 14 15 16 17 Ch. 7 18

Lesson 3: Conditionals in Minecraft:
Voyage Aquatic
Overview
This lesson was originally created for the Hour of Code, alongside the
Minecraft team. Students will get the chance to practice ideas that
they have learned up to this point, as well as getting a sneak peek at
conditionals!

Purpose
This set of puzzles will work to solidify and build on the knowledge of
loops, and introduce conditionals. By pairing these two concepts
together, students will be able to explore the potential for creating fun
and innovative programs in a new and exciting environment.

Agenda
Warm Up (15 min)

Introduction

Main Activity (30 min)

Online Puzzles

Wrap Up (15 min)

Journaling

Extended Learning

View on Code Studio

Objectives
Students will be able to:

Define circumstances when certain parts of a
program should run and when they shouldn't.
Determine whether a conditional is met based
on criteria.

Preparation
Play through the puzzles associated with

this lesson to find any potential problem
areas for your class.

Make sure every student has a journal.

Vocabulary
Condition - A statement that a program
checks to see if it is true or false. If true, an
action is taken. Otherwise, the action is
ignored.
Conditionals - Statements that only run
under certain conditions.

https://studio.code.org/s/coursee-2019/stage/3/puzzle/1/


Teaching Guide
Warm Up (15 min)

Introduction
Gather the class together and ask two volunteers to walk straight in some direction in the classroom. If they encounter a
chair out of place, they must step over it. If they reach a wall, they must sit down.

Once all of the students are sitting down, ask how you would program a robot to respond to a wall or a chair. Remind
students that you cannot simply say "Step over chair" unless you know there is a chair, and you will not always know there
is a chair. It might be helpful to translate the task into instructions like:

while there is a path ahead
walk forward
if there is a chair, step over it

sit down

Tell students they will be using conditionals during this lesson. Give the definition of:

Condition: A statement that a program checks to see if it is true or false. If true, an action is taken. Otherwise, the action
is ignored.
Conditionals: Statements that only run under certain conditions.

Open up a discussion of when you might use a conditional in your code.

Main Activity (30 min)

Online Puzzles

 Code Studio levels

Students are in for a real treat with this lesson. It's likely most of your students have heard of Minecraft, but give a brief
introduction for those that may not know.

Minecraft is a game of cubes. You can play as Alex or Steve as you work through mazes. You'll need to apick up items, and
explore in a world made up of cubes of things.

Demonstrate one of the puzzles to the class (we recommend puzzle 11.) Once all questions have been addressed,
transition students to computers and let them start pair programming.

Wrap Up (15 min)

Journaling
Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any knowledge
they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

Draw a feeling face to show how you felt during today’s lesson.
Draw something else you could have built in this minecraft world.

Practice  1  2  3  4  5  6  7  8  9  10

 11 (click tabs to see student view)



Can you draw a scene where someone is using a conditional?

Extended Learning
More Minecraft

If you find that your class really enjoys the Minecraft environment, here are some links to other Minecraft games
they can play online. These games will also teach basic coding skills.

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://code.org/minecraft
https://creativecommons.org/
file://code.org/contact


COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 Ch. 4

10

Ch. 5 11 12 13 Ch. 6 14 15 16 17 Ch. 7 18

Lesson 4: Conditionals with the Farmer
Overview
This lesson introduces students to while  loops and if / else

statements. While loops are loops that continue to repeat
commands as long as a condition is true. While loops are used when
the programmer doesn't know the exact number of times the
commands need to be repeated, but the programmer does know what
condition needs to be true in order for the loop to continue looping. If /

Else  statements offer flexibility in programming by running entire

sections of code only if something is true, otherwise it runs something
else.

Purpose
A basic understanding of conditionals is a recommended prerequisite
for Course E. We created this introduction to give a review for the
students already familiar to conditionals and allow practice for the
students that are just learning. If you find that the understanding of
conditionals varies widely in your classroom, we recommend a
strategic pairing of students when completing this online lesson.

Agenda
Warm Up (15 min)

Introduction

Main Activity (30 min)

Online Puzzles

Wrap Up (15 min)

Journaling

Extended Learning

View on Code Studio

Objectives
Students will be able to:

Define circumstances when certain parts of a
program should run and when they shouldn't.
Determine whether a conditional is met based
on criteria.

Preparation
Play through the puzzles to find any

potential problem areas for your class.
Make sure ever student has a journal.

Vocabulary
Condition - A statement that a program
checks to see if it is true or false. If true, an
action is taken. Otherwise, the action is
ignored.
Conditionals - Statements that only run
under certain conditions.
While Loop - A loop that continues to repeat
while a condition is true.

https://studio.code.org/s/coursee-2019/stage/4/puzzle/1/


Teaching Guide
Warm Up (15 min)

Introduction
Gather the class together and ask two volunteers to walk straight in some direction in the classroom. If they encounter a
chair out of place, they must step over it. If they reach a wall, they must sit down.

Once all of the students are sitting down, ask how you would program a robot to respond to a wall or a chair. Remind
students that you cannot simply say "Step over chair" unless you know there is a chair, and you will not always know there
is a chair. It might be helpful to translate the task into instructions like:

while there is a path ahead
walk forward
if there is a chair, step over it

sit down

Tell students they will be using conditionals to solve this problem on Code.org. Give the definition of:

Condition: A statement that a program checks to see if it is true or false. If true, an action is taken. Otherwise, the action
is ignored.
Conditionals: Statements that only run under certain conditions.

Open up a discussion of when you might use a conditional in your code.

Main Activity (30 min)

Online Puzzles

 Code Studio levels

While Loops with the Farmer  1 (click tabs to see student view)

Prediction  2 (click tabs to see student view)

Practice  3  4  5  6 (click tabs to see student view)

Repeat Unit Statements  7 (click tabs to see student view)

Practice  8  9  10 (click tabs to see student view)

"If/Else" with the Bee  11 (click tabs to see student view)

Challenge  12 (click tabs to see student view)



The patterns in these puzzles may not be obvious to every student. We recommend that you play through these levels
beforehand to best understand any problem areas for your class. Also, watching and using the techniques from Pair
Programming - Student Video may be helpful for your class.

Wrap Up (15 min)

Journaling
Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any knowledge
they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today's lesson about?
How do you feel about today's lesson?
What is a conditional? Why would you program a conditional?
Give an example of using a conditional during your day? (ex. If I am hungry, I eat some food; While I am walking
across the street, I keep an eye out for cars)

Extended Learning
While We Play

Gather the class for some fun outside or in a gym with a ball! This could be done in a circle or as a team in a court

Rules:

While the ball is in play, we must all be ready to hit it
If the ball is hit to you, you must keep it in the air
If you hit the ball once, you cannot hit it again (only one touch per person per turn, no double hitting)
If the ball goes out of bound, every student must fall to the ground dramatically. The last kid to fall has to retrieve the
ball.

At the end of the first round, ask the students if they can identify the conditionals in the game. Can they come up with
others they might want in the game?

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

Practice  13 (click tabs to see student view)

https://www.youtube.com/watch?v=vgkahOzFH2Q
https://creativecommons.org/
file://code.org/contact


COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 Ch. 4

10

Ch. 5 11 12 13 Ch. 6 14 15 16 17 Ch. 7 18

Lesson 5: Simon Says
Overview
In this lesson, students will play a game intended to get them thinking
about the way commands need to be given to produce the right result.
This will help them more easily carry over to Sprite Lab in the
upcoming lessons.

Purpose
This lesson is designed to prepare students to think about one of the
core programming concepts in Sprite Lab, behaviors.

Agenda
Warm Up (10 min)

Introduction

Main Activity (20 min)

Simon Says
Extension

Wrap Up (15 min)

Reflection

View on Code Studio

Preparation
Play through the puzzles to find any

potential problem areas for your class.
Make sure ever student has a journal.

https://studio.code.org/s/coursee-2019/stage/5/puzzle/1/



 Discussion
Goal

Goal: Help students think about times when they must
keep of multiple tasks or instructions simultaneously. The
main activity will get students performing silly actions,
either in sequence or simultaneously. This will eventually
lead to connections about a new way to write programs,
but you don't need to the discussion there yet.

Teaching Guide
Warm Up (10 min)

Introduction
Think-Pair-Share: Think of hobby, sport, or activity that
you know how to do well. What does it take to do it well?
Are there times when you need think about multiple
things or perform different actions at the same time?

What parts of your body are you using? Does this
change at different points?
Are there times when you need to stop one action
before you can begin another? (For example, you
must stop dribbling the basketball before you can
shoot.)

 Remarks

Today we're going to play a game where you'll need to keep track of multiple tasks simultaneously. It's a little bit like
Simon Says.

Main Activity (20 min)

Simon Says
 Remarks

In the game Simon Says, one player takes the roll of “Simon” or the leader who gives command to other players. Players
must follow the leader’s commands if and only if they are prefaced with the phrase “Simon Says”. The point of the game is
to think quickly and to distinguish between real and fake commands. In this version of the game, the rules are a little
different.

Rules

All commands should be prefaced with either “begin” or “stop”.

When players are told to “begin” a behavior, they should continue it until told to “stop”. For example, players should not told
be told to clap once, but might be told to “begin clapping”. Their clapping should continue until they are told to “stop
clapping” even if they are given other new behaviors in between.

The leader can also call for the players to “stop everything”.

This should result in everyone just standing at rest regardless of all previous commands.

You as the teacher should take on the role of the leader. You can try make up your own sequences, but here are some you
can try. Be sure to give a little space between commands. For each of these sections, consider running through the entire
sequence without any discussion and later repeating it again after everyone has had a chance to debrief and process any
confusion.

Basic:

Begin marching in place.
Stop marching in place.
Begin clapping.
Stop clapping.
Begin marching in place.
Begin clapping.
Stop everything.



Debrief: What happened when you were told to clap but you were already marching in place? What happens if you are
told to begin two different behaviors at once?

Intermediate:

Begin waving your arms in the air.
Begin bobbing your head.
Stop waving your arms in the air.
Stop bobbing your head.
Begin shaking your knees.
Begin flapping your arms like a bird.
Stop shaking your knees.
Begin bobbing your head.
Begin marching in place.
Stop flapping your arms like a bird.
Stop everything.

Debrief:

What kinds of instructions caused people to make mistakes?

What strategies do you think are helpful for making sure you follow instructions correctly?

Why is it important to keep track of each behavior separately?

Challenging

Begin crouching.
Begin tapping your head.
Stop crouching.
Stop tapping your head.
Begin jumping up and down.
Begin tapping your head.
Stop everything.
Begin clapping.
Begin flapping your arms like a bird.
Stop everything.
Begin crouching.
Begin jumping up and down.
Stop everything.
Begin tapping your knees.
Begin tapping your head.
Stop everything.
Begin spinning to the left.
Begin spinning to the right.
Stop spinning to the left.
Stop spinning to the right.

Debrief: What happens if two behaviors seem to conflict with each other?

What should you do when told to clap your hands and flap your arms at the same time?

How can you jump up and down while crouching?

What happens if you need to tap your knees and your head at the same time?

When you were told to spin in two opposite directions what did you see people do? What would happen if you were told to
spin left and right at the exact same time?

Extension



If you want to make things even more complicated, you can consider changing the rules so that only some players follow
some commands. For example, you could try commands like “All girls begin spinning to the left”, “All boys begin clapping
your hands”, or “Everyone stop everything.”

Wrap Up (15 min)

Reflection
Journal: Think back to the activity or hobby you discussed at the beginning of class. Using "begin" and "stop" commands
write down the instructions you could give someone if you wanted them to act like they were they were doing it. Be sure to
remember when they might need to stop something before beginning something new.

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
file://code.org/contact


COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 Ch. 4

10

Ch. 5 11 12 13 Ch. 6 14 15 16 17 Ch. 7 18

Lesson 6: Swimming Fish with Sprite Lab
Overview
In this lesson, students will learn about the two concepts at the heart
of Sprite Lab: sprites and behaviors. Sprites are characters or objects
on the screen that students can move, change, and manipulate.
Behaviors are actions that sprites will take continuously until they are
stopped.

Purpose
This lesson is designed to introduce students to the core vocabulary
of Sprite Lab, and allow them to apply concepts they learned in other
environments to this tool. By creating a fish tank, students will begin to
form an understanding of the programming model of this tool, and
explore ways they can use it to express themselves.

Agenda
Warm Up (10 min)

Introduction

Bridging Activity

Swimming Fish Teacher Sandbox

Main Activity (20 min)

Online Puzzles

Wrap Up (15 min)

Journaling

View on Code Studio

Objectives
Students will be able to:

Define “sprite” as a character or object on the
screen that can be moved and changed.
Create new sprites and assign them
costumes and behaviors.

Preparation
Play through the puzzles to find any

potential problem areas for your class.
Make sure every student has a journal.

Vocabulary
Behavior - An action that a sprite performs
continuously until it’s told to stop.
Sprite - A graphic character on the screen
with properties that describe its location,
movement, and look.

Introduced Code
set background color

make new sprite

set sprite property

https://studio.code.org/s/coursee-2019/stage/6/puzzle/1/
file://docs.code.org/spritelab/gamelab_setBackground/
file://docs.code.org/spritelab/gamelab_makeNewSpriteAnon/
file://docs.code.org/spritelab/gamelab_setProp/



 Content Corner

Sprite Lab works differently in some ways from the other
online tools in the course. Most importantly, all code runs
in order and immediately unless attached to an event
block. Telling a sprite to begin and start the same behavior
won't result in any observable effect because there is no
time between each action.

If students bring up time, such as making a behavior
happen for a set duration, it can be helpful to reframe
things by asking "When should the behavior stop?"
Programs like this will rely on events to make things start
and stop as desired.



Teaching Guide
Warm Up (10 min)

Introduction
Today students will learn how to work with sprites in Sprite Lab.

Display: Pull up a previous puzzle from Code.org, ideally one containing a "main character" like Scrat from Ice Age or one
of the Angry Birds.

Discuss: Let the students know that this character on the screen is a "sprite." It is a graphic that is controlled by a program.
In this lesson, students will have the opportunity to choose their own sprites to control.

Bridging Activity

This demostration and discussion can help students make the connection from the previous unplugged lesson "Simon
Says" into the new Sprite Lab environment.

Swimming Fish Teacher Sandbox
Using a projector, show the sandbox level to your
students. The goal is to make connections to the previous
lesson and show them some of the unique ways that
Sprite Lab works. Model writing a few programs and ask
students to share their observations.

What blocks would we need to connect to make the
tumbleweed spin?
What would happen if we told the sprite to begin two
behaviors at once?
Will the sprite ever stop these behaviors on its own?
If we want the sprite to stop a behavior when we click
it, how might we do that?

Before heading into the Main Activity, introduce or review
today's lesson vocabulary.

Main Activity (20 min)

Online Puzzles
Goal: Today, students will be programming their own Fish Tank. They’ll begin by learning how to put some sprites on the
screen, then they will make them move. Finally, they’ll customize their fish tank to add whatever creatures and objects they
want.

Transition: Move students to their machines. Encourage students to follow the instructions for each puzzle. Help them
realize that this is a creative activity, intended to help them learn Sprite Lab. It is not an assessment activity of any sort.

https://studio.code.org/levels/18623


 Teaching Tip

Encourage students with questions/challenges to start by
asking their partner. Unanswered questions can be
escalated to a nearby group, who might already know the
solution. Have students describe the problem that they’re
seeing:

What is it supposed to do?
What does it do?
What does that tell you?

 Code Studio levels

Wrap Up (15 min)

Journaling
Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any knowledge
they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today's lesson about?
How do you feel about today's lesson?
How did it feel to make a scene that was more creative?
Was it difficult to finish a lesson where there was no clear "right" and "wrong"?

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

Introducing Sprite Lab  1 (click tabs to see student view)

Prediction  2 (click tabs to see student view)

Mini-Project: Swimming Fish  3  4  5 (click tabs to see student view)

How to Make a Sprite  6 (click tabs to see student view)

Mini-Project: Swimming Fish (continued)  7  8

(click tabs to see student view)

Free Play  9 (click tabs to see student view)



If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
file://code.org/contact


COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 Ch. 4

10

Ch. 5 11 12 13 Ch. 6 14 15 16 17 Ch. 7 18

Lesson 7: Alien Dance Party with Sprite
Lab
Overview
This lesson features Sprite Lab, a platform where students can create
their own interactive animations and games. In addition to behaviors,
today students will incorporate user input as events to create an "alien
dance party".

Purpose
Students will use events to make characters move around the screen,
make noises, and change backgrounds based on user input. This
lesson offers a great introduction to events in programming and even
gives students a chance to show creativity! At the end of the puzzle
sequence, students will be presented with the opportunity to share
their projects.

Agenda
Warm Up (5 min)

Introduction

Main Activity (30 min)

Online Puzzles

Wrap Up (10 min)

Journaling

View on Code Studio

Objectives
Students will be able to:

Identify actions that correlate to input events.
Create an interactive animation using sprites,
behaviors, and events.

Preparation
Play through the puzzles to find any

potential problem areas for your class.
Make sure every student has a journal.

Vocabulary
Event - An action that causes something to
happen.

Introduced Code
set background

random location

location picker

change color

remove color

sprite clicked

sprite touches sprite

https://studio.code.org/s/coursee-2019/stage/7/puzzle/1/
file://docs.code.org/spritelab/gamelab_setBackgroundImage/
file://docs.code.org/spritelab/gamelab_randomLocation/
file://docs.code.org/spritelab/gamelab_location_picker/
file://docs.code.org/spritelab/gamelab_setTint/
file://docs.code.org/spritelab/gamelab_removeTint/
file://docs.code.org/spritelab/gamelab_spriteClicked/
file://docs.code.org/spritelab/gamelab_whenTouching/



 Teaching Tip

Encourage students with questions/challenges to start by
asking their partner. Unanswered questions can be
escalated to a nearby group, who might already know the
solution. Have students describe the problem that they’re
seeing:

What is it supposed to do?
What does it do?
What does that tell you?

Teaching Guide
Warm Up (5 min)

Introduction
Today students will visit events in programming.

Demo: Ask the students to raise their hands in the air.

What you did was declare an event. When you say "raise your hands in the air" the students responded by raising their
hands. In coding, you would declare this by saying something like "when I say 'raise your hands,' you raise your hands".

You can also think of cities as declaring events. There are laws that say "when there is a green light, cars move through the
intersection".

Discuss: Ask the students why they think this is an event.

Today, students will play in Sprite Lab, but the events they will be working on will be more like the video games they are
used to playing. Events will take the form of actions, such as clicking the screen or two characters running into each other.

Display: Begin by showing Puzzle 1 to your students.

Think/Pair: Ask them to predict what will happen when the code is run, and to discuss with their neighbors. Run the code,
and discuss the outcome.

Main Activity (30 min)

Online Puzzles
Goal: Today, students will be creating their own alien
dance party! They’ll begin by reviewing how to put sprites
on the screen, then they will assign them behaviors and
learn to change those behaviors when an event is
initiated.

Transition: Move students to their machines. Encourage
students to follow the instructions for each puzzle. Help
them realize that this is a creative activity, intended to
help them learn Sprite Lab. It is not an assessment
activity of any sort.

 Code Studio levels

Prediction  1 (click tabs to see student view)

Video  2 (click tabs to see student view)

Mini-Project: Alien Dance Moves  3  4  5  6

(click tabs to see student view)

Mini-Project: Alien Dance Party  7  8  9 (click tabs to see student view)



Wrap Up (10 min)

Journaling
Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any knowledge
they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today's lesson about?
How do you feel about today's lesson?
How did it feel to have control over what your characters were able to do?
Did you change the program in any way to make it feel more like your own?

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
file://code.org/contact


COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 Ch. 4

10

Ch. 5 11 12 13 Ch. 6 14 15 16 17 Ch. 7 18

Lesson 8: Private and Personal Information
Overview
Developed by Common Sense Education, this lesson is about the
difference between information that is safe to share online and
information that is not.

As students visit sites that request information about their identities,
they learn to adopt a critical inquiry process that empowers them to
protect themselves and their families from identity theft. In this lesson,
students learn to think critically about the user information that some
websites request or require. They learn the difference between private
information and personal information, as well as how to distinguish
what is safe or unsafe to share online.

Purpose
Common Sense Education has created this lesson to teach kids the
importance of security on the internet. By discussing the difference
between personal and private information, students will be able to
recognize what information should and shouldn't be shared. Students
will also learn what signs you should look for to determine if a website
is safe or not.

Agenda
Warm Up (5 min)

Introduction

Main Activity (35 min)

Log In
Private and Personal
What's Safe to Share Online?

Wrap Up (15 min)

Flash Chat: What did we learn about today?
Journaling

Assessment (10 min)

Private and Personal Information

View on Code Studio

Objectives
Students will be able to:

Learn about the benefits and risks of sharing
information online.
Understand what type of information can put
them at risk for identity theft and other scams.

Preparation
Copy the Protect Yourself Student

Handout (7th page of the Common Sense
Education - Private and Personal
Information - Teacher Prep Guide), one
for each student.

Copy the All About Me Student
Handout (6th page of the Common Sense
Education - Private and Personal
Information - Teacher Prep Guide), one
for each student.

Print out an assessment (8th page of the
Common Sense Education - Private and
Personal Information - Teacher Prep
Guide) for each student. Teacher version is
the page after the student assessment.

Preview websites like Neopets,
Nickelodeon, and BookAdventure and
prepare to show them to the class.

Review CSF Digital Citizenship -
Resource List for more online safety
content.

Links
Heads Up! Please make a copy of any
documents you plan to share with students.

For the Teachers

Common Sense Education - Private and
Personal Information - Teacher Prep
Guide
Common Sense Education  - Website

https://studio.code.org/s/coursee-2019/stage/8/puzzle/1/
https://www.commonsense.org/education/lesson/private-and-personal-information-3-5
https://www.commonsense.org/education/lesson/private-and-personal-information-3-5
https://www.commonsense.org/education/lesson/private-and-personal-information-3-5
http://www.neopets.com/
http://www.nick.com/
http://www.bookadventure.com/Home.aspx
https://docs.google.com/document/d/1ISbajpevPxTqNZVyOOBdfrG990IHF1NyLUojnlY_Wh0/edit?usp=sharing
https://www.commonsense.org/education/lesson/private-and-personal-information-3-5
https://www.commonsensemedia.org/educators/scope-and-sequence


CSF Digital Citizenship - Resource List

Vocabulary
Identity Theft - When a thief steals
someone’s private information in order to
pretend to be that person.
Personal Information  - Information that
can’t be used to identify you.
Private Information - Information that can
be used to identify you.
Register (Online) - To enter your
information in order to sign up and get access
to a website.

https://docs.google.com/document/d/1ISbajpevPxTqNZVyOOBdfrG990IHF1NyLUojnlY_Wh0/edit?usp=sharing


 Teacher Tip

As an offline alternative, print out and copy the website
pages that ask for registration and log-in information.
Distribute these to the students.

Teaching Guide
Warm Up (5 min)

Introduction
Ask:

What types of information do you think are okay to share publicly online such as on an online profile that others will see?
Interests and favorite activities
Opinions about a movie
First name

What are some examples of websites where you must register in order to participate?
Social networking sites
Video-sharing sites
Youth discussion sites
Ask-an-expert sites
Game sites

Write the names of the websites on the board. Explain that it's important to know that sharing some kinds of user
information can put you and your family's privacy at risk.

Main Activity (35 min)

Log In
Project for the class, or have students go online to
Neopets, Nickelodeon, or BookAdventure. Do not
ask the students to sign up for these sites!

Discuss with the students the kinds of information that
each website requires or requests before the users can participate.

Ask:

What information is required? Why do you think it is required?
First name, username, password, password hint, gender, the state you live in, parent's permission, etc. This
information is required because it helps distinguish one person from another. Or perhaps the website is keeping a
record of who uses it.

What information is optional? Why do you think it is optional?
Parent's email, birthday, state, country, gender, etc. This information is likely optional because the website does not
require it for payment or to distinguish people. Or perhaps the website wants to keep track of this kind of information.

Why do you think websites ask for this kind of information?
They want to get people to pay in order to use the site, they want to send messages to people who are signing up, or
they want to try to sell things to those people.

Point Out that you do not have to fill out fields on websites if they are not required. Required fields are usually marked by
an asterisk (*) or are highlighted in red.

Private and Personal

https://cdo-curriculum.s3.amazonaws.com/media/uploads/CommonSenseEducationShort.png
http://www.neopets.com/
http://www.nick.com/
http://www.bookadventure.com/Home.aspx


 Teacher Tip

If you'd like a more clear distinction between "personal"
and "private" information in these definitions, you can use
other phrases like "friendly information" or "sharable
information" to better define the line that the students
should recognize. We chose to keep "personal" and
"private" to stay true to Common Sense Education's lesson
plan.

Explain to the students that some kinds of information are generally safe to share on the internet and some are not.
However, the information that's considered safe should not be shared one-on-one with people the students don't already
know offline.

Define:

Personal Information : Information that can’t be
used to identify you.
Private Information: Information that is about you
and can be used to identify you.

Emphasize that personal information is usually safe to
share online. Private information is usually unsafe to
share online, meaning students should get permission
from a parent or guardian before sharing this kind of
information.

Share the following examples of information that is safe or unsafe to share:

SAFE - Personal Information UNSAFE - Private Information

- Your favorite food
- Your opinion (though it shoud be done
respectfully)
- First name (with permission)

- Mother's maiden name
- Social Security number
- Your date of birth
- Parents' credit card
information
- Phone number

Ask:

Why would someone want to steal someone else's identity on the internet?
To steal money
To do something bad or mean
To hide their real identity

Define:

Identity Theft: When a thief steals someone’s private information in order to pretend to be that person.

Explain that an identity thief uses private information to pretend to be the person whose identity he or she has stolen.
Once the thief has taken someone’s identity, he or she can use that person’s name to get a driver’s license or buy things,
even if the person whose identity they stole isn’t old enough to do these things! It’s often not until much later that people
realize their identity has been stolen. Identity thieves may also apply for credit cards in other people’s names and run up big
bills that they don’t pay off. Let students know that identity thieves often target children and teens because they have a
clean credit history and their parents are unlikely to be aware that someone is taking on their child’s identity.

Emphasize the difference between private information (which can be used to steal your identity) and personal information
(which cannot be used to steal your identity). Invite students to answer the following questions (write their answers on the
board):

Ask:

What kinds of private information could an identity thief use to find out and steal your identity?
First and last name, postal address, email address, phone numbers, passwords, credit card numbers, Social Security
number, mother's maiden name.

What kinds of personal information could you share about yourself without showing your identity?
Your age, gender, how many siblings you have, your favorite music, your favorite food, what pets you have, the name
of your pet, your opinion about something.

Explain to students that on the internet, people you interact with could be your friends next door or strangers who live on



the other side of the world. Because it’s hard to know the intentions of people who you’ve never met before, it is best to
remain cautious when sharing your information. You wouldn’t give strangers your private information in the real world, and
you need to be just as careful when you’re online.

Remind students how important it is each time they share information online to stop and think: “Am I giving out information
that I should keep private?” Point out that it can sometimes be safe to give out some private information. For example, a
website might ask for your birth date or email address. But students should always ask their parent or guardian before
giving out private information.

Distribute the Protect Yourself Student Handout  and have students complete the activity. Review the answers as a
class.

What's Safe to Share Online?
Distribute the All About Me Handout . Have students write down all the personal information they would like to share on
a public profile in an online community. Emphasize that even though personal information is safe to share online, it is okay
to choose not to share it. Remind students that everything on the list should be safe to share; none of it should be private
information that can put their identity at risk.

Encourage students to share their lists with the class.

Ask:

Is there anything on the lists that could be used by an identity thief? Why?
Guide students to explain their answers and encourage them to use the vocabulary terms.

Wrap Up (15 min)

Flash Chat: What did we learn about today?
You can use these questions to assess your students’ understanding of the lesson objectives. You may want to ask
students to reflect in writing on one of the questions, using a journal or an online blog/wiki.

Ask:

What is identity theft?
Using someone else's private information to pretend to be that person.

How do personal information and private information differ?
Private information, such as a Social Security number, is unsafe to share. It should be kept private so that identity
thieves cannot use it. Personal information, such as your favorite food, cannot be used by identity thieves and is safe
to share. Even though personal information is usually safe to share online, you might choose not to share this
information, and that’s fine.

What would be a good rule for kids about giving out private information?
They should not share it online without the permission of a teacher, parent, or guardian.

Journaling
Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any knowledge
they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What did you learn in today's lesson?
How do you feel about today's lesson?
Give an example of personal information and private information.
What's a website that you use often? How do you know it is a safe website to use?

Assessment (10 min)



Private and Personal Information
Hand out the assessment to students. Allow students time to complete the assessment. If there is time left over, go over the
answers with the students.

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

NI - Networks & the Internet

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
file://code.org/contact


COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 Ch. 4

10

Ch. 5 11 12 13 Ch. 6 14 15 16 17 Ch. 7 18

Lesson 9: About Me with Sprite Lab
Overview
By creating an interactive poster with SpriteLab, students will apply
their understanding of sharing personal and private information on the
web.

Purpose
This lesson is meant to make the previous lesson on personal and
private information personally relevant for students. With SAFE
(personal) and UNSAFE (private) examples in mind, students practice
safe self-expression on the web, using SpriteLab to fashion their own
sprite costumes and generate text.

Agenda
Warm Up (10 min)

Introduction
Review of "Personal and Private Information"

Main Activity (30 min)

Application - Interactive Poster

Wrap Up (15 min)

Journaling

View on Code Studio

Objectives
Students will be able to:

Choose what information about themselves is
safe to share online.
Create an interactive computer program that
expresses who they are with text and custom
images.

Preparation
Play through the puzzles to find and

potential problem areas for your class.
Consider making an example project

yourself to share with the class.
Make sure every student has a journal.

Links
Heads Up! Please make a copy of any
documents you plan to share with students.

For the Teachers

Pause and Think Online  - Video

Introduced Code
print

https://studio.code.org/s/coursee-2019/stage/9/puzzle/1/
https://www.youtube.com/watch?v=rgbZAWnOWOo
file://docs.code.org/spritelab/gamelab_printText/



 Teaching Tip

Before beginning, be sure to review your classroom's
policy on appropriate language and behavior. Students will
be creating custom text and images for this lesson. This
means they should be mindful of concepts covered in the
personal and private information lesson, as well as general
classroom etiquette. As students work, be sure to verify
that their posters do not violate your classroom policies.

Teaching Guide
Warm Up (10 min)

Introduction
Today students will apply what they've learned about personal and private information to design an interactive poster about
themselves with SpriteLab.

Review of "Personal and Private Information"
Remind students of information that is safe to share online and information that is strictly private.

SAFE - Personal Information UNSAFE - Private
Information

Your favorite food
Your opinion 
(though it shoud be done
respectfully)
First name 
(with permission)

Mother's maiden name
Social Security number
Your date of birth
Parents' credit card information
Phone number

Discuss other examples of the two categories above.

Main Activity (30 min)

Application - Interactive Poster
Goal: Today, students will be creating their own
interactive posters with SpriteLab! They'll begin by
working through a few examples centered on "Rikki", a
fictional girl who needs their help deciding what
information she should share on her poster. Then, after a
quick introduction on creating custom sprite costumes,
students will be free to create their posters to their liking.

Model: Show students the first two or three levels from
today's online puzzles. Demonstrate how the new print

block works, along with how they can use the Costumes tab to create and edit costumes. If you have already gone through
the entire lesson yourself, you can show them your own finished poster for inspiration!

Transition: Move students to their machines. Encourage students to follow the instructions for each puzzle.

Reminder: Remind the students to only share their work with their close friends or family. For more information watch or
show the class Pause and Think Online - Video.

 Code Studio levels

Free Play  1 (click tabs to see student view)

file://docs.code.org/spritelab/gamelab_printText/


Wrap Up (15 min)

Journaling
Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any knowledge
they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today's lesson about?
How do you feel about today's lesson?
What else would you like to add to your poster?

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

IC - Impacts of Computing

NI - Networks & the Internet

If you are interested in licensing Code.org materials for commercial purposes, contact us.

Mini-project: Interactive Poster  2  3  4  5  6

(click tabs to see student view)

https://creativecommons.org/
file://code.org/contact


COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 Ch. 4

10

Ch. 5 11 12 13 Ch. 6 14 15 16 17 Ch. 7 18

Lesson 10: Designing for Accessibility
Overview
In this lesson, students will learn about accessibility and the value of
empathy through brainstorming and designing accessible solutions for
hypothetical apps.

Purpose
Through learning about accessibility, students recognize the impacts
of computing beyond their own lives. Accessibility might not seem like
a relevant CS topic, but creating technology that is accessible for
underserved users helps make tech better for everyone else as well.

Agenda
Warm Up (5 min)

Background and Motivation

Main Activity (35 min)

Designing for Accessibility Scenarios (10 min)
App Redesign Activity (25 min)

Wrap Up (5 min)

View on Code Studio

Objectives
Students will be able to:

In their own words, describe the impact of
mobile apps on the modern world.
Explain why accessibility is an important part
of designing an app for users.
Improve upon an existing app design by
addressing the accessibility needs of users.

Preparation
For context, read about the types of

disabilities here
Read through the speaker notes in the

slide deck.
Prepare enough sketching/drawing

supplies for all students.

Links
Heads Up! Please make a copy of any
documents you plan to share with students.

For the Students

Designing for Accessibility  - Slide Deck

https://studio.code.org/s/coursee-2019/stage/10/puzzle/1/
https://www.w3.org/WAI/people-use-web/abilities-barriers/
https://docs.google.com/presentation/d/1hgMk91Ij1UxeobZ74uMiucJ0261yaHf5WLU9ItoQKZA/edit?usp=sharing


Teaching Guide
Warm Up (5 min)

Background and Motivation
Discuss: Ask students to define the term "app" in their own words. What is an app? What kinds of apps are there? Where
do we use apps? While discussing, show screenshots or examples of apps on your smartphone or tablet if possible.

Say: Ensure that all students are on the same page regarding this topic by introducing some key terms and concepts.

In this course we have been learning how to code. Code is used to create computer applications. Games, web browers,
media players... the list of applications goes on and on!
App is short for application. Usually, apps more specifically refer to applications running on small computers called
mobile devices.
Smartphones and tablets are examples of mobile devices.

Discuss: Apps are everywhere! Ask students why they think apps have become so popular. Here are some example
explanations:

Many people can more easily access or afford a mobile device (e.g., smartphone) than a larger computer with a
keyboard, mouse, and so forth.
Apps can address a variety of needs. For example, if I need a ride somewhere, I might try a ride sharing app and get
there quickly. If I want to know what movies I should watch, there's probably an app that can help me decide. And of
course, if I want to call or text someone on my phone, I use apps for those as well!

Say: Introduce accessibility with the remarks below.

As apps become used by more and more people, app developers often come across issues that they had not
considered, likely because they have never experienced those issues in their own lives.
Many of these issues are related to accessibility. In the world of computer science, accessibility is about creating
technology for people with disabilities.
Disabilities include physical, auditory, visual, and many others.
Disabilities are diverse and impact people in different ways. For example, someone who is slightly visually impaired
might simply wear glasses. Someone who is severely visually impaired might be considered "blind" and will need more
assistance.

Transition: Tell students you'd like to introduce them to a few kids who, even though they have disabilities, are just like
them.

Main Activity (35 min)

Designing for Accessibility Scenarios (10 min)
Display: Display each scenario from the Designing for Accessibility Slide Deck . While displaying a scenario image,
read its accompanying script to the class (see below). Discussion questions are included in relevant slides.

 Designing for Accessibility Scenarios

Slide 1: Meet Wei

Wei is a talented kid who LOVES music. She plays piano and sings very well!
Wei is visually impaired. While she is not completely blind, it is very difficult for her to see things, even if they are near
to her eyes.
Wei has had to learn piano differently from kids who aren’t visually impaired, but that hasn’t stopped her from becoming
a great musician!
Wei recently began creating her own music. She is very proud of it! She would like to record and share her music with



her friends.

Slide 2: Introducing Grammaphone!

Grammaphone is a popular new app that allows people to upload and share their own music with friends.
Here is a screenshot of the home screen. What do you think about it? How do you think this app works?

Slide 3: Wei’s Problem

Wei needs to use Grammaphone to share her music. After all, it’s the most popular music sharing app!
However, she’s having a difficult time using the app. Why do you think that is?

Slide 4: Meet Roger

Roger is an energetic kid who loves video games! He especially likes playing sports games with his friends.
Things have been hard for Roger lately, though. Due to an accident a few years ago, Roger’s hand had to be
“amputated” (surgically removed).
Thankfully, computer scientists, engineers, and doctors are working hard to provide Roger with a cool-looking robotic
“prosthetic hand”, which will be awesome!
But for now, Roger wants to play sports video games with his friends!

Slide 5: Introducing Football Frenzy!

Football Frenzy is a new mobile game that everyone loves!
It has cool graphics, awesome sound effects, tight controls, and amazing action!
Here’s a screenshot of the game in action. Based on the interface, how do you think this game is played?

Slide 6: Roger’s Problem

All of Roger’s friends play Football Frenzy. It’s connected online so you can play it anywhere!
Roger wants to play Football Frenzy with them, but he is having a difficult time. Why do you think that is?

Slide 7: I Wish...

Neither of these apps were designed with people like Wei and Roger in mind.
When it comes to these apps, what specific features do you think Wei and Roger wish for?
Let’s make their wishes come true by redesigning these apps!

App Redesign Activity (25 min)
The final scenario allows students to sketch a redesign of one app from the scenarios ("Grammaphone" for Wei or "Football
Frenzy" for Roger).

Students should primarily focus their efforts on making their redesigned app more accessible for either of them, along with
any other accessibility features they can think of. Students can design as many screens for the app as they wish, and they
do not need to make their app look anything like the original examples.

If there is time, students may redesign apps for both characters.

Distribute: Pass out crayons/pencils/etc to each student as they open their Thinkspot Journals.

Share: After designing, students share their app design with a neighbor, or if there is time, some students can share with
the whole class. Each student should answer how their app design addresses the need of the user in question.

Wrap Up (5 min)

Discuss: Discuss real-world examples of how apps and other technology can be made more accessible. Ask students how
they think making something more accessible can also make it better for others. One example is wheelchair ramps near
building entrances. These were originally made for people with wheelchairs, but they are also convenient for people with
baby strollers, dollies, and other wheeled equipment.

Standards Alignment



Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CS - Computing Systems

IC - Impacts of Computing

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
file://code.org/contact


COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 Ch. 4

10

Ch. 5 11 12 13 Ch. 6 14 15 16 17 Ch. 7 18

Lesson 11: Nested Loops in Maze
Overview
In this online activity, students will have the opportunity to push their
understanding of loops to a whole new level. Playing with the Bee and
Plants vs Zombies, students will learn how to program a loop to be
inside of another loop. They will also be encouraged to figure out how
little changes in either loop will affect their program when they click
Run .

Purpose
In this introduction to nested loops, students will go outside of their
comfort zone to create more efficient solutions to puzzles.

In earlier puzzles, loops pushed students to recognize repetition.
Here, students will learn to recognize patterns within repeated
patterns to develop these nested loops. This stage starts off by
encouraging students try to solve a puzzle where the code is irritating
and complex to write out the long way. After a video introduces
nested loops, students are shown an example and asked to predict
what will happen when a loop is put inside of another loop. This
progression leads into plenty of practice for students to solidify and
build on their understanding of looping in programming.

Agenda
Warm Up (10 min)

Introduction

Main Activity (30 min)

Online Puzzles

Wrap Up (15 min)

Journaling

View on Code Studio

Objectives
Students will be able to:

Break complex tasks into smaller repeatable
sections.
Recognize large repeated patterns as made
from smaller repeated patterns.
Identify the benefits of using a loop structure
instead of manual repetition.

Preparation
Play through the puzzles to find any

potential problem areas for your class.
Make sure every student has a journal.

Vocabulary
Loop - The action of doing something over
and over again.
Repeat - Do something again

https://studio.code.org/s/coursee-2019/stage/11/puzzle/1/


Teaching Guide
Warm Up (10 min)

Introduction
Briefly review with the class what loops are and why we use them.

What do loops do?
Loops repeat a set of commands. (see vocabulary on command if students don't recognize it)

How do we use loops?
We use loops to create a pattern made of repeated actions.

Tell the class that they will now be doing something super cool: using loops inside loops. Ask the class to predict what kinds
of things we would be using a loop inside of a loop for.

"If a loop repeats a pattern, then looping a loop would repeat a pattern of patterns!"

Students don't need to understand this right away, so feel free to move on to the online puzzles even if students still seem a
little confused.

Main Activity (30 min)

Online Puzzles
We highly recommend Pair Programming - Student Video  in this lesson. This may not be an easy topic for the majority
of your students. Working with a partner and discussing potential solutions to the puzzles might ease the students' minds.

Also, have paper and pencils nearby for students to write out their plan before coding. Some puzzles have a limit on the
number of certain blocks you can use, so if students like to write out the long answer to find the repeats, paper can be
useful.

 Code Studio levels

Practice  1  2 (click tabs to see student view)

Video  3 (click tabs to see student view)

Practice  4  5  6  7  8  9 (click tabs to see student view)

Challenge  10 (click tabs to see student view)

Practice  11 (click tabs to see student view)

Prediction  12 (click tabs to see student view)

Free Play  13 (click tabs to see student view)

https://www.youtube.com/watch?v=vgkahOzFH2Q


Wrap Up (15 min)

Journaling
Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any knowledge
they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today's lesson about?
How did you feel about today's lesson?
What is a nested loop?
Can you draw a puzzle that would use a nested loop? Try coding the solution to your own puzzle.

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

Levels  Extra  Extra (click tabs to see student view)

https://creativecommons.org/
file://code.org/contact


COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 Ch. 4

10

Ch. 5 11 12 13 Ch. 6 14 15 16 17 Ch. 7 18

Lesson 12: Fancy Shapes using Nested
Loops
Overview
Students will create intricate designs using Artist in today's set of
puzzles. By continuing to practice nested loops with new goals,
students will see more uses of loops in general. This set of puzzles
also offers a lot more potential for creativity with an opportunity for
students to create their own design at the end of the stage.

Purpose
In this online activity, students will create designs in Artist that they
can proudly share with their loved ones.

The purpose of this activity is to utilize nested loops as a way to
inspire students with artistic minds to see coding as another creative
outlet. This set of puzzles was built to develop critical thinking skills,
an understanding of elementary geometry, and creativity -- all within
the scope of nested loops!

Agenda
Warm Up (10 min)

Introduction

Main Activity (30 min)

Online Puzzles

Wrap Up (15 min)

Flash Chat: What did you make today?
Journaling

Extended Learning

View on Code Studio

Objectives
Students will be able to:

Combine simple shapes into complex designs
with nested loops.
Count the number of times an action should
be repeated and represent it as a loop.
Break complex tasks into smaller repeatable
sections.

Preparation
Play through the puzzles to find any

potential problem areas for your class.
Make sure every student has a journal.
Consider what supports your students

might need with turns and angles.

Links
Heads Up! Please make a copy of any
documents you plan to share with students.

For the Students

Turns & Angles - Student Handout

Turns & Angles - Student Video

Vocabulary
Loop - The action of doing something over
and over again.
Repeat - Do something again

Make a Copy 

https://studio.code.org/s/coursee-2019/stage/12/puzzle/1/
https://drive.google.com/open?id=1JDeb07W7myaLu7Wjd-fPM8whSaO8aw37m9SJ_7B4Su4
https://www.youtube.com/watch?v=sPKXZBL_Yvs


 Teacher Tip

Students will have the opportunity to share their own work
at the end of this stage. These pieces of artwork can be
shared virtually or printed out. We recommend printing out
the class's work and displaying it for the students' loved
ones to see.

Teaching Guide
Warm Up (10 min)

Introduction
Review using nested loops in Maze.

Ask the students how they felt about nested loops.

What did they like and dislike about them?
What are some advantages of using nested loops?

Tell the students that they will be using nested loops again, but in Artist this time. They will be making amazing projects
today!

Main Activity (30 min)

Online Puzzles
Students might benefit from having a puzzle done as a
class. If you believe your class could benefit from that,
we recommend puzzle 2 of stage 5.

We highly recommend Pair Programming - Student
Video in this lesson. This may not be an easy topic for
the majority of your students. Working with a partner and
discussing potential solutions to the puzzles might ease
the students' minds.

Be sure to have paper and pencils nearby for students to write out their plan before coding. Some puzzles have a limit on
the number of certain blocks, so paper can be helpful if students like to write out the long answer before searching for
repeating patterns.

 Code Studio levels

Wrap Up (15 min)

Flash Chat: What did you make today?
Get the class together and allow time for students to show off their Artist drawings! Make sure everyone feels included by
checking that every student is done with their Artist drawing before starting the presentations. Discuss how each drawing
was made and what was in the student's nested loop.

Journaling
Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any knowledge

Mini-Project: Snowflake #1  1  2  3  4  5

(click tabs to see student view)

Mini-Project: Snowflake #2  6  7  8  9 (click tabs to see student view)

https://www.youtube.com/watch?v=vgkahOzFH2Q


they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today's lesson about?
How did you feel during today's lesson?
Draw something you used nested loops to make.
How do nested loops help you code complex images?

Extended Learning
Together We Draw

Have the students pair up with two pieces of paper. Partners should individually draw a shape or simple pattern. Once the
simple pattern has been drawn, have the partners switch papers. Now each partner must repeat that pattern how ever many
times they want. For example, if one partner draws a square, the other partner can make a rectangle made up of squares! If
one partner draws a staircase pattern, the other student can fill the page with staircases! Each pair will have a set of unique
drawings. If there's time, have students discuss how they might code their drawings.

Here are some examples: 

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://cdo-curriculum.s3.amazonaws.com/media/uploads/D.5-Examples.jpg
https://creativecommons.org/
file://code.org/contact


COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 Ch. 4

10

Ch. 5 11 12 13 Ch. 6 14 15 16 17 Ch. 7 18

Lesson 13: Nested Loops with Frozen
Overview
Now that students know how to layer their loops, they can create so
many beautiful things. This lesson will take students through a series
of exercises to help them create their own portfolio-ready images
using Anna and Elsa's excellent ice-skating skills!

Purpose
In this series, students will get practice nesting loops while creating
images that they will be excited to share.

Beginning with a handful of instructions, students will make their own
decisions when it comes to creating designs for repetition. They will
then spin those around a variety of ways to end up with a work of art
that is truly unique.

Agenda
Warm Up (15 min)

Introduction

Main Activity (30 min)

Code Studio

Wrap Up (15 min)

Journaling

View on Code Studio

Objectives
Students will be able to:

Describe when a loop, nested loop, or no loop
is needed.
Recognize the difference between using a
loop and a nested loop.
Break apart code into the largest repeatable
sequences using both loops and nested
loops.

Preparation
Play through the puzzles to find and

potential problem areas for your class.
Make sure every student has a journal.

Vocabulary
Loop - The action of doing something over
and over again.
Repeat - Do something again

https://studio.code.org/s/coursee-2019/stage/13/puzzle/1/


Teaching Guide
Warm Up (15 min)

Introduction
Ask the class to discuss the last set of puzzles.

What did they like/dislike?
Which puzzles were hard? Why?
Which puzzles were easy? Why?
If you were to teach nested loops to a friend, what would you say to help them understand?

If there's time, give an introduction to the main characters of today's puzzles, Anna and Elsa from Frozen. Give the class the
sister's back story if the class doesn't already know. To build excitement, tell the class they will be using nested loops to
make some fantastic drawings with Anna and Elsa's ice skates!

Main Activity (30 min)

Code Studio

 Code Studio levels

This set of puzzles is set up as a progression. This means every puzzle builds a foundation for the next puzzle. Students
will enjoy making more and more interesting designs by making small and simple changes to code they have already
written.

Wrap Up (15 min)

Journaling
Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any knowledge
they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today’s lesson about?
How did you feel during today’s lesson?
When do you use a loop? When do you use a nested loop?
Thought exercise: Can you make everything a nested loop can with just a normal loop? Can you draw out an example?

Answer: Yes, you can, but it is a lot more difficult. Nested loops make programs simpler.

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

Mini-Project: Snowflake #1  1  2  3  4  5

(click tabs to see student view)

Mini-Project: Snowflake #2  6  7  8  9 (click tabs to see student view)



AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
file://code.org/contact


COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 Ch. 4

10

Ch. 5 11 12 13 Ch. 6 14 15 16 17 Ch. 7 18

Lesson 14: Songwriting
Overview
One of the most magnificent structures in the computer science world
is the function. Functions (sometimes called procedures) are mini
programs that you can use over and over inside of your bigger
program. This lesson will help students intuitively understand why
combining chunks of code into functions can be such a helpful
practice.

Purpose
The use of functions helps simplify code and develop the student's
ability to organize their program. Students will quickly recognize that
writing functions can make their long programs easier to read and
easier to debug if something goes wrong.

Agenda
Warm Up (20 min)

Vocabulary
Sing a Song

Main Activity (20 min)

Functions Unplugged: Songwriting - Worksheet

Wrap Up (5 min)

Flash Chat: What did we learn?
Journaling

Assessment (5 min)

Functions Unplugged: Songwriting - Assessment

Extended Learning

View on Code Studio

Objectives
Students will be able to:

Locate repeating phrases inside song lyrics.
Identify sections of a song to pull into a
function.
Describe how functions can make programs
easier to write.

Preparation
(Optional) Watch the Lesson in Action

Video.
Print several worksheets for each group.
Print one assessment for each student.
Secure access to songs and lyrics for

activity.
Make sure every student has a journal.

Links
Heads Up! Please make a copy of any
documents you plan to share with students.

For the Teachers

Functions Unplugged: Songwriting  -
Lesson in Action Video
Functions Unplugged: Songwriting  -
Assessment Answer Key

For the Students

Songwriting with Functions - Unplugged
Video (download)
Functions Unplugged: Songwriting  -
Worksheet 

Functions Unplugged: Songwriting  -
Assessment 

Vocabulary
Function - A named group of programming
instructions. Functions are reusable
abstractions that reduce the complexity of

Make a Copy 

Make a Copy 

https://studio.code.org/s/coursee-2019/stage/14/puzzle/1/
https://www.youtube.com/watch?v=QuIMLel1mmw
https://docs.google.com/document/d/1L9YwWrsDBbTOZEVFCBhDxIIrYjkzZY3o1ZARKqa6lxw/edit
https://youtu.be/5iDCKkI6y2Y
http://videos.code.org/2014/C3-songwriting-with-parameters.mp4
https://docs.google.com/document/d/130ah2vRMrvuEj6Y-t1ThAHrHSVvLMnd94Qv9TLgZPMM/edit
https://docs.google.com/document/d/1rtEJBrVNR2R09wAETeJTJLm6QENJGDujJ0HJc1mZBSA/edit


writing and maintaining programs.




 Teaching Tip

Little Bunny Foo Foo is being used here as an example
only. If your students know this song, feel free to use it.
Otherwise, choose an appropriate song that they might be
more familiar with (either from music class or the radio.)

Teaching Guide
Warm Up (20 min)

Vocabulary
This lesson has one new and important word:

Function - Say it with me: Func-shun

A piece of code that you can call over and over again.

Sing a Song
Let the class know that today is song day!
We're going to learn a song together.

Start with a simple song, either written out or projected on the screen.
Point to the chorus and be sure that the class knows how it goes before you begin on the song.
Blast through the song, singing it with them in the beginning, then see what happens when you get to the part where it
calls the chorus.

Chorus:

Little bunny Foo Foo
Hopping through the forest
Scooping up the field mice
And bopping ‘em on the head
Down came the Fairy
And she said
“Little bunny Foo Foo
I don’t wanna see you
Scooping up the field mice
And bopping ‘em on the head”*

Song:

Chorus

I’ll give you 3 chances.
Then I’ll turn you into a goon!
The next day. . .

Chorus

I’ll give you 2 chances.
Then I’ll turn you into a goon!
The next day. . .

Chorus

I’ll give you 1 chance.
Then I’ll turn you into a goon!
The next day. . .

Chorus

"I gave you two chances.
Now I’ll turn you into a goon!”
(POOF!)



 Lesson Tip

To hit this point home, you can look up the lyrics for some
popular songs on the Internet. Show the students that the
standard for repeating lyrics is to define the chorus at the
top and call it from within the body of the song.

 Lesson Tip

It's most exciting for students to do this lesson with popular
music from the radio, but if you're having a hard time
finding appropriate songs where the lyrics repeat exactly,
here are a few timeless options:

You Are My Sunshine
Boom, Boom, Ain't it Great
How Much Is That Doggie in the Window
I Love Trash

And the moral of the story is:
Hare today, goon tomorrow!

It's quite likely that the majority of the class will sing the lyrics for the chorus when you point to that bit.
Stop the song once that happens, and explicitly highlight what just happened.

You defined the chorus.
You called the chorus.
They sang the chorus.

Ask the class why they suppose you only wrote the chorus once at the top of the paper instead of writing it over and over
in each place where it is supposed to be sung.

What are other benefits of only writing the chorus once when you sing it many times?

Now, imagine that this song is a computer program.
Defining a title (like "chorus") for a little piece of code that
you use over and over again is called creating a function.

This is helpful to computer scientists for some of the
same reasons that it is helpful to songwriters.

It saves time not having to write all the code over and
over in the program.
If you make a mistake, you only have to change it one place.
The program feels less complicated with the repeating pieces defined just once at the top.

We are going to play with songs a little more, to try to really understand how often this technique is used!

Main Activity (20 min)

Functions Unplugged: Songwriting - Worksheet
A fantastic way to compare functions to something we see in our everyday lives is to look at songs. Songs often have
certain groups of lyrics that repeat over and over. We call such a group a "chorus."

Directions:

Divide into groups of 4, 5, or 6.
Give each group several copies of the Songwriting
Worksheet.
Play a short song for the class that contains a clear
chorus that does not change from verse to verse.
Challenge the class to identify (and write down) the
chorus.
Compare results from each group.

Did everyone get the same thing? Sing your choruses
together to find out! Play this game over and over until
the class has little trouble identifying the choruses.

It is often easier just to have the class listen to (or watch) the song, then vote on what the chorus is by singing it together,
rather than writing the whole thing down. If you choose this method, consider having the class do a written chorus for the
final song selection to be sure that the visual learners get proper reinforcement.

Wrap Up (5 min)

Flash Chat: What did we learn?
Would you rather write lyrics over and over again or define a chorus?

https://docs.google.com/document/d/130ah2vRMrvuEj6Y-t1ThAHrHSVvLMnd94Qv9TLgZPMM/edit
https://www.youtube.com/watch?v=OnqhP-ZayOU
https://www.youtube.com/watch?v=usaa6AJFtOE
https://www.youtube.com/watch?v=iApAn0whVZE
https://www.youtube.com/watch?v=rxgWHzMvXOY


 Lesson Tip

Flash Chat questions are intended to spark big-picture
thinking about how the lesson relates to the greater world
and the students' greater future. Use your knowledge of
your classroom to decide if you want to discuss these as a
class, in groups, or with an elbow partner.

Do you think it's possible to make multiple choruses
for the same song?
Does it make sense to make a new chorus for every
time it's needed in a song?

Journaling
Having students write about what they learned, why it’s
useful, and how they feel about it can help solidify any
knowledge they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today's lesson about?
How do you feel about today's lesson?
What is a function and how do you use it?
Can you think of another activity where you might want to call a special group of instructions several times?

Assessment (5 min)

Functions Unplugged: Songwriting - Assessment
Hand out the assessment worksheet and allow students to complete the activity independently after the instructions have
been well explained. This should feel familiar, thanks to the previous activities.

Extended Learning

Use these activities to enhance student learning. They can be used as outside of class activities or other enrichment.

Functional Suncatchers Visit the CS Fundamentals Unplugged Table  or click on the link for Functional
Suncatchers. This activity does take a few supplies from the craft store, but it helps students to see the value of calling
multiple functions.

Create Your Song

Start by creating a chorus together, then repeat it between verses of a song that you develop around it.
Make a change to the chorus, and ponder how much easier it is to change in just one place.
Change the chorus again, making it much longer than it was originally.
Add a second chorus and alternate between them in your verses.

Songwriting a Program

What if we acted out songs instead of singing them? All of a sudden, our chorus would be a function of repeated actions,
rather than words.
Use the concepts of the arrows from the Graph Paper Programming lesson and create a program with lots of repeating
instructions.

Circle those repeating actions so that the class can see where they are.
Define a function called "Chorus" above the program.
Cross out everywhere the repeating actions appear in the program and write "Chorus" instead.

Repeat until the class can go through this process with little direction.

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

https://docs.google.com/document/d/1rtEJBrVNR2R09wAETeJTJLm6QENJGDujJ0HJc1mZBSA/edit
https://code.org/curriculum/unplugged
https://studio.code.org/s/course3/stage/4/puzzle/1


If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
file://code.org/contact


COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 Ch. 4

10

Ch. 5 11 12 13 Ch. 6 14 15 16 17 Ch. 7 18

Lesson 15: Functions in Minecraft
Overview
Students will begin to understand how functions can be helpful in this
fun and interactive Minecraft adventure!

Purpose
Students will discover the versatility of programming by practicing
functions in different environments. Here, students will recognize
reusable patterns and be able to incorporate named blocks to call pre-
defined functions.

Agenda
Warm Up (10 min)

Introduction

Bridging Activity - Functions (15 min)

Unplugged Activity Using Some Blockly
Preview of Online Puzzles

Main Activity (30 min)

Online Puzzles

Wrap Up (15 min)

Journaling

View on Code Studio

Objectives
Students will be able to:

Use functions to simplify complex programs.
Use pre-determined functions to complete
commonly repeated tasks.

Preparation
Play through the puzzles to find any

potential problem areas for your class.
Make sure every student has a journal.

Vocabulary
Function - A named group of programming
instructions. Functions are reusable
abstractions that reduce the complexity of
writing and maintaining programs.

https://studio.code.org/s/coursee-2019/stage/15/puzzle/1/


 Lesson Tip

Function blocks:

The block to the left is a function declaration, a block that
students will name and use to fill in the function. The block
to the right is a function call, a block that makes the
function code run. Students will need multiple of the
function call blocks.

Teaching Guide
Warm Up (10 min)

Introduction
Help the class understand that functions are simply a chunk of code that has a name. Once defined, you can use that name
over and over in your program to tell the computer to run the chunk of code that you assigned to it.

Bridging Activity - Functions (15 min)

This activity will help bring the unplugged concepts from "Functions Unplugged: Songwriting" into the online world that the
students are moving into. Choose one of the following to do with your class:

Unplugged Activity Using Some
Blockly
Pick a song to play that the students enjoy and print out
the lyrics. You can use the same song from "Functions
Unplugged: Songwriting." Break your class into groups or
pairs. Pass out the printed out lyrics (including the
repeated chorus) and the basic function blocks from
Unplugged Blocks (Courses C-F) - Manipulatives
to each group or pair of students. See lesson tip for
details.

Ask the students to cross out any part of the song that
can be made into a function (the chorus is a good
example) and put it into the function blocks provided. Students should fill in the function declaration with a function name
and the words of the repeated lyrics. Once the function declaration is done, ask the students to fill in the function calls and
place them on top of the crossed out lyrics.

Once every group or pair is done, ask the class where they put their functions and why. Did everyone make the same
function? How often is the function repeated?

Preview of Online Puzzles
Pull up a puzzle from Course E Online Puzzles 2018 - Website . We recommend puzzle 9 of this lesson. As a class,
work through the puzzle without using functions. Once you have gotten the solution, display it on a white board or
overhead. Ask the class to point to the repeated code. Ask the class how they would simplify the program. Why can you not
just use a loop?

On the white board or overhead, rewrite the program without the repeated code, but leaving one line space. In that/those
line space(s), call a function. Off to the side, declare the function like the left example block in the lesson tip. Ask the class
what they think the code will do now.

Open up a discussion with the class on why functions could be useful in programming. Invite students to discuss the
difference between functions and loops.

Main Activity (30 min)

Online Puzzles

https://cdo-curriculum.s3.amazonaws.com/media/uploads/E.7-lesson-hint.png
https://docs.google.com/document/d/1cRPELQ28TZMJhc68-eYP1D26Uqzcyfx4RDYuThZJGLo/edit
https://studio.code.org/s/coursee-2018


 Code Studio levels

We recommend providing paper and pencils for students to write (or draw) out ideas. Also, if students are having trouble
recognizing patterns, have them work with a partner on the harder puzzles.

Wrap Up (15 min)

Journaling
Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any knowledge
they obtained today and build a review sheet for them to look to in the future.

What was today's lesson about?
How do you feel about today's lesson?
What did your functions do in the programs you wrote today? How did that help you?
When should you use a function instead of a loop?

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

Practice  1  2  3  4  5  6  7  8  9  10

 11 (click tabs to see student view)

Free Play  12 (click tabs to see student view)

https://creativecommons.org/
file://code.org/contact


COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 Ch. 4

10

Ch. 5 11 12 13 Ch. 6 14 15 16 17 Ch. 7 18

Lesson 16: Functions with Harvester
Overview
Students have practiced creating impressive designs in Artist and
navigating mazes in Bee, but today they will use functions to harvest
crops in Harvester. This lesson will push students to use functions in
the new ways by combining them with while  loops and if / else

statements.

Purpose
This lesson is meant to further push students to use functions in more
creative ways. By also using conditionals and loops, students will
learn there are many ways to approach a problem, but some are
more efficient than others. These puzzles are intended to increase
problem solving and critical thinking skills.

Agenda
Warm Up (10 min)

Introduction

Main Activity (30 min)

Online Puzzles

Wrap Up (15 min)

Journaling

View on Code Studio

Objectives
Students will be able to:

Recognize when a function could help to
simplify a program.
Use pre-determined functions to complete
commonly repeated tasks.

Preparation
Play through the puzzles to find any

potential problem areas for your class.
Make sure ever student has a journal.

Vocabulary
Function - A named group of programming
instructions. Functions are reusable
abstractions that reduce the complexity of
writing and maintaining programs.

https://studio.code.org/s/coursee-2019/stage/16/puzzle/1/


Teaching Guide
Warm Up (10 min)

Introduction
At this point, your students should already be introduced to functions. Take this time to have them discuss the advantages
and disadvantages of using functions in a program. Either have them pair share or discuss as a class. Try using examples
of hard or easy puzzles in either Artist or Bee.

Ask the class:

When would you use a function?
Why does a function help to simplify your program?
Do you think functions make programming easier or harder? Why?

Main Activity (30 min)

Online Puzzles

 Code Studio levels

Some puzzles will have a function pre-declared for the students to fill in. It may be helpful for the students to write the entire
program without a function first, then determine where a function would be useful in the program.

It's important to make sure that every student is completing each puzzle with a dark green dot. If some of your students are
struggling to simplify code and use functions, set up teams of expert students within your class to go around and answer
questions.

Don't forget to provide pencils and paper to help students sketch out possible solutions.

Wrap Up (15 min)

The Harvester  1 (click tabs to see student view)

Practice  2  3  4  5  6  7 (click tabs to see student view)

How to Create a Simple Function  8 (click tabs to see student view)

Practice  9  10  11 (click tabs to see student view)

Challenge  12 (click tabs to see student view)

Practice  13 (click tabs to see student view)

Prediction  14 (click tabs to see student view)



Journaling
Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any knowledge
they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today's lesson about?
How did you feel about today's lesson?
What makes you realize a function could help your program?
How do while  loops and if / else  statements help your program?

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
file://code.org/contact


COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 Ch. 4

10

Ch. 5 11 12 13 Ch. 6 14 15 16 17 Ch. 7 18

Lesson 17: Functions with Artist
Overview
Students will be introduced to using functions with the Artist.
Magnificent images will be created and modified. For more
complicated patterns, students will learn about nesting functions by
calling one function from inside another.

Purpose
One of the most important components to this lesson is providing
students with a space to create something they are proud of. These
puzzles progress to more and more complex images, but each new
puzzle only builds off the previous puzzle. At the end of this lesson,
students will feel confident with themselves and proud of their hard
work.

Agenda
Warm Up (15 min)

Introduction

Main Activity (30 min)

Online Puzzles

Wrap Up (15 min)

Journaling

Extended Learning

View on Code Studio

Objectives
Students will be able to:

Categorize and generalize code into useful
functions.
Recognize when a function could help to
simplify a program.

Preparation
Play through the puzzles to find any

potential problem areas for your class.
Make sure ever student has a journal.

Links
Heads Up! Please make a copy of any
documents you plan to share with students.

For the Students

Unplugged Blocks (Courses C-F) -
Manipulatives 

Vocabulary
Function - A named group of programming
instructions. Functions are reusable
abstractions that reduce the complexity of
writing and maintaining programs.

Make a Copy 

https://studio.code.org/s/coursee-2019/stage/17/puzzle/1/
https://docs.google.com/document/d/1cRPELQ28TZMJhc68-eYP1D26Uqzcyfx4RDYuThZJGLo/edit


Teaching Guide
Warm Up (15 min)

Introduction
Ask the class to think back to "Functions Unplugged: Songwriting" and recall what a function is. Open a discussion about
when to use a function when writing a song.

Tell the class that there are two main components to using functions.

1. The Declaration: Function declarations are what create a function. In a function declaration, you fill in the function with
code and you give the function a name. You must declare a function before you can use it.

2. The Call: Function calls are what makes the program run the code in the function. To call a function, you place the
name of the function in your program. Make sure your function is properly defined before calling it in your program.

The class can use songwriting as an example to understand these two components. In the unplugged activity, the function
containing the lyrics to the chorus was named "chorus". When we first made this function, we circled the lyrics that would
go in the function. Once we named the function, we could read through the lyrics and replace the repeated chorus lyrics
with a function call to "chorus".

Continue the conversation until students have a basic understanding of functions being declared and called. If students
don't get to this point, make sure to do one of the bridging activities before moving into the Code.org puzzles.

Main Activity (30 min)

Online Puzzles

 Code Studio levels

Prediction  1 (click tabs to see student view)

Practice  2  3  4  5  6  7  8  9

(click tabs to see student view)

Challenge  10 (click tabs to see student view)

Practice  11 (click tabs to see student view)

Prediction  12 (click tabs to see student view)

Practice  13 (click tabs to see student view)

Levels  Extra  Extra (click tabs to see student view)



Students may benefit from writing code without functions then creating functions from the repeated code. If students don't
enjoy doing this in the Code.org workspace, we recommend providing paper and pencils for students to write (or draw) out
their ideas.

Wrap Up (15 min)

Journaling
Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any knowledge
they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today’s lesson about?
How do you feel about today’s lesson?
What are some differences between functions and loops?
Sketch out a drawing you made today. Can you write the code needed to create this?
Draw a picture you would like to create with code. Try writing or drafting the code that would make that drawing.

Extended Learning
Draw by Functions

Break the class into groups of 2-3 students. Have each group write a function that draws some kind of shape and a program
that uses that function. Depending on the creativity or focus the groups, students might need to be assigned a shape to
create. Once every group is done, have the groups switch programs. On a separate piece of paper, each group should draw
what the program creates. The groups should then return the programs and drawings to the original group.

Did every group get the drawing they expected? If not, what went wrong? Have the class go through the debugging process
and try again.

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
file://code.org/contact


COURSE

E
Ch. 1 1 2 3 4 Ch. 2 5 6 7 Ch. 3 8 9 Ch. 4

10

Ch. 5 11 12 13 Ch. 6 14 15 16 17 Ch. 7 18

Lesson 18: End of Course Project
Overview
The next four lessons provide an opportunity for students to put their
coding skills to use in a capstone project. This project will help
individuals gain experience with coding and produce an exemplar to
share with peers and loved ones. Intended to be a multi-lesson or
multi-week experience, students will spend time exploring
brainstorming, learning about the design process, building, and
presenting their final work.

In the explore stage, students will play with pre-built examples of
projects in both Artist and Sprite Lab for inspiration. Next, students will
learn about the design process and how to implement it in their own
projects. They will then be given the space to create their own project
in Artist, Sprite Lab, or another interface that they have become
familiar with (this is likely the longest stage of the project). Finally,
students will be able to present their finished work to their peers.

Purpose
Students may be ready to jump straight into building their projects, but
this lesson will help shape their ideas into plans. This structure will
keep the dreamers grounded and illuminate a path for those feeling
left in the dark. Provide students with ample time to build and revise
their projects. The trial and error inevitably involved in this lesson will
teach problem solving and persistence.

Agenda
Day 1 - Explore Project Ideas (45 min)

Example Projects

Day 2 - The Design Process (45 min)

Define and Prepare

Day 3 - Build Your Project (45 min)

Try

Day 4 & 5 - Present Your Project (45 min each)

Presentations

Extension Activity

Reflect and Try Again (45 min)
Other

View on Code Studio

Objectives
Students will be able to:

Learn to plan in advance for an ongoing
assignment.
Explain how system limitations can affect
project design.
Describe how compromise can help keep a
project on track and inspire creativity.
Draft and implement plans to resolve any
issues in their code.
Articulate the design process and how it
helped shape the finished culminating project.

Preparation
Spend time making your own project with

both the Artist and Sprite Lab. Familiarize
yourself with the capabilities and limitations
of each tool.

Modify the rubric to fit your class goals and
print out a copy for each student.

Modify the project design worksheet to fit
your class and print one packet for each
student.

Links
Heads Up! Please make a copy of any
documents you plan to share with students.

For the Teachers

CS Fundamentals Final Project  - Rubric
Design Process - Teacher Prep Guide

For the Students

End of Course Project Guide  - Worksheet

Vocabulary
Define - Figure out the details of the

Make a Copy 

Make a Copy 

https://studio.code.org/s/coursee-2019/stage/18/puzzle/1/
https://docs.google.com/document/d/1QVcQX7czu6T2OL7742hRu-gXB_Fat_Q4bHM6zgb7bq0/
https://docs.google.com/document/d/18hBG-cWRYOkpNXFelRFUVgRrMd4XQsvZziH-mtNKbec/
https://docs.google.com/document/d/1W3k1Hj7FRDCf1qJsgYxnnjZBCXcGGtVbIK-BSGqd3ko/edit


problems that you are trying to solve
Prepare - Research, plan, and acquire
materials for the activity you are about to do
Reflect - Carefully think back on something
with the intention of improving the outcome in
the future
Try - Attempt to do something



 Lesson Tip

Save 5 minutes or so at the end of the day to have
students trade their project guide to look at each other’s
work. This will help make sure that nothing is omitted or
overlooked.

Teaching Guide
Day 1 - Explore Project Ideas (45 min)

Example Projects
Goal: This part of the process is an exploration. Students will sit down with a stage full of example projects to remix and
learn. Not only will this give students an idea of what is possible, it will also help them see the limitations of the tool.

Give students a day to play with and remix the example projects found in the lesson. Have them use their journals (or
notebook paper) to keep track of thoughts and ideas as they go.

This activity should be done in the same pairs/groups that will be working on projects together over the next several
lessons.

Make sure your class understands that they will be working with projects of their own, so they should pay close attention to
how these programs were written, as well as the concepts that they use.

Day 2 - The Design Process (45 min)

Define and Prepare
Students will come up with a project and plan their strategy for programming that project in a single day. Students should
have a project sketch and a description by the time the day is done.

Preparing Students for the Process:

The most important responsibility you have in kicking off this segment is to help your class understand the scope of this
project. Students should be clear about the various expectations over the coming weeks so that they can prepare for their
presentations appropriately.

To help your class manage this multi-stage undertaking, they should be given both the project guide and the CS
Fundamentals Final Project - Rubric on the first day of planning. Students will then be able to follow the rubric each
step of the way to predict what their project grade will be in the end.

The project guide will provide a place for students to capture relevant thoughts and processes as they go, so they are more
prepared for their presentations in the end.

As the teacher, you should decide which elements of these documents are important to you and be sure to edit or remove
anything that you do not intend to draw student focus.

Define and Prepare:

Now that the class has their project guide in hand, they
should start filling out the questions under Day 1.

Students will likely need to refer back to their notes from
playing with the example projects, especially if they don’t
have access to online Artist or Play Lab project levels
while they plan.

Students should focus on defining and planning their project during Day 1, and not cross over into building until their ideas
have been written up and/or drawn out.

If students get stuck, help them work through ideas by asking questions and recalling examples, rather than offering
solutions.

Day 3 - Build Your Project (45 min)

https://docs.google.com/document/d/1QVcQX7czu6T2OL7742hRu-gXB_Fat_Q4bHM6zgb7bq0/


 Lesson Tip:

If you are looking for a section of this series to assign as
homework, this is it! Projects do not have to be presented
in electronic form, so this is a great offline option. Other
ways to present projects (both online and offline) include:

Report
Blog post
Online
In front of the class with a poster

Try
Students will use this day to build an initial version of their project.

Equipped with their Final Project Design - Worksheet , students should head to the computers to start bringing their
projects to life.

This process will come complete with plenty of trial and error. Projects are likely to become truncated versions of the
original scope (if not morphed altogether). Remind students that this kind of compromise is common in software design, but
they need to be sure to document the reasons for the changes in their product.

Don’t let the class forget to fill out their Final Project Design - Worksheet  as they go. It might be helpful to suggest that
pairs/groups take a worksheet break to begin discussing these questions about halfway through their lab time. Alternatively,
the navigator can keep their eyes open for pertinent answers while the driver codes.

Be sure that each team member has their own Final Project Design Worksheet, as there are questions about each
student’s own individual thoughts and behaviors that need to get captured along the way.

Day 4 & 5 - Present Your Project (45 min each)

Presentations
Students will create and present their projects in an approved manner (written, oral, or using multimedia).

Create:

Ideally, you will have class time available to give students
to work on their presentations. This will allow them to
incorporate rich multimedia components, like Google
Slides. For other presentation ideas, visit 72 Creative
Ways for Your Students to Show What They
Know - Website.

Encourage students to include all of the information from
Section J of the Final Project Design Worksheet into their
presentation, as well as two or more questions from
Section K.

Present:

Students should showcase their apps first, then they can discuss the questions that they covered in their presentations.

It can be very helpful to have students sign up for a specific order in which to give their presentations, so that they are able
to enjoy the demonstrations of their classmates without worrying about whether they will be called on next.

Extension Activity

Reflect and Try Again (45 min)
Students will work with another group to give and receive feedback in an effort to make each other’s projects stronger.

Reflect:

For reflections, have each group pair up with another group to try each other’s projects. After about 10 minutes, have the
groups discuss the questions in the Final Project Design Worksheet.

Encourage students to ask the questions on the Final Project Design Worksheet and write down feedback provided by their
reviewing teams so that they can refer back to it later. This portion should take approximately 15 more minutes.

Try Again:

With their new reflections in hand, students can head back to their machines to make a handful of edits. With just 10
minutes left, they will likely have to select only the most important feedback to incorporate.

https://docs.google.com/document/d/1sVrwglrvfm-cq9dzbvB9Cn2iuztrs3_VdWjluYPNaDE/
https://docs.google.com/document/d/1sVrwglrvfm-cq9dzbvB9Cn2iuztrs3_VdWjluYPNaDE/
https://www.google.com/slides/about/
http://minds-in-bloom.com/72-creative-ways-for-students-to-show/


 Lesson Tip:

Teachers should avoid assigning the final bit of project
work as homework unless they are certain that students
both live within a close proximity to one another and have
internet access at home.

Other
If your students are already comfortable with coding concepts, try having them create their projects in another platform, like
Scratch or Alice.

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

IC - Impacts of Computing

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://scratch.mit.edu/
http://www.alice.org/index.php
https://creativecommons.org/
file://code.org/contact

	Course E
	Journaling
	Debugging

	Chapter 1: Ramp Up
	Lesson 1: Sequencing in the Maze
	Skill Building | Ramp Up

	Lesson 2: Drawing with Loops
	Skill Building | Ramp Up

	Lesson 3: Conditionals in Minecraft: Voyage Aquatic
	Skill Building | Ramp Up

	Lesson 4: Conditionals with the Farmer
	Skill Building | Ramp Up


	Chapter Commentary
	Chapter 2: Sprites
	Lesson 5: Simon Says
	Unplugged | Behaviors

	Lesson 6: Swimming Fish with Sprite Lab
	Skill Building | Sprites

	Lesson 7: Alien Dance Party with Sprite Lab
	Skill Building | Sprites


	Chapter Commentary
	Chapter 3: Digital Citizenship
	Lesson 8: Private and Personal Information
	Unplugged | Online Safety

	Lesson 9: About Me with Sprite Lab
	Application | Online Safety


	Chapter Commentary
	Chapter 4: Impacts of Computing
	Lesson 10: Designing for Accessibility
	Unplugged | Impacts of Computing


	Chapter Commentary
	Chapter 5: Nested Loops
	Lesson 11: Nested Loops in Maze
	Skill Building | Nested Loops

	Lesson 12: Fancy Shapes using Nested Loops
	Skill Building | Nested Loops

	Lesson 13: Nested Loops with Frozen
	Application | Nested Loops


	Chapter Commentary
	Chapter 6: Functions
	Lesson 14: Songwriting
	Unplugged | Functions

	Lesson 15: Functions in Minecraft
	Skill Building | Functions

	Lesson 16: Functions with Harvester
	Skill Building | Functions

	Lesson 17: Functions with Artist
	Skill Building | Functions


	Chapter Commentary
	Chapter 7: End of Course Project
	Lesson 18: End of Course Project
	End of Course Project


	Chapter Commentary
	Lesson 1: Sequencing in the Maze
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Preparation
	Purpose
	Links
	Agenda
	For the Students

	Vocabulary

	Teaching Guide
	Warm Up (15 min)
	Introduction
	Vocabulary
	Say:


	Main Activity (30 min)
	Online Puzzles
	Code Studio levels

	Wrap Up (5 - 10 min)
	Journaling
	Journal Prompts:


	Extended Learning
	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)


	Lesson 2: Drawing with Loops
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Preparation
	Vocabulary
	Agenda

	Teaching Guide
	Warm Up (15 min)
	Introduction

	Main Activity (30 min)
	Online Puzzles
	Code Studio levels

	Wrap Up (15 min)
	Journaling
	Journal Prompts:


	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)


	Lesson 3: Conditionals in Minecraft: Voyage Aquatic
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Preparation
	Agenda
	Vocabulary

	Teaching Guide
	Warm Up (15 min)
	Introduction

	Main Activity (30 min)
	Online Puzzles
	Code Studio levels

	Wrap Up (15 min)
	Journaling
	Journal Prompts:


	Extended Learning
	More Minecraft

	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)


	Lesson 4: Conditionals with the Farmer
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Preparation
	Purpose
	Vocabulary
	Agenda

	Teaching Guide
	Warm Up (15 min)
	Introduction

	Main Activity (30 min)
	Online Puzzles
	Code Studio levels

	Wrap Up (15 min)
	Journaling
	Journal Prompts:


	Extended Learning
	While We Play

	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)


	Lesson 5: Simon Says
	Overview
	View on Code Studio

	Preparation
	Purpose
	Agenda

	Teaching Guide
	Warm Up (10 min)
	Introduction

	Main Activity (20 min)
	Simon Says
	Rules
	Basic:
	Intermediate:
	Challenging

	Extension

	Wrap Up (15 min)
	Reflection

	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)


	Lesson 6: Swimming Fish with Sprite Lab
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Preparation
	Vocabulary
	Agenda
	Introduced Code

	Teaching Guide
	Warm Up (10 min)
	Introduction

	Bridging Activity
	Swimming Fish Teacher Sandbox

	Main Activity (20 min)
	Online Puzzles
	Code Studio levels

	Wrap Up (15 min)
	Journaling
	Journal Prompts:


	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)


	Lesson 7: Alien Dance Party with Sprite Lab
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Preparation
	Vocabulary
	Agenda
	Introduced Code

	Teaching Guide
	Warm Up (5 min)
	Introduction

	Main Activity (30 min)
	Online Puzzles
	Code Studio levels

	Wrap Up (10 min)
	Journaling
	Journal Prompts:


	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)


	Lesson 8: Private and Personal Information
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Preparation
	Purpose
	Agenda
	Links
	For the Teachers

	Vocabulary

	Teaching Guide
	Warm Up (5 min)
	Introduction
	Ask:


	Main Activity (35 min)
	Log In
	Ask:

	Private and Personal
	Define:
	Ask:
	Define:
	Ask:

	What's Safe to Share Online?
	Ask:


	Wrap Up (15 min)
	Flash Chat: What did we learn about today?
	Ask:

	Journaling
	Journal Prompts:


	Assessment (10 min)
	Private and Personal Information

	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)


	Lesson 9: About Me with Sprite Lab
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Preparation
	Agenda
	Links
	For the Teachers

	Introduced Code

	Teaching Guide
	Warm Up (10 min)
	Introduction
	Review of "Personal and Private Information"

	Main Activity (30 min)
	Application - Interactive Poster
	Code Studio levels

	Wrap Up (15 min)
	Journaling
	Journal Prompts:


	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)


	Lesson 10: Designing for Accessibility
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Preparation
	Agenda
	Links
	For the Students


	Teaching Guide
	Warm Up (5 min)
	Background and Motivation

	Main Activity (35 min)
	Designing for Accessibility Scenarios (10 min)
	Designing for Accessibility Scenarios

	App Redesign Activity (25 min)

	Wrap Up (5 min)
	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)


	Lesson 11: Nested Loops in Maze
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Preparation
	Vocabulary
	Agenda

	Teaching Guide
	Warm Up (10 min)
	Introduction

	Main Activity (30 min)
	Online Puzzles
	Code Studio levels

	Wrap Up (15 min)
	Journaling
	Journal Prompts:


	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)


	Lesson 12: Fancy Shapes using Nested Loops
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Preparation
	Agenda
	Links
	For the Students

	Vocabulary

	Teaching Guide
	Warm Up (10 min)
	Introduction

	Main Activity (30 min)
	Online Puzzles
	Code Studio levels

	Wrap Up (15 min)
	Flash Chat: What did you make today?
	Journaling
	Journal Prompts:


	Extended Learning
	Together We Draw

	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)


	Lesson 13: Nested Loops with Frozen
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Preparation
	Agenda
	Vocabulary

	Teaching Guide
	Warm Up (15 min)
	Introduction

	Main Activity (30 min)
	Code Studio
	Code Studio levels

	Wrap Up (15 min)
	Journaling
	Journal Prompts:


	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)


	Lesson 14: Songwriting
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Preparation
	Agenda
	Links
	For the Teachers
	For the Students

	Vocabulary

	Teaching Guide
	Warm Up (20 min)
	Vocabulary
	Sing a Song

	Main Activity (20 min)
	Functions Unplugged: Songwriting - Worksheet

	Wrap Up (5 min)
	Flash Chat: What did we learn?
	Journaling
	Journal Prompts:


	Assessment (5 min)
	Functions Unplugged: Songwriting - Assessment

	Extended Learning
	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)


	Lesson 15: Functions in Minecraft
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Preparation
	Agenda
	Vocabulary

	Teaching Guide
	Warm Up (10 min)
	Introduction

	Bridging Activity - Functions (15 min)
	Unplugged Activity Using Some Blockly
	Preview of Online Puzzles

	Main Activity (30 min)
	Online Puzzles
	Code Studio levels

	Wrap Up (15 min)
	Journaling

	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)


	Lesson 16: Functions with Harvester
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Preparation
	Vocabulary
	Agenda

	Teaching Guide
	Warm Up (10 min)
	Introduction

	Main Activity (30 min)
	Online Puzzles
	Code Studio levels

	Wrap Up (15 min)
	Journaling
	Journal Prompts:


	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)


	Lesson 17: Functions with Artist
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Preparation
	Links
	Agenda
	For the Students

	Vocabulary

	Teaching Guide
	Warm Up (15 min)
	Introduction

	Main Activity (30 min)
	Online Puzzles
	Code Studio levels

	Wrap Up (15 min)
	Journaling
	Journal Prompts:


	Extended Learning
	Draw by Functions

	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)


	Lesson 18: End of Course Project
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Preparation
	Purpose
	Agenda
	Links
	For the Teachers
	For the Students

	Vocabulary

	Teaching Guide
	Day 1 - Explore Project Ideas (45 min)
	Example Projects

	Day 2 - The Design Process (45 min)
	Define and Prepare
	Preparing Students for the Process:
	Define and Prepare:


	Day 3 - Build Your Project (45 min)
	Try

	Day 4 & 5 - Present Your Project (45 min each)
	Presentations
	Create:
	Present:


	Extension Activity
	Reflect and Try Again (45 min)
	Reflect:
	Try Again:

	Other

	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)



