

UNIT

6
Ch. 1 1 2 3 4 5 6 7 8 9 Ch. 2 10 11 12

13 14 15 16

Big Questions

How does software interact with hardware?

How can computers sense and respond to their

environment?

What kind of information can be communicated

with simple hardware outputs?

Unit 6 - Physical Computing
In the Physical Computing unit, students further develop their programming skills, while exploring more deeply the

role of hardware platforms in computing. Harkening back to the Input/Storage/Processing/Output model for a

computer, students look towards modern “smart” devices to understand the ways in which non-traditional

computing platforms take input and provide output in ways that couldn't be done with the traditional keyboard,

mouse, and monitor.

Using App Lab and Adafruit’s Circuit Playground, students develop programs that utilize the same hardware inputs

and outputs that we see in many modern smart devices, and they get to see how a simple rough prototype can

lead to a finished product. The unit concludes with a design challenge that asks students to use the Circuit

Playground as the basis for an innovation of their own design.

Chapter 1: Programming with Hardware

Week 1

Lesson 1: Innovations in Computing
Research | Unplugged

In this lesson, students explore a wide variety of new and innovative computing

platforms while expanding their understanding of what a computer can be.

Lesson 2: Designing Screens with Code
App Lab

By reading and changing the content on the screen of an app, the class starts to build

apps that only need a single screen. Even with just one screen, students can begin to

see that these techniques allow for lots of user interaction and functionality.

Lesson 3: The Circuit Playground
App Lab | Maker Toolkit

In this lesson, students get to know the Circuit Playground, the circuit board that will be

used throughout the rest of this unit. Using App Lab, they develop programs that use

the Circuit Playground for output.

Week 2

Lesson 4: Input Unplugged
Unplugged

Students experience two different ways that an app can collect input from a user, while

learning more about the event-driven programming model used in App Lab.

Lesson 5: Board Events
App Lab | Maker Toolkit

Using the hardware buttons and switch, students develop programs that use the Circuit

Playground as an input.

Lesson 6: Getting Properties
App Lab | Maker Toolkit

This lesson introduces students to the getProperty block, which allows them to access

the properties of different elements with code. They first practice using the block to

determine what the user has input in various user interface elements. Students later

use getProperty and setProperty together with the counter pattern to make elements

move across the screen. A new screen element, the slider, and a new event trigger,

onChange, are also introduced.

Lesson 7: Analog Input
App Lab | Maker Toolkit

Students get to explore the analog inputs on the Circuit Playground, writing programs

that respond to the environment through sensors.

Week 3

Lesson 8: The Program Design Process
App Lab | Maker Toolkit

This lesson introduces students to the process they will use to design programs of their

own throughout this unit. This process is centered around a project guide that asks

students to sketch out their screens, identify elements of the Circuit Playground to be

used, define variables, and describe events before they begin programming (a process

very similar to the Game Design Process that students used in Unit 3). Students begin

by playing a tug o' war style game where the code is hidden. They discuss what they

think the board components, events, and variables would need to be to make the

program. Then, they are then given a completed project guide that shows one way to

implement the project, and are walked through this process in a series of levels. At the

end of the lesson, students have an opportunity to make improvements to the program

to make it their own.

Lesson 9: Project - Make a Game
App Lab | Maker Toolkit | Project

For this project, students design and create a game that leverages the new inputs and

outputs that are available to them. This project is purposefully left very open-ended to

empower students to think broadly about how physical output might be useful in an

app, while still giving them a chance to review the program development process and

try out the new features available through the Circuit Playground.

Chapter Commentary

Big Questions

How do programmers work with larger amounts

of similar values?

How can complex real-world information be

represented in code?

How can simple hardware be used to develop

innovative new products?

This unit begins with an activity that encourages students to explore a wide variety of non-traditional computing

platforms, before kicking off a review of programming in App Lab, with a particular focus on better understanding

the event-driven programming model that was first introduced in Unit 4. Students learn techniques to make the

apps they write more flexible by modifying design elements through code instead of always relying on design

mode. Using the Circuit Playground, they then explore different approaches to taking input and producing output

using hardware. By the end of this chapter, students will design a develop a game that uses physical hardware for

input and output.

Chapter 2: Building Physical Prototypes

Week 4

Lesson 10: Arrays and Color LEDs
App Lab | Maker Toolkit

In this lesson, students are introduced to the ring of color LEDs, which are exposed as

an array called colorLeds. Students learn how to access and control each LED in an

array individually, preparing them to access multiple LEDs through iteration later in the

chapter.

Lesson 11: Making Music
App Lab | Maker Toolkit

In this lesson, students will use the Circuit Playground’s buzzer feature to its full extent

by producing sounds, notes, and songs. Students start with a short review of the

buzzer's frequency and duration parameters, then move on to the concept of musical

notes. Notes allow students to constrain themselves to frequencies that are used in

Western music and provide a layer of abstraction that helps them to understand which

frequencies might sound good together. Once students are able to play notes on the

buzzer, they use arrays to hold and play sequences of notes, and compose simple

songs.

Lesson 12: Arrays and For Loops
App Lab | Maker Toolkit

Students learn to combine lists and for-loops in this lesson, which allows them to write

code that impacts every element of a list, regardless of how long it is. The class uses

this structure to write programs that process all of the elements in lists, including the

list of color LEDs.

Lesson 13: Accelerometer
App Lab | Maker Toolkit

In this lesson, students will explore the accelerometer and its capabilities. They’ll

become familiar with its events and properties, as well as create multiple programs

utilizing the accelerometer similar to those they’ve likely come across in real world

applications.

Week 5

Lesson 14: Functions with Parameters
App Lab | Maker Toolkit

This lesson starts with a quick review of parameters in the context of the App Lab

blocks that students have seen recently. Students then look at examples of parameters

within user-created functions in App Lab, and create and call functions with parameters

to control multiple elements on a screen. Afterward, they use for loops to iterate over

an array, passing each element into a function. Last, students use what they have

learned to create a star catching game.

Lesson 15: Circuits and Physical Prototypes
App Lab | Maker Toolkit

In this lesson, students wire simple circuits to create a physical prototype using low-cost

and easily-found materials.

Week 6

Lesson 16: Project - Prototype an Innovation
App Lab | Maker Toolkit | Project

This final project challenges students to develop and test a prototype for an innovative

computing device that interacts with the physical world through various types of input

and output, whichallow for interesting and unique user interactions. This project is an

opportunity for students to showcase their technical skills, but they will also need to

demonstrate collaboration, constructive peer feedback, and iterative problem solving as

they encounter obstacles along the way. This project should be student-directed

whenever possible, and provide an empowering and memorable conclusion to the final

unit of CS Discoveries.

Chapter Commentary
With an understanding of how to use hardware to take input and produce output, students move to thinking about

more complex programs that integrate hardware and software. Using the color LEDs as an example of a a group of

like objects, students learn how to use arrays to keep track of lists of values. From there we introduce the for loop,

first simply as a way to repeat a block of code, and then as a way to run code on each element of an array. By the

end of this chapter students will have explored all components of their boards while learning to structure their code

using arrays, loops, and parametric functions. In the final two lessons students have an opportunity to dig into

building physical prototypes using their boards.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

6
Ch. 1 1 2 3 4 5 6 7 8 9 Ch. 2 10 11 12

13 14 15 16

Lesson 1: Innovations in Computing

Overview

To kick off the final unit of this course, students will do some

research into interesting innovations in computing. This lesson

will expose students to wider variety of computing form factors

(what a computer looks like) and fields that are impacted by

computing. Later in this unit students will look back on the

devices they encountered in this lesson as they develop their own

physical computing devices.

Purpose

This lesson will lay the groundwork for students' understanding of

how their Circuit Board could be used to model an innovative

computing device. The goal is to get them thinking about how

computers can be embedded into just about anything, and to

start considering the potential impacts of such applications.

Assessment Opportunities

1. Identify computing innovations within a given field

Activity Guide, page 2: The description of the device, its

purpose, and the type of innovation should clearly

demonstrate what it does and why it is innovative.

2. For a given device, articulate the likely inputs and outputs

Activity Guide, page 2: The description of the user interaction

should identify multiple possible inputs and outputs for the

device.

3. Suggest improvements to help a device better solve a specific

problem

Activity Guide, page 2: The suggested improvements should

relate to the purpose of the device and how it is used.

Agenda
Warm Up (10 min)

Get Inspired

Activity (45 min)

Innovation Research

Wrap Up (2 min)

Journaling

Extensions

Innovation Posters

Innovation Websites

View on Code Studio

Objectives
Students will be able to:

Identify computing innovations within a

given field

For a given device, articulate the likely

inputs and outputs

Suggest improvements to help a device

better solve a specific problem

Preparation

Review the resource pages linked in

Code Studio

Cue up The Internet of Things - Video or

Computer Science is Changing Everything

- Video

Print out a copy of the activity guide for

each student

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Students

Computing Innovations - Activity Guide

The Internet of Things - Video

Computer Science is Changing Everything -

Video (download)

Vocabulary

Innovation - A new or improved idea,

device, product, etc, or the development

thereof

Make a Copy

https://curriculum.code.org/csd-20/unit6/
https://studio.code.org/s/csd6-2020/stage/1/puzzle/1/
https://youtu.be/xQGsubJNbQw
https://youtu.be/1x54GqfL3UY
https://docs.google.com/document/d/1-fvLAoZcGopplA-0bwCFrCRoPFYPCPgSeb2ablNteCg/edit
https://youtu.be/xQGsubJNbQw
https://youtu.be/1x54GqfL3UY
https://videos.code.org/2015/csp/cs_is_changing_everything.mp4

 Discussion Goal

This should be a quick discussion. The primary goal is

for the class to come to a common understanding of

what it means for something to be innovative. That it's

not enough for a product to look sleeker than the last

version, but that innovation means to really do

something better than it's been done before, or to do

things that have never been done before.

 Teaching Tip

This unit requires the Adafruit Circuit Playground. You

can read more about this microcontroller board at

https://code.org/circuitplayground

Teaching Guide

Warm Up (10 min)

Get Inspired

Video: Watch either The Internet of Things - Video or

Computer Science is Changing Everything - Video as

a class.

Activity (45 min)

Innovation Research

Group: Place students in groups of 3-4

Distribute: Hand out copies of the activity guide

 Discuss: What is an innovation? What does it mean

for something to be innovative?

 Computing Innovations

During this activity student groups will research the

recent technological innovations related to a chosen

topic. Once they have identified a few interesting

innovations, they will choose one to analyze in

greater depths and report back to the class about.

Innovation Research

Introduce the topics: Make sure that students understand the scope of each of the potential topics.

Wearable Technology (eg. clothing, jewelry, or accessories with built-in computers)

Health and Safety (eg. devices that treat disease, track your health, or protect users from danger)

Agriculture (eg. technology to improve the effectiveness, sustainability, or efficiency of farming)

Manufacturing (eg. advancements in rapid prototyping, industrial robotics, and the production of goods)

Art and Design (eg. interactive art or public installations)

Smart Home (eg. devices that allow you to interact with your thermostat, locks, or lights using computers)

Explain the research task: The goal of this research is twofold:

First, develop a deeper understanding of your chosen topic. How is computer technology changing this field,

what are some of the problems that people are trying to solve with technology?

Second, identify a handful of innovative devices within this topic. Students should focus on finding hardware

devices that demonstrate unique or novel form factors. That is to say, computers that don't look like

computers.

Send to Code Studio for resource links: On Code Studio we have compiled more detailed descriptions of the

topics as well as couple of recommended sites to learn more about each topic. Use this as a jumping off point

for student research.

 Code Studio levels

View on Code Studio Computing Innovations - Exemplar (PDF | DOCX)

Lesson Overview  Teacher Overview Student Overview

Innovation Research  Teacher Overview Student Overview

https://code.org/circuitplayground
https://youtu.be/xQGsubJNbQw
https://youtu.be/1x54GqfL3UY
https://studio.code.org/s/csd6-2020/stage/1/puzzle/1
https://docs.google.com/document/d/1q4Mr1m93YOqQFh6LtnF1fZZ5FhjYU88VE-lw3yfNCDo/edit
https://docs.google.com/document/d/1q4Mr1m93YOqQFh6LtnF1fZZ5FhjYU88VE-lw3yfNCDo/export?format=pdf
https://docs.google.com/document/d/1q4Mr1m93YOqQFh6LtnF1fZZ5FhjYU88VE-lw3yfNCDo/export?format=doc

An Innovative Solution

Once groups have selected a specific innovative device, they can complete the second page of this activity guide,

which asks them to do the following:

What Problem Does It Solve?: For some topics this may be more clear (for example healthcare devices

typically have a very specific goal), but for others students may need to think more broadly about what they

consider problems. More frivolous wearables or digital art installations may be more concerned with personal

expression than solving a specific problem.

What Is Innovative About It?: Encourage students to refer back to the earlier discussion about innovation for

this. It can also be useful to compare against other devices found during the research phase.

How Do You Interact With It?: Ask students to think back to the Input, Output, Storage, Processing model that

was introduced way back in Unit 1. The goal here is to identify specifically the Inputs and Outputs provided by a

given device - the more specific these are, the more easily students will be able to connect elements of the

Circuit Playground to these devices.

How Could You Improve It?: Feel free to make this as realistic or aspirational as you like. The goal here is just

to get students thinking about how they might develop an innovation of their own by using an existing product

as a jumping off point.

Share: Give groups a minute each to share their findings. See the extension activities for alternate ways to share.

Wrap Up (2 min)

Journaling

View on Code Studio Here are some recommended sites for students to start their research. Although

these sites are generally appropriate for school, the content within them changes frequently, so we

strongly suggest you check each site for inappropriate content before sharing it with students.

Wearable Technology

Warable.com

Health and Safety

Modern Healthcare

Medstartr

Agriculture

National Institute of Food and Agriculture

Farm Industry News

Manufacturing

Industry Week

3D Printing

Art and Design

ArtFab

Instructables

Smart Home

CNet

IoT Evolution

https://studio.code.org/s/csd6-2020/stage/1/puzzle/2
https://www.wareable.com/
http://www.modernhealthcare.com/section/medical-devices
http://www.medstartr.com/
https://nifa.usda.gov/topic/agriculture-technology
http://www.farmindustrynews.com/technology
http://www.industryweek.com/technology
https://3dprinting.com/
http://artfab.art.cmu.edu/
http://www.instructables.com/tag/type-id/category-technology/
https://www.cnet.com/smart-home/
http://www.iotevolutionworld.com/smart-home/

Journal: What was the most surprising, cool, or impressive thing that you found in your research? If you could

develop an innovation of your own, what would it be?

Extensions

Innovation Posters

Ask groups to create a poster that shares the innovate device that they researched. Posters should include:

Who invented the device

What problem they were trying to solve

Why it is unique or innovative

How users interact with it (specifically, what Inputs does it take and how does it provide Output)

Keep these posters up throughout the unit for students to refer back to as they start to develop physical computing

devices of their own.

Innovation Websites

Instead of (or in addition to) you posters, have students develop websites in Web Lab that include the same

required content. Make sure that students include links to their source websites.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

IC - Impacts of Computing

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

6
Ch. 1 1 2 3 4 5 6 7 8 9 Ch. 2 10 11 12

13 14 15 16

Lesson 2: Designing Screens with Code

Overview

In Unit 4 students learned a very simple approach to app

development in App Lab that required a separate screen for most

interactions. To expand the kinds of apps that students can make,

and to encourage them to think in new ways about how users

interact with apps, we introduce the setProperty() block. This

command can be used to set the content and properties of

various UI elements, allowing students to write programs that

update information on a single screen, instead of manually

creating duplicate screens. In this lesson students build up simple

apps that only require a single screen, the content of which is

changed using setProperty() .

Purpose

This lesson allows students some time to get back into

programming with App Lab before introducing the Circuit

Playground, but also introduces the useful concept of a setter. In

Unit 4, students primarily used setScreen() to make their apps

respond to user interaction. While this is a simple and useful

technique, it can lead to a lot of duplication of content across

multiple screens. By using setters, and later getters, students can

write apps that actually change the content on a single screen,

by showing and hiding or changing the content or look of various

elements.

Once students have learned about using getters and setters with

UI elements, encourage them to think critically about when to use

a separate screen in the design phase of an app. If screens are

more alike than different, it might be more effective to just

change the elements on screen in reaction to input instead of

duplicating content across multiple screens. While students are

only introduced to setProperty() right now, they will later learn

the partner command getProperty() .

Assessment Opportunities

1. Set the properties of UI elements using code

Code Studio: See rubric on bubble 4

2. Respond to user input using an event handler

Code Studio: See rubric on bubble 9

3. Write programs that change multiple elements on a single

screen instead of changing screens

Code Studio: See rubric on bubble 14

Agenda

View on Code Studio

Objectives
Students will be able to:

Set the properties of UI elements using

code

Respond to user input using an event

handler

Write programs that change multiple

elements on a single screen instead of

changing screens

Introduced Code

setProperty(id, property, value)

https://curriculum.code.org/csd-20/unit6/
https://studio.code.org/docs/applab/setProperty/
https://studio.code.org/docs/applab/setProperty/
https://studio.code.org/docs/applab/setScreen/
https://studio.code.org/docs/applab/setProperty/
https://studio.code.org/docs/applab/getProperty/
https://studio.code.org/s/csd6-2020/stage/2/puzzle/1/
https://studio.code.org/docs/applab/setProperty/

Warm Up (5 min)

UI Element Properties Refresher

Activity (45 to 60 minutes)

Designing with setProperty()

Wrap Up (5 min)

Reflecting on Unit 4

 Discussion Goal

The goal of this disucssion is to prime students to

think about the properties of various design elements,

which they will learn to change with code later in this

lesson. You might ask students to think back to a

similar discussion we had in Unit 2 when trying to

describe what a web page looks like, or to the

properties of a sprite from Unit 3

Teaching Guide

Warm Up (5 min)

UI Element Properties Refresher

Display: Show students this example image

 Discuss: How would you describe to somebody else how to recreate this screen? What specific details would they

need to know about each design element?

Activity (45 to 60 minutes)

Designing with setProperty()

Transition: Head to Code Studio



https://cdo-curriculum.s3.amazonaws.com/media/uploads/diamond.png

 Discussion Goal

Goal: This discussion is intended to clarify for students

why we are changing UI elements with code, and how

it might actually allow them to solve problems that

came up in Unit 4. From this point on students will

need to make reasoned choices about when to use

separate screens in a program and when to update

elements with code.

 Code Studio levels

Share: The final level in this lesson allows students to customize and submit an "Emotion Machine" app. If time,

allow students to share their programs.

Wrap Up (5 min)

Reflecting on Unit 4

Prompt: Think back to the app you prototyped in Unit

4. Knowing what you know about using

setProperty() to change UI elements, how might you

change your app prototype?

 Discuss: Have the class share the kinds of things

they came up with. See if the class can come up with

some broad types of features that weren't possible, or

were cumbersome, to do with screens alone.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

Lesson Overview  Student Overview

Setting Properties  2  3   4 (click tabs to see student view)

Designing Screens with Code  Student Overview

Events and Properties  6  7  8   9 (click tabs to see student view)

Emotion Machine Example  Student Overview

Building an App  11  12  13   14 (click tabs to see student view)

https://studio.code.org/docs/applab/setProperty/
https://creativecommons.org/
https://code.org/contact

UNIT

6
Ch. 1 1 2 3 4 5 6 7 8 9 Ch. 2 10 11 12

13 14 15 16

Lesson 3: The Circuit Playground

Overview

In this lesson students get their first opportunity to write

programs that use the Circuit Playground. After first inspecting

the board visually and hypothesizing possibly functionalities,

students move online where they will learn to write applications

that control an LED. By combining App Lab screens with the

Circuit Playgrounds, students can gradually start to integrate

elements of the board as an ouput device while relying on App

Lab for user input.

Purpose

As the first introduction to using the Circuit Playground, this

lesson leaves time for students to get comfortable with getting

the hardware plugged in. By leveraging students' existing

knowledge of event handling in App Lab, we can quickly get an

app up and running that shows the potential of physical

computing with little more than a single red LED.

Assessment Opportunities

1. Connect and troubleshoot external devices

At the beginning of the online activity, students should connect

the boards themselves, using the setup page to troubleshoot

common problems.

2. Turn on and off an LED with code

Code Studio: See rubric on bubble 9.

3. Use code to control a physical device

Code Studio: see rubric on bubble 14.

Agenda
Warm Up (5 min)

Board Inspection

Activity (45)

Connecting the Board

Programming on Hardware

Wrap Up (5 min)

What's in a Board

View on Code Studio

Objectives
Students will be able to:

Connect and troubleshoot external devices

Turn on and off an LED with code

Use code to control a physical device

Preparation

Make sure that student computers have

the drivers and software necessary to

connect to the Circuit Playground (details

here)

Prepare a board and USB cable for each

pair of students

Introduced Code

led.on()

led.off()

led.blink(interval);

led.pulse(interval);

led.toggle()

https://curriculum.code.org/csd-20/unit6/
https://studio.code.org/s/csd6-2020/stage/3/puzzle/1/
https://studio.code.org/maker/setup
https://studio.code.org/docs/applab/led.on/
https://studio.code.org/docs/applab/led.off/
https://studio.code.org/docs/applab/led.blink/
https://studio.code.org/docs/applab/led.pulse/
https://studio.code.org/docs/applab/led.toggle/

 Assessment Opportunity

Ensure that all students are able to set up their boads

correctly. If they have trouble, encourage them to work

with peers to solve the problem with the help of the

setup page. Students should be able to read through

the page and follow the instructions on their own. If

not, walk them through the process, but encourage

them to troubleshoot their own boards in subsequent

lessons.

Teaching Guide

Warm Up (5 min)

Board Inspection

Distribute: Pass out a board and USB cable to each pair of students. Let students know that they should not yet

plug the boards in.

Prompt: Ask pairs to spend one minute looking over the board, focusing on the details. What do you think this

board does (or could do) and why?

Share: Have groups share back their thoughts to the whole group, keeping track of ideas on the board. Push

students to support their ideas with evidence from reviewing the board, but don't worry about ensuring correctness

at this point. As students go through this unit, they can refer back and refine this list.

Activity (45)

Connecting the Board

 Transition: Ask students to plug their boards in and

head to the Maker Toolkit setup page to confirm that

the software has been correctly configured.

Programming on Hardware

Transition: Send students to Code Studio

 Code Studio levels

Lesson Overview  Student Overview

View on Code Studio 

Discussion Goals

The goal of this discussion is to highlight the difference between hardware and software. Students should

understand that hardware is the physical part of the computer, such as the chips and the wires, and the

software is the programs that are running on the computer. The operating system of the computer allows all

the software on the computer to run at the same time, deciding how the different hardware resources will

be shared.

Hardware and Software  Teacher Overview Student Overview

Circuit Playground: Introduction  Student Overview

Using the LED  4  5  6  7  8   9

(click tabs to see student view)

https://studio.code.org/maker/setup
https://studio.code.org/s/csd6-2020/stage/3/puzzle/2

Wrap Up (5 min)

What's in a Board

Journal: Ask students to reflect on their introduction to the Circuit Playground. What did they think it was at first

inspection? How did those expectations change after having programmed on the board?

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CS - Computing Systems

If you are interested in licensing Code.org materials for commercial purposes, contact us.

LED Apps  10  11  12  13   14 (click tabs to see student view)

https://creativecommons.org/
https://code.org/contact

UNIT

6
Ch. 1 1 2 3 4 5 6 7 8 9 Ch. 2 10 11 12

13 14 15 16

Lesson 4: Input Unplugged

Overview

In preparation for delving deeper into programming with App Lab,

students will explore how a handful of different programs written

in both Game Lab and App Lab handle taking input from the user.

After comparing and contrasting the approaches they saw in the

example apps, students group up to act out the two different

models for input (conditionals in an infinite loop and

asynchronous events) to gain a better understanding of how they

work.

Purpose

This lesson is intended to help students transition from the draw

loop and conditional model of input used in Game Lab to the

event-driven model used in App Lab. While students have

experienced and learned a bit about event-driven programming

in Unit 4, a deeper understanding of how the events work will

help when it comes to responding to events on the Circuit

Playground later in this unit.

Assessment Opportunities

1. Compare and contrast multiple ways to take input

Wrap Up: Students should distinguish between the draw loop

model of Game Lab and the event model of App Lab.

2. Model different methods of taking user input

As students participate in the activity, circulate the room and

ensure that they are following the instructions.

Agenda
Warm Up (10 min)

Comparing Input Methods

Activity (40 min)

Input Unplugged

Activity Debrief

Wrap Up (2 min)

Reflection

View on Code Studio

Objectives
Students will be able to:

Compare and contrast multiple ways to

take input

Model different methods of taking user

input

Preparation

Prepare to display example programs for

the whole class.

A half deck of cards for each group of

three students or deck-of-cards.js.org.

Print one copy of the activity guide for

each group of four students.

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Students

Input and Events - Activity Guide

Make a Copy

https://curriculum.code.org/csd-20/unit6/
https://studio.code.org/s/csd6-2020/stage/4/puzzle/1/
https://deck-of-cards.js.org/
https://docs.google.com/document/d/1Pqq09UzF8xNP688FwK7x9zrsjxxM4WajAVtEwM1wYPE/edit

 Discussion Goal

Goal: This is intended to be a very broad question, and

as such could go in a number of different directions. If

your students are struggling, encourage them to think

about specific programs that they wrote in units 3 and

4.

Teaching Guide

Warm Up (10 min)

Comparing Input Methods

 Discuss: Yesterday we wrote some apps that took

input from a user, but how did the program know

when to take input?

Display: Open up the Code Studio stage for this level.

For each of the example apps, ask the class to

identify:

1. Where is the input coming from? (e.g. keyboard,

mouse, etc)

2. What input value is the program looking for?

3. How will the program respond to input?

 Code Studio levels

Prompt: Ask the class the following questions, keeping track of answers on the board. The goal at this point isn't to

answer questions that come up, but to record them so we can see how the class feels again after the lesson.

How did the different apps we looked at approach taking input similarly or differently?

Which way made the most sense to you?

Which way made the least sense?

What questions to you have about how these programs take input?

Activity (40 min)

Input Unplugged

 Remarks

In the previous activity we explored several different kinds of input, but how do our programs actually process

that input? As a class, and in small groups, we're going to model how input is taken both in Game Lab and App

Lab.

Group: Place students in groups of 4

Distribute: Hand out a copy of the activity guide and half of a deck of cards to each group (the deck doesn't need to

be perfectly split, but should include both red and black cards in each half). The activity guide includes four

different role pages, printed front and back.

Model: Choose one group to model the activity for the class.

 Input and Events

The goal of this activity is to help students better understand how events work, and how using events differs from

the input model that they used in Game Lab. In groups of four, students will model the two different approaches

to taking input. By the end of the activity students should understand that the onEvent block sets up a input to

Lesson Overview  Student Overview

Input Examples  2  3 (click tabs to see student view)

https://studio.code.org/docs/applab/onEvent/

 Teaching Tip

The programs for both versions of this activity are

purposely very simple to allow students to focus on

the processes involved in each input method. If your

students pick up on the ideas quickly, consider

providing some more detailed example programs to

push on their understanding. In particular, placing the

inputs or events in a different order and nesting

conditionals can be useful in revealing

misconceptions.

watch for events in the background, allowing input handling without explicitly asking each input for a value

constantly. The roles for this activity are:

Program: The Program reads the code aloud and performs any actions dictated by the inputs. Inputs 1-3: The

Inputs draw cards from the deck, which represent their changing input values.

Version A: Asking for Input

 This first version models the Game Lab approach to

taking input. In this scenario the Program explicitly

asks each input for a value every time the draw loop

is run.

Rules for Version A:

The Program reads each line of code aloud.

At the beginning of each draw loop, each Input

draws a new card from the deck. This represents

the current state of that input.

Whenever the Program reaches an input checking

command (inputOne() , inputTwo() , or

inputThree()), the Program asks to see that inputs card.

If the value of the card shown matches the associated conditional, the Program performs the action(s) inside

the conditional.

After groups have run the program a few times and seem to understand how it works, have them switch up roles

so that each student gets a chance to be the Program.

Version B: Input Events

This time around, instead of constantly asking for input in a loop, the Program will assign each Input an Event to

watch for. In the context of this activity, an Event is either a red or black card, but in a program that Event could

be a click on a button, movement of the mouse, press of a key, or more. This is a simplified model for the way

input is handled in App Lab.

Rules for Version B:

Each Input draws a card from the deck at a rate of roughly one per second.

The Program reads each line of code aloud.

When the Program reaches an onEvent command, they tell the specified Input which Event to watch for, and

what the Response should be.

When assigned an Event, the Input writes down the details in their Events to Watch table.

Every time an Input draws a card, they check to see if it matches one of the Events in their table. If it does,

they tell the Program to perform the Response.

There are a few important simplifications that are made in this model to minimize the number of roles and rules:

This model implies that Inputs are actually watching for Events on their own. In reality, an Event Handler

running in the background watching for the specified event.

In this model the Input tells the Program what actions to take. In reality, when an Event Handler is triggered,

the Program goes to that portion of their code and runs everything in the function.

Activity Debrief

Discuss: Looking back at the comments gathered from the warm up activity, what things are more clear after

having run the activity? Do you have any new questions?

Wrap Up (2 min)

Reflection

 Journal: What's the difference between the way that Game Lab and App Lab handle inputs?

https://studio.code.org/docs/applab/onEvent/

 Assessment Opportunity

Students may have different ways of explaining the

differences, but Game Lab's draw loop model works

sequentially, with each line of code run after the other,

and the draw loop code running over and over in

sequence. Inputs are only checked when that line of

code is run. App Lab's event model is continuously

checking for inputs once an event handler is created.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

6
Ch. 1 1 2 3 4 5 6 7 8 9 Ch. 2 10 11 12

13 14 15 16

Lesson 5: Board Events

Overview

This lesson transitions students from consider the Circuit

Playground as strictly an output device towards using it as a tool

for both input and output. Starting with the hardware buttons and

switch,sing the hardware buttons and switch, students learn to

use onBoardEvent() , analogously to onEvent() , in order to take

input from their Circuit Playgrounds.

Purpose

This lesson marks the transition from using the board solely as an

output device to using it for both input and output. The

onBoardEvent() block works much like onEvent() , with the most

significant different being that the first parameter is a board

object (a variable) while onEvent() takes a UI element ID (a

string).

Assessment Opportunities

1. Attach an event handler to a hardware input

Code Studio: See rubric on bubble 4.

2. Choose the appropriate event for a given scenario

Wrap Up: Students should describe different scenarios that

would be more appropriate for different events.

Agenda
Warm Up (5 min)

Board Inspection: Inputs

Activity (45 min)

Taking Input from the Board

Wrap Up (2 min)

View on Code Studio

Objectives
Students will be able to:

Attach an event handler to a hardware

input

Choose the appropriate event for a given

scenario

Introduced Code

onBoardEvent(component, event,

function(event) {...});

toggleSwitch

toggleSwitch.isOpen

button(L/R)

buttonL.isPressed

https://curriculum.code.org/csd-20/unit6/
https://studio.code.org/docs/applab/onBoardEvent/
https://studio.code.org/docs/applab/onEvent/
https://studio.code.org/docs/applab/onBoardEvent/
https://studio.code.org/docs/applab/onEvent/
https://studio.code.org/docs/applab/onEvent/
https://studio.code.org/s/csd6-2020/stage/5/puzzle/1/
https://studio.code.org/docs/applab/onBoardEvent/
https://studio.code.org/docs/applab/toggleSwitch/
https://studio.code.org/docs/applab/toggleSwitch.isOpen/
https://studio.code.org/docs/applab/buttons/
https://studio.code.org/docs/applab/isPressed/

Teaching Guide

Warm Up (5 min)

Board Inspection: Inputs

Distribute: Pass out a board and USB cable to each pair of students. Let students know that they should not yet

plug the boards in.

Prompt: Ask pairs to spend one minute looking over the board, focusing on potential input devices. Based on what

you already know about this board, how do you think you might use it to get input?

Share: Have groups share back their thoughts to the whole group, keeping track of ideas on the board. Push

students to support their ideas with evidence from reviewing the board, but don't worry about ensuring correctness

at this point.

Activity (45 min)

Taking Input from the Board

Transition: Send students to Code Studio.

 Code Studio levels

Wrap Up (2 min)

 Journal 3-2-1:

1. What are three types of board events you have seen so far?

2. Describe two different situations and how they would need two different events.

Lesson Overview  Student Overview

Board Events  2  3   4 (click tabs to see student view)

Responding to Board Events  Student Overview

Using the Switch  6  7  8 (click tabs to see student view)

Buttons and Switch  Student Overview

The Buzzer  10  11  12 (click tabs to see student view)

Circuit Playground: Buzzer  Student Overview

Levels  Extra (click tabs to see student view)

 Assessment Opportunity

Students should make reasonable choices for when

one board event might be better than another. You

may want to have a short class discussion before or

after this journal prompt to highlight the advanages

and disadvantages of each event type.

3. What's one other event you haven't learned yet,

but you think might exist?

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CS - Computing Systems

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

6
Ch. 1 1 2 3 4 5 6 7 8 9 Ch. 2 10 11 12

13 14 15 16

Lesson 6: Getting Properties

Overview

This lesson introduces students to the getProperty block, which

allows them to access the properties of different elements with

code. Students first practice using the block to determine what

the user has input in various user interface elements. Students

later use getProperty and setProperty together with the

counter pattern to make elements move across the screen. A new

screen element, the slider, and a new event trigger, onChange ,

are also introduced.

Purpose

So far, students have only used the button press event to gather

information from the App Lab screen. Using getProperty opens

the students to gathering a wide range of information from the

user. Getting properties also allows students to create programs

that don't rely on knowing an element's properties when the code

is written, so their programs can be more dynamic and

interactive. These features will be important as students move

toward making an interactive game in the next few lessons.

Assessment Opportunities

1. Use getters to access the properties of elements in a system

Code Studio: see rubric on bubble 6

Agenda
Warm Up (5 min)

Activity (40 min)

Wrap Up (10 min)

View on Code Studio

Objectives
Students will be able to:

Use getters to access the properties of

elements in a system

Introduced Code

getProperty(id, property)

https://curriculum.code.org/csd-20/unit6/
https://studio.code.org/docs/applab/getProperty/
https://studio.code.org/docs/applab/getProperty/
https://studio.code.org/docs/applab/setProperty/
https://studio.code.org/docs/applab/getProperty/
https://studio.code.org/s/csd6-2020/stage/6/puzzle/1/
https://studio.code.org/docs/applab/getProperty/

Teaching Guide

Warm Up (5 min)

Review: Ask students to think of the different types of information that they were able to get from the board in the

last lesson (e.g. button presses, toggle state, etc.)

 Remarks

So far we've seen lots of ways that we can get information from our Circuit Playground. Today we're going to look

at more ways that we can get information from the screen of our app.

Activity (40 min)

 Send students to Code Studio.

 Code Studio levels

Wrap Up (10 min)

 Journal Prompt: So far, you've seen several different types of input, some from the screen, and some from the

circuit playground. Choose one type of input and answer the following questions about it.

1. What code do you need to get information from this input?

2. What's one example of when you would want to use this input?

3. What's an example of when you wouldn't want to use this input?

Lesson Overview  Student Overview

Getting Properties  2  3  4  5   6

(click tabs to see student view)

getProperty  Student Overview

Sliders  8  9  10 (click tabs to see student view)

Change  11  12  13 (click tabs to see student view)

Event Types  Student Overview

Motorcycle  15  16 (click tabs to see student view)

Levels  Extra (click tabs to see student view)

 Teaching Tip

For this prompt, you can "jigsaw" the answers by

assigning different students or different groups each a

type of input and answering questions on each type.

The different answers can then be combined for a

class reference on input types.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

6
Ch. 1 1 2 3 4 5 6 7 8 9 Ch. 2 10 11 12

13 14 15 16

Lesson 7: Analog Input

Overview

In this lesson, students explore how the three analog sensors

(sound, light, and temperature) can be used to write programs

that respond to changes in the environment. The use of these

sensors marks a transition in terms of how users interact with a

program. By using sensors as an input, the user of an app doesn't

have to directly interact with it at all, or may interact without

actually realizing they are doing so.

Purpose

This lesson builds on the previous by introducing analog sensors

as a new form of input. These sensors all perform analog-to-

digital conversion, allowing programs to sense things as

represented by a 10 bit number (0-1023).

Assessment Opportunities

1. Develop programs that respond to analog input

Code Studio: See rubric on bubble 15

2. Scale a range of numbers to meet a specific need

Code Studio: See rubric on bubble 15

3. Represent a sensor value in a variety of ways

Code Studio: See rubric on bubble 15

Agenda
Warm Up (10 min)

Analog and Digital

Activity (40 min)

Analog Inputs

Wrap Up (5 min)

Sensors All Around

View on Code Studio

Objectives
Students will be able to:

Develop programs that respond to analog

input

Scale a range of numbers to meet a

specific need

Represent a sensor value in a variety of

ways

Preparation

Cue up the Difference between Analog

and Digital Signals - Video

If your room isn't very bright, it's useful

to have some flashlights or other light

sources on hand for testing the light

sensor

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Students

Difference between Analog and Digital

Signals - Video

Vocabulary

Analog - Any continuously changing signal

that is not restricted to finite set of values.

For example, the wave forms of spoken

words are an analog signal.

Digital - Data or signals represented by a

finite number of values. Analog signals

(which can have infinite values) must be

converted to digital in order to be

computed with.

Introduced Code

soundSensor

soundSensor.value

soundSensor.setScale(min, max)

lightSensor

https://curriculum.code.org/csd-20/unit6/
https://studio.code.org/s/csd6-2020/stage/7/puzzle/1/
https://www.youtube.com/watch?v=RQc_frX50BA
https://www.youtube.com/watch?v=RQc_frX50BA
https://studio.code.org/docs/applab/soundSensor/
https://studio.code.org/docs/applab/soundSensor.value/
https://studio.code.org/docs/applab/soundSensor.setScale/
https://studio.code.org/docs/applab/lightSensor/

tempSensor

https://studio.code.org/docs/applab/tempSensor/

 Discussion Goal

The goal here is to get students thinking about how an

natural (or analog) value can be converted into a

computable format. Encourage students to consider

what the upper and lower bounds of each value might

be (for example, is there a minimum or maximum

amount of sound?).

Teaching Guide

Warm Up (10 min)

Analog and Digital

 Think, Pair, Share: How would you quantify each of

your five senses (touch, taste, sight, smell, and

hearing). Think back to the previous unit and the

various ways you came up with to encode data for a

computer.

Video: Today we're going to write programs that have

"senses" of their own! Show Difference between

Analog and Digital Signals - Video

Activity (40 min)

Analog Inputs

Distribute: Pass out Circuit Playgrounds.

Transition: Send students to Code Studio. Let them know that today they will be experimenting with some sensors

that detect analog signals and convert them to digital values that can be used by the computer.

 Code Studio levels

Lesson Overview  Student Overview

Sensor Experiment  Student Overview

Reading Sensors  3  4  5 (click tabs to see student view)

Analog Sensors  Student Overview

Sensor Events  7  8  9  10 (click tabs to see student view)

Polling Events  Student Overview

Changing Sensor Scale  Student Overview

Sensors to Colors  13  14   15 (click tabs to see student view)

Levels  Extra (click tabs to see student view)

https://www.youtube.com/watch?v=RQc_frX50BA

Wrap Up (5 min)

Sensors All Around

Journal: Considering all of the computing devices that you interact with on a regular basis, identify as many

potential analog sensors as you can. Where do your computing devices take a continuously changing signal and

convert it into digital data?

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CS - Computing Systems

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

6
Ch. 1 1 2 3 4 5 6 7 8 9 Ch. 2 10 11 12

13 14 15 16

Lesson 8: The Program Design Process

Overview

This lesson introduces students to the process they will use to

design programs of their own throughout this unit. This process is

centered around a project guide which asks students to sketch

out their screens, identify elements of the Circuit Playground to

be used, define variables, and describe events before they begin

programming. This process is similar to the Game Design Process

that we used in Unit 3. In this lesson students begin by playing a

tug o' war style game where the code is hidden. They discuss

what they think the board components, events, and variables

would need to be to make the program. They are then given a

completed project guide which shows one way to implement the

project. Students are then walked through this process through a

series of levels. At the end of the lesson students have an

opportunity to make improvements to the program to make it

their own.

Purpose

This lesson gives students to practice developing a larger scale

program in order to prepare them to do so independently. While

previous lessons have focused on building skills around using

specific elements of the Circuit Playground and related

programming concepts, this lesson focuses on combining

everything learned so far into a more complex program. The

lesson heavily scaffolds the software development process by

providing students a completed project guide, providing starter

code, and walking students through its implementation. In the

subsequent lessons students will need to complete a greater

portion of this guide independently, and for the final project they

will follow this process largely independently.

Assessment Opportunities

1. Implement different features of a program by following a

structured project guide

The final program should reflect the functions, events, and

screen design as shown in the project guide.

2. Develop a program that responds to events from a hardware

input

Code Studio: See rubric on bubble 13

3. Create a function that uses parameters to generalize behavior

Code Studio: See rubric on bubble 13

Agenda

View on Code Studio

Objectives
Students will be able to:

Implement different features of a program

by following a structured project guide

Develop a program that responds to events

from a hardware input

Create a function that uses parameters to

generalize behavior

Preparation

Provide students with copies of the

project guide

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Students

Emoji Race - Project Guide Make a Copy

https://curriculum.code.org/csd-20/unit6/
https://studio.code.org/s/csd6-2020/stage/8/puzzle/1/
https://docs.google.com/document/d/1dn4FIRKYaVb1o7TNiyeKqoT1fBL9FPoqOmJV-nvJYUM/

Warm Up (15 min)

Play Emoji Race

Stop: Review Project Guide

Activity (45-60 min)

Implement Project Guide

Wrap Up (20 min)

Make It Your Own

 Teaching Tip

Keeping Focus: Students can easily get distracted by

the fun of playing the game. Let them play for a while

but eventually encourage them to follow the on-screen

instructions and make a list of the board components,

events, and variables that would be necessary to

create the game.

 Discussion Goal

Running the Conversation: You can write "Board",

"Events", and "Functions" on the board and record

their ideas below each. Ask students to justify their

decisions but don't feel the need to settle on one right

answer.

 Teaching Tip

Sharing the Project Guide: Students are not actually

writing on the project guide in this lesson. You can give

each student their own copy for reference but you

might also choose to print one copy per pair, share

digital copies, or just display the guide on the

projector. So long as it is available for reference any

approach will work fine.

Teaching Guide

Warm Up (15 min)

Play Emoji Race

Group: Place students in pairs

Demo: Show students the Emoji Race demo, available at the beginning of this lesson.

Transition: Send students online to try out the game on their own. Each pair should play the game and follow the

instructions which ask them to list the board components, events, and variables they think are necessary to create

this game.

Stop: Review Project Guide

  Discuss: Students should have individually

created a list of board components, events, and

functions they would need to make the game they

played. Ask students to share their lists with a

neighbor before discussing as a class.

 Distribute: Give each student or pair of students a

copy of the project guide.

Prompt: Compare the list of things you thought would

be needed to the ones on this project guide. Do you

notice any differences?

Discuss: As a class compare the list you had on the

board to the list of board components, events, and

functions on the project guide. Note the similarities.

Where there are differences try to understand why.

Don't approach one set as "right" vs. "wrong" but just

confirm both would be able to make the game

students played.

 Remarks

There's usually lots of ways you can structure a

program to get it to work the way you want. The

important thing when writing complex or large

programs is that you start with a plan. Today we're

going to look at how we could implement this plan

to build our own emoji race game. By the end of the lesson you'll not only have built your game, but you'll know

how to change it and make it your own. Let's get going!

Activity (45-60 min)

Implement Project Guide

Students are given starter code to establish the functions and event handlers needed for this project. These levels

guide students through how to use the provided variables and what ought to occur within the event handlers. As

students move through the levels point out how the project guide is being used. Though this project is highly

scaffolded, the next lesson will ask students to develop a hardware-based program of their own design, so make

sure to reinforce the connection between the planning that was done in the project guide and the programming

levels.



 Code Studio levels

Wrap Up (20 min)

Make It Your Own

This last level encourages students to make the game their own. If students have made their way to this point they

have all the skills they need to progress through the curriculum, so there is no pressure to complete any of the

modifications suggested in this level. If you have time, however, getting practice planning and implementing new

features will be a useful skill. Even just modifying the look of the screens is an easy way students can make the

game their own.

Share: Once students have completed the project they can share their work with their classmates. Encourage

students to showcase the additional code they wrote and explain how it has changed the way the game works.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CS - Computing Systems

If you are interested in licensing Code.org materials for commercial purposes, contact us.

Lesson Overview  Student Overview

Sample Program  Student Overview

Plan Your Project  Student Overview

Screen Design  4  5  6 (click tabs to see student view)

Finishing Functions  7  8  9 (click tabs to see student view)

Checking for a Winner  10  11  12   13

(click tabs to see student view)

Make it Your Own  Student Overview

https://creativecommons.org/
https://code.org/contact

UNIT

6
Ch. 1 1 2 3 4 5 6 7 8 9 Ch. 2 10 11 12

13 14 15 16

Lesson 9: Project - Make a Game

Overview

Students take what they've learned through chapter one, and

develop an app of their own design that uses the board to output

information.

Purpose

This end of chapter assessment is a good place for students to

bring together all the pieces they have learned (event handlers,

using the board as output, etc.) in one place. This project is

purposefully left very open to allow students to think broadly

about how physical output might be useful in an app - this is a

great opportunity to encourage students to revisit programs

they've written earlier in this unit or in Unit 4 that would benefit

from using the board to output information.

Assessment Opportunities

Use the project rubric attached to this lesson to assess student

mastery of learning goals of this chapter.

Agenda
Warm Up (10 min)

Demo Project Exemplars

Activity (90 - 120 min)

Unplugged: Program Planning

Prototyping the Program

Wrap Up (10 min)

Sharing Projects

Self Assessment

View on Code Studio

Objectives
Students will be able to:

Use event handlers to respond to user

interaction

Design a piece of software that uses

hardware for non-traditional input and

output

Prototype a program that integrates

software and hardware

Preparation

Print a copy of the project guide for each

group of students

Print a copy of the rubric for each

student

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Make a Game - Exemplars

For the Students

Computer Science Practices - Reflection

Make a Game - Project Guide

Make a Copy

Make a Copy

https://curriculum.code.org/csd-20/unit6/
https://studio.code.org/s/csd6-2020/stage/9/puzzle/1/
https://studio.code.org/s/csd6-2019/stage/9/puzzle/1
https://docs.google.com/document/d/1Ccf-WMH2qFDhycKaKSILRrZUe42lWESyRqMgdTymCPw/edit
https://docs.google.com/document/d/1vPeG-bJlGJTVU91eNzxIzp1gTCK-s5AGAX_T-SrfBZE/edit

 Teaching Tip

Students may find it particularly difficult to predict all
of the events that they'll want to respond to or the

functions that they'll need to create. Make sure that

they know this is an iterative process and planning is

only the first step. We want to start this project with

as clear a plan as possible, but there will likely be

things that weren't considered from the start and the

plan will need to change accordingly.

Teaching Guide

Warm Up (10 min)

Demo Project Exemplars

Display: On the projector, show the example project at the beginning of this lesson.

Prompt: Analyze the exemplar for the following elements:

Where is input being taken?

What events do you think are being used for each input?

What information is being output through the board?

Where might this program be using a loop?

Discuss: Have students share their observations and analyses of the exemplar.

Distribute: Provide each student with a copy of the rubric. Review the different components of the rubric with them

to make sure they understand the components of the project.

Activity (90 - 120 min)

Unplugged: Program Planning

Group: Place students in groups of 2-3.

Distribute: Hand out the project guide to students. This is the tool students will use to scope out their projects

before getting onto the computers. Give students some time to brainstorm the type of program they want to make.

 Make a Game Project Guide

Brainstorming

Give groups some time to brainstorm ideas for their project. The goal is to come up with a simple game that can

be controlled using elements of the Circuit Playground. Encourage students to think about all of the programs and

projects that they've made so far as potential starting points (including the prototypes from Unit 4).

1.  Once groups have settled on an idea, they can

record it on the activity guide under Project

Brainstorming.

2. Next students think through the Events they'll

need to respond to.

3. Finally students consider the functions that they

may need to create.

Prototyping the Program

Transition: Once teams have completed their planning

sheet, they can head to Code Studio to work on prototyping their projects.

 Code Studio levels

View on Code Studio View on Code Studio to access answer key(s)

Lesson Overview  Teacher Overview Student Overview

Demo - Bug Grab  Student Overview

https://studio.code.org/s/csd6-2020/stage/9/puzzle/1

Wrap Up (10 min)

Sharing Projects

Share: Find a way for groups to share their projects with each other. It will likely be helpful to use the share link for

the project so that students can share the project with other students.

Self Assessment

Using the rubric, students should assess their own project before submitting it.

 Send students to Code Studio to complete their reflection on their attitudes toward computer science. Although

their answers are anonymous, the aggregated data will be available to you once at least five students have

completed the survey.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CS - Computing Systems

If you are interested in licensing Code.org materials for commercial purposes, contact us.

Plan Your Project  Student Overview

Screen Design  4 (click tabs to see student view)

Events  5  6 (click tabs to see student view)

Functions  7  8 (click tabs to see student view)

Finishing Touches  9 (click tabs to see student view)

Reflection   10 (click tabs to see student view)

https://creativecommons.org/
https://code.org/contact

UNIT

6
Ch. 1 1 2 3 4 5 6 7 8 9 Ch. 2 10 11 12

13 14 15 16

Lesson 10: Arrays and Color LEDs

Overview

An array is an ordered collection of items, usually of the same

type. In this lesson, students learn ways to access either a

specific or random value from a list using its index. They then

learn how to access the colorLEDs array that controls the

behavior of the color LEDs on the Circuit Playground. Students

will control the color and intensity of each LED, then use what

they have learned to program light patterns to create a light

show on their Circuit Playground.

Purpose

Arrays are a common data structure in computer science, used to

make storing and accessing information easier. The lesson

prepares students to access items within an array, but doesn't

yet cover creating and modifying arrays, which will be addressed

in the following lesson. Students are also introduced to the ring of

color LEDs, which are exposed as an array called colorLeds .

Students learn how to access and control each LED in the array

individually, preparing them to access multiple LEDs though

iteration later in the chapter.

Assessment Opportunities

1. Access an element in an array using its index

Code Studio: See the rubric on bubble 7 and the quick check

on bubble 9

2. Use the color LED array to individually control each color LED

Code Studio: See the rubric on bubble 17

Agenda
Warm Up (5 min)

Discussion: What is a List?

Activity (45 min)

Arrays and Color LEDs

Wrap Up (5 min)

Discussion: Objects Vs Arrays

View on Code Studio

Objectives
Students will be able to:

Access an element in an array using its

index

Use the color LED array to individually

control each color LED

Vocabulary

Array - A data structure in JavaScript used

to represent a list.

Introduced Code

colorLeds

colorLeds[index].on()

colorLeds[index].blink(interval)

colorLeds[index].intensity(brightness)

colorLeds[index].color(color)

list[index];

https://curriculum.code.org/csd-20/unit6/
https://studio.code.org/docs/applab/colorLeds/
https://studio.code.org/s/csd6-2020/stage/10/puzzle/1/
https://studio.code.org/docs/applab/colorLeds/
https://studio.code.org/docs/applab/on/
https://studio.code.org/docs/applab/blink/
https://studio.code.org/docs/applab/intensity/
https://studio.code.org/docs/applab/color/
https://studio.code.org/docs/applab/accessListItem/

 Discussion Goal

While the types of lists students come up with vary

from class to class, the two main characteristics of

lists that students should understand is that they

usually are comprised of items of the same type (tasks

to complete, names of people, song titles, grocery

items, etc.) and that they have an order. Some

common types of lists include a to-do list, a class

roster, a playlist, or a grocery list.

Teaching Guide

Warm Up (5 min)

Discussion: What is a List?

Set Up: Have students take out their journals. In their journals have students respond to the following prompt.

 Prompt: What is a list? What do you use lists for?

Discuss: Once students have had time to write down

their own thoughts, have them share out to the whole

class. Work as a class to try to get an understanding

of what a list is.

 Remarks

When we program, we sometimes want to store lists

of items. In Javascript, we do this using an array. An

array is a collection of items that are stored in a

particular order. We're going to look at different

ways to use arrays, and then see how they will help us to control more LEDs on the Circuit Playground.

Activity (45 min)

Arrays and Color LEDs

Transition: Head to Code Studio

 Code Studio levels

Lesson Overview  Student Overview

View on Code Studio 

Discussion Goals

This is the first introduction to arrays, and students will have an opportunity to try them out in the lesson, so

understanding why arrays are helpful and the general ways that can use them is more important than the

particular syntax or commands in the video. Students should understand that arrays are intended to hold

several pieces of information, usually all of the same type. Just like any other piece of information, it needs

to be assigned to a variable for a programmer to find it again. Programmers can access each element of the

array by its index, or its position number in the array. Students will have a chance to practice the exact

syntax in the lesson.

Video: Introduction to Arrays  Teacher Overview Student Overview

Introduction to Arrays  3  4  5  6   7

(click tabs to see student view)

Arrays  Student Overview

https://studio.code.org/s/csd6-2020/stage/10/puzzle/2

 Content Corner

Arrays are frequently used to collect items of the same

type (a bunch of numbers, a bunch of strings, a bunch

of button names, etc), but in JavaScript all list items

need not be of the same type. You can create lists the

include numbers, strings, objects, and even other lists.

An Object is a data structure that combines many

values (such as numbers, strings, and even functions)

that represent the attributes of that object (height,

width, rotation, name) which are easier to keep track

of if done in one place. The attributes can be of many

different types but they all describe one object.

Wrap Up (5 min)

Discussion: Objects Vs Arrays

 Prompt: You have now seen both objects, such as

the Sprite object, and arrays. How is an array different

from the attributes of an object? When would you use

an array? When would you use an object?

You can either use this as an exit ticket or have a

class discussion if you have time.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CS - Computing Systems

If you are interested in licensing Code.org materials for commercial purposes, contact us.

Using Arrays   Student Overview

Color LEDs  10  11  12  13  14 (click tabs to see student view)

Circuit Playground: Color LEDs  Student Overview

Light Show  16   17 (click tabs to see student view)

Challenge Levels  Extra (click tabs to see student view)

https://creativecommons.org/
https://code.org/contact

UNIT

6
Ch. 1 1 2 3 4 5 6 7 8 9 Ch. 2 10 11 12

13 14 15 16

Lesson 11: Making Music

Overview

In this lesson students will use the buzzer to its full extent by

producing sounds, notes, and songs with the buzzer. Students

start with a short review of the buzzer's frequency and duration

parameters, then move on to the concept of notes. Notes allow

students to constrain themselves to frequencies that are used in

Western music and provide a layer of abstraction that helps them

to understand which frequencies might sound good together.

Once students are able to play notes on the buzzer, they use

arrays to hold and play sequences of notes, forming simple

songs.

Purpose

This lesson allows students to get more creative with the buzzer

by introducing the concept of a "note" and by using arrays to hold

sequential collections of notes. Using notes rather than

frequencies provides a layer of abstraction that makes it easier

for students to identify sounds that can be used to make music.

Arrays provide a way to group together sounds in sequence, so

that they can be played as music. Using the playNotes block to

iterate over an array of notes provides a conceptual foundation

for working with for loops in the next lesson.

Assessment Opportunities

1. Create and modify an array

Code Studio: see rubric on bubble 9

2. Use the buzzer to produce sequences of notes

Code Studio: see rubric on bubble 14

3. Recognize an array as a list of elements that can be operated

on sequentially.

Wrap up: Students should recognize that the playNotes block

operates on each element of the notes array in sequence.

Agenda
Warm-Up (5 min)

Color LEDs vs the Buzzer

Activity (40 min)

Making Music

Wrap-Up (5 min)

Journal

View on Code Studio

Objectives
Students will be able to:

Create and modify an array

Use the buzzer to produce sequences of

notes

Recognize an array as a list of elements

that can be operated on sequentially.

Introduced Code

buzzer.note(note, duration)

buzzer.playNotes(array, tempo)

list.length

var list = ["a","b","d"];

https://curriculum.code.org/csd-20/unit6/
https://studio.code.org/docs/spritelab/codestudio_for/
https://studio.code.org/s/csd6-2020/stage/11/puzzle/1/
https://studio.code.org/docs/applab/buzzer.note/
https://studio.code.org/docs/applab/buzzerplaynotes/
https://studio.code.org/docs/applab/listLength/
https://studio.code.org/docs/applab/declareAssign_list_abd/

 Discussion Goal

Students may come up with many different ideas, but

there are two aspects of this problem that should be

highlighted before students move on to the activity.

First, specifying frequencies is not the best way to

indicate how high or low a buzz should be, since music

only uses a limited number of frequencies, and other

frequencies are considered "out of tune". Music is

usually written down as specific notes on a scale,

which makes it much easier to see which sounds will

go well together. (Students with a musical background

will likely have a much better grasp of this issue.)

Second, students will need a way to string sounds, or

notes, together to make a song. This second point

should be more universally understood.

Teaching Guide

Warm-Up (5 min)

Color LEDs vs the Buzzer

 Prompt: We've been using the buzzer to make

sounds, but those buzzes didn't always sound too

great. What do you think you need to make real music

on the buzzer?

Activity (40 min)

Making Music

Transition: Send students to Code Studio.

 Code Studio levels

Wrap-Up (5 min)

Journal

 Prompt: Today, instead of just choosing one element from an array, we used the playNotes block to do

something to every element. Think back to the other arrays you have seen. How might doing something to every

element in an array be useful there?

Share After giving students time to reflect in their own journals, have them share with a partner or in small groups.

Lesson Overview  Student Overview

Playing Notes  2  3  4  5 (click tabs to see student view)

Making Music  Student Overview

Musical Arrays  7  8   9 (click tabs to see student view)

Modifying Arrays  Student Overview

Making Songs  11  12  13   14 (click tabs to see student view)

Levels  Extra  Extra (click tabs to see student view)

 Assessment Opportunity

Students should reconize that the playNotes block

plays each note in the array in sequence, and extend

that idea to other times when operating on each

element of an array would be useful. This will prepare

them to for the next lesson, in which for loops are

used to operate on each element of a list in sequence.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

6
Ch. 1 1 2 3 4 5 6 7 8 9 Ch. 2 10 11 12

13 14 15 16

Lesson 12: Arrays and For Loops

Overview

Using a for loop to iterate over all of the elements in an array is a

really useful construct in most programming languages. In this

lesson, students learn the basics of how a for loop can be used to

repeat code, and then combine it with what they've already

learned about arrays to write programs that process all elements

in an array. Students use for loops to go through each element in

a list one at a time without having to write code for each

element. Towards the end of the lesson students will apply this

with the colorLed list on the board to create an app that changes

all of the LEDs each time a button is clicked.

Purpose

As students start using arrays more frequently, a common

pattern emerges wherein you want to run some code on each

element of an array. While for loops are a generally useful

structure for repeating code, they are a particularly useful for

iterating over an array. In this lesson we build on the

understanding of arrays that students have developed in the last

two lessons by introducing the for loop, which combines a

variable, the counter pattern, and a conditional all in a single

construct.

Assessment Opportunities

1. Modify the exit condition of a for loop to control how many

times it repeats

Code Studio: see rubric on bubble 13

2. Use a for loop to iterate over an array

Code Studio: see rubric on bubble 13

Agenda
Warm Up (5 min)

Run Code on All Elements of an Array

Activity (40 min)

Arrays and For Loops

Wrap Up

Journal

View on Code Studio

Objectives
Students will be able to:

Modify the exit condition of a for loop to

control how many times it repeats

Use a for loop to iterate over an array

Vocabulary

Array - A data structure in JavaScript used

to represent a list.

For Loop - Loops that have a

predetermined beginning, end, and

increment (step interval).

Introduced Code

for(var i=0; i<4; i++){ //code }

function myFunction(n){ //code }

Call a function with parameters

https://curriculum.code.org/csd-20/unit6/
https://studio.code.org/s/csd6-2020/stage/12/puzzle/1/
https://studio.code.org/docs/applab/forLoop_i_0_4/
https://studio.code.org/docs/applab/functionParams_n/
https://studio.code.org/docs/applab/callMyFunction_n/

 Discussion Goal

You shouldn't expect students to know how exactly a

computer would do this, but to start thinking about

what is needed to keep track of where you are in an

array (the index), how you would know you've reached

the end of the array (the array length), and how you

might incrementally increase where you are in the list

(the counter pattern).

Teaching Guide

Warm Up (5 min)

Run Code on All Elements of an Array

 Discuss: If you had a list full of all of your ToDos and

you wanted the computer to print out each one, how

might you do it? Don't worry about the specific code,

focus on the what information your program would

need to know and keep track of. Would your approach

still work if you added or removed a ToDo from your

list?

 Remarks

Doing something to every element of an array is a

really common problem in Computer Science, and figuring out how to solve this problem will let us write more

efficient programs. Today we're going to focus on three things to help us with this problem

1. Using the index to do something to elements in an array

2. Keeping track of a counter so we can move through the elements of an array by index

3. Using the length of an array to know when we've reached the end

Activity (40 min)

Arrays and For Loops

Transition: Send students to Code Studio

 Code Studio levels

Lesson Overview  Student Overview

Programs that Repeat  2  3 (click tabs to see student view)

View on Code Studio 

Discussion Questions

For-loops are a very powerful construct, but this introduction intentionally only covers a small part of their

functionality. As students are more comfortable with loops, more functionality will be introduced. For now,

students should know that they can use a for loop to repeat a segment of code multiple times. The segment

should go wherever in the program that code will be run. (This aspect of loops is highlighted to keep

students from treating loops like functions and placing them at the bottom of the code.)

Video: For Loops  Teacher Overview Student Overview

For Loops  5  6  7  8 (click tabs to see student view)

https://studio.code.org/s/csd6-2020/stage/12/puzzle/4

Wrap Up

Journal

Prompt: Have students reflect on their development of the five practices of CS Discoveries (Problem Solving,

Persistence, Creativity, Collaboration, Communication). Choose one of the following prompts as you deem

appropriate.

Choose one of the five practices in which you believe you demonstrated growth in this lesson. Write something

you did that exemplified this practice.

Choose one practice you think you can continue to grow in. What’s one thing you’d like to do better?

Choose one practice you thought was especially important for the activity we completed today. What made it so

important?

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CS - Computing Systems

If you are interested in licensing Code.org materials for commercial purposes, contact us.

For Loops  Student Overview

For Loops and Color LEDs  10  11  12   13

(click tabs to see student view)

https://docs.google.com/document/d/1FhHPqlC6dU_z9retuBYb-duUwyKpnjwuEgjF4zfdhvI/edit#heading=h.5u3d4jfozbgc
https://creativecommons.org/
https://code.org/contact

UNIT

6
Ch. 1 1 2 3 4 5 6 7 8 9 Ch. 2 10 11 12

13 14 15 16

Lesson 13: Accelerometer

Overview

In this lesson, students will explore the accelerometer and its

capabilities. They’ll become familiar with its events and

properties, as well as create multiple programs utilizing the

accelerometer similar to those they’ve likely come across in real

world applications.

Purpose

This lesson gives students an opportunity to work with the

accelerometer sensor and explore its orientation properties and

accelerometer-specific board events. Students will see the

purpose and uses of an accelerometer in real world devices and

programs and create their own versions of some of these

applications. To do this, students will need to refer back to their

past knowledge of the counter pattern to create functional

accelerometer-based apps.

Assessment Opportunities

1. Recognize the use and need for accelerometer orientation

(pitch and roll).

Wrap Up: Students should mention several real world

applications for the accelerometer.

2. Use the data event to continually update an element's

properties.

Code Studio: see rubric on bubble 11.

Agenda
Warm Up (5 Min)

What Makes a Sensor?

Activity (45 min)

The Accelerometer

Wrap Up (5 Min)

Journal

View on Code Studio

Objectives
Students will be able to:

Recognize the use and need for

accelerometer orientation (pitch and roll).

Use the data event to continually update

an element's properties.

Introduced Code

accelerometer.getOrientation()

https://curriculum.code.org/csd-20/unit6/
https://studio.code.org/s/csd6-2020/stage/13/puzzle/1/
https://studio.code.org/docs/applab/accelerometer.getOrientation/

 Discussion Goal

Students have been exposed to sensors in previous

lessons but have only seen a few aspects of what a

sensor can measure. This discussion gives students a

chance to think about the characteristics of a sensor,

while also thinking about the other possible

characteristics of a sensor they haven’t been exposed

to.

 Assessment Opportunity

Students should think of several applications for the

accelerometer, explaining how knowing the pitch and

roll could be useful.

Teaching Guide

Warm Up (5 Min)

What Makes a Sensor?

 Prompt: Refer back to the analog sensors, what

makes a sensor a sensor? Could an accelerometer be

a sensor?

Share: Have students share their thoughts and ideas

in small groups.

Activity (45 min)

The Accelerometer

Transition: Send students to Code Studio.

 Code Studio levels

Wrap Up (5 Min)

Journal

 Prompt: What are some uses for pitch and roll in an

everyday app?

Lesson Overview  Student Overview

Orientation  2  3  4  5 (click tabs to see student view)

The Accelerometer  Student Overview

Accelerometer Events  7  8 (click tabs to see student view)

Using Accelerometer Events  Student Overview

Revisiting the Counter Pattern  Student Overview

Accelerometer Events   11  12  13 (click tabs to see student view)

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

6
Ch. 1 1 2 3 4 5 6 7 8 9 Ch. 2 10 11 12

13 14 15 16

Lesson 14: Functions with Parameters

Overview

The lesson starts with a quick review of parameters, in the

context of App Lab blocks that they students have seen recently.

Students then look at examples of parameters within user-

created functions in App Lab and create and call functions with

parameters for themselves, using them to control multiple

elements on a screen. Afterwards, students use for loops to

iterate over an array, passing each element into a function. Last,

students use what they have learned to create a star catching

game.

Purpose

In previous lessons, students have used functions to define blocks

of code that can be used in multiple places in a program. In this

lesson, students learn how to use parameters to generalize the

purpose of a function. Parameters allow a program to specify the

details of how a function works when it is called, rather than

when the program is defined. Although students have seen

functions with parameters earlier in the unit, this is the first time

that they are expected to define and call their own. Students also

learn how to use a for loop to iteratively pass in the elements of

an array as parameters to a function, allowing them to use the

same function on multiple elements on the screen.

Assessment Opportunities

1. Use parameters to generalize the purpose of a function.

Code Studio: See rubric on bubble 15

Agenda
Warm Up

Activity (50 min)

Wrap Up

View on Code Studio

Objectives
Students will be able to:

Use parameters to generalize the purpose

of a function.

Vocabulary

Parameter - An extra piece of information

passed to a function to customize it for a

specific need

Introduced Code

function myFunction(n){ //code }

Call a function with parameters

https://curriculum.code.org/csd-20/unit6/
https://studio.code.org/s/csd6-2020/stage/14/puzzle/1/
https://studio.code.org/docs/applab/functionParams_n/
https://studio.code.org/docs/applab/callMyFunction_n/

 Discussion Goal

Goal: Students should eventually see that parameters

give a program flexibility. Sometimes, multiple

commands are similar enough that it makes sense to

combine them into one, but with a parameter to

distinguish between their differences. Sometimes,

such as the case of buzzer.frequency , there are too

make options to make a separate block for each one.

Parameters allow a programmer to use a single

solution to solve multiple, related problems.

Teaching Guide

Warm Up

 Prompt: When you needed to access the pitch and

roll of the accelerometer in the last lesson, you used

the block accelerometer.getOrientation , and you

chose whether to get the pitch or the roll. Why do you

think the creators make the program work that way,

rather than having two blocks, one for the pitch and

one for the roll?

What other blocks that you have seen take

parameters? Why are parameters so useful?

 Remarks

So far, the functions that you have used always did the exact same thing. Today, we're going to look at a way to

make functions even more useful by giving them parameters, just like some of the blocks that you just talked

about.

Activity (50 min)

 Send students to Code Studio

 Code Studio levels

Lesson Overview  Student Overview

Functions with Parameters  2 (click tabs to see student view)

View on Code Studio 

Discussion Goals

Students will have a chance to practice defining functions with parameters in the lesson, so it's not

necessary for them to understand the exact process. Students should understand that parameters are

useful because they let programmers use the same function to solve problems that are very similar, but

with slight differences. If multiple functions are almost alike, but have a small difference, students may want

to combine those functions into one, and use a parameter to account for the difference.

Functions with Parameters  Teacher Overview Student Overview

Functions with Parameters  4  5  6 (click tabs to see student view)

Iteration and Parameters  7  8  9 (click tabs to see student view)

Star Chaser  10  11  12  13  14   15  Extra  Extra

https://studio.code.org/docs/applab/buzzer.frequency/
https://studio.code.org/docs/applab/accelerometer.getOrientation/
https://studio.code.org/s/csd6-2020/stage/14/puzzle/3

Wrap Up

Prompt: Think back to some of the programs that you have made before. What are two times that you could have

used functions with parameters? What would the parameter be? How should the function's behavior change when

the parameter changes?

If you are interested in licensing Code.org materials for commercial purposes, contact us.

(click tabs to see student view)

https://creativecommons.org/
https://code.org/contact

UNIT

6
Ch. 1 1 2 3 4 5 6 7 8 9 Ch. 2 10 11 12

13 14 15 16

Lesson 15: Circuits and Physical Prototypes

Overview

In preparation for this chapter's final project, students will learn

how to develop a prototype of a physical object that includes a

Circuit Playground. Using a modelled project planning guide,

students will learn how to wire a couple of simple circuits and to

build prototypes that can communicate the intended design of a

product, using cheap and easily found materials such as

cardboard and duct tape.

Purpose

The goal of this lesson is both to model for students how thinking

about the physical design of a product impacts the prototyping

process, and to introduce a handful of practical skills that will

make creating their final projects easier.

Assessment Opportunities

1. Create and debug simple circuits

Code Studio: See rubric on bubble 9. Note that you will need

access to the student's physical prototype for this assessment.

2. Develop an interactive physical protype that combines

software and hardware

Code Studio: See rubric on bubble 15. Note that you will need

access to the student's physical prototype for this assessment.

3. Consider the needs of diverse users when designing a product

Wrap Up: Students should identify multiple target users and

how different features of the design might impact them.

Agenda
Warm Up (5 min)

Designing a Physical Device

Activity 1 (30 min)

Introducing the Smart Bike

Activity 2 (30-45 min)

Building the Prototype

Activity 3 (30-45 min)

Adding Inputs

Wrap Up (15 min)

Sharing Designs

View on Code Studio

Objectives
Students will be able to:

Create and debug simple circuits

Develop an interactive physical protype

that combines software and hardware

Consider the needs of diverse users when

designing a product

Preparation

Gather prototyping materials, such as:

Structural material (cardboard,

construction paper, etc)

Connective material (tape, glue, hot

glue, etc)

Construction tools (scissors, staplers,

etc)

Other materials (cups, binder clips,

paper plates, etc)

Prepare circuit wiring materials, such as:

Alligator clip wires (included in Circuit

Playground classroom kit)

LEDs (included in Circuit Playground

classroom kit)

Other conductive material (wire,

paper clips, foil, etc)

(optional) Buttons or switches

Print a copy of the project guide for each

group of 2-3 students

Prepare a model button to show the

class

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Students

How Computers Work: Circuits & Logic -

Video (download)

Physical Prototyping - Project Guide

Vocabulary

Make a Copy

https://curriculum.code.org/csd-20/unit6/
https://studio.code.org/s/csd6-2020/stage/15/puzzle/1/
https://youtu.be/ZoqMiFKspAA
http://videos.code.org/cs-discoveries/concept/04_CircuitsLogic_sm.mp4
https://docs.google.com/document/d/1MYLYmwNW4DH7n_oCTZFGnYz52e99htwzKTqOcmL5txQ/edit

Circuit - A device that provides a path for

an electric current to flow, often modifying

that current. In computers, circuits allow

for simple logical and mathematical

operations using electricity.

Prototype - A first or early model of a

product that allows you to test

assumptions before developing a final

version.

Introduced Code

pinMode(pin, mode);

digitalWrite()

var myLed = createLed(pin);

var myButton = createButton(pin);

https://studio.code.org/docs/applab/pinMode/
https://studio.code.org/docs/applab/digitalWrite/
https://studio.code.org/docs/applab/createLed/
https://studio.code.org/docs/applab/createButton/

 Discussion Goal

The point of this short discussion is to get students

thinking about how we might use a board like the

Circuit Playground as part of a larger computing

device. It's not important that we're able to completely

replicate student's ideas with the board, but that we

can start thinking about where the board could be

used and where we might need to add additional

functionality.

 Discussion Goal

Students should be able to identify that almost all of

the functionality (such as blinking lights, responding to

button presses, and buzzing) can be done with the

Circuit Playground as is. The major barrier we want to

identify is how the physical requirements of the plan

(such as placing the blinker lights on the ends of the

handlebars) would require adding new hardware to the

board. This is intended to tee up the next activity, in

which students wire additional circuits onto their

boards.

Teaching Guide

Warm Up (5 min)

Designing a Physical Device

 Prompt: If you could create any kind of

computational device, what would it be? What would

it do? How would people interact with it?

Share: After a few minutes of thinking time, have

students share their ideas.

Discuss: How might a device like the Circuit

Playground help us design and prototype some of

these ideas? Consider picking a couple of ideas to put

up on the board and list with the class which things

features of a given device could be replicated with an

element of the board, and which might require additional hardware.

Activity 1 (30 min)

Introducing the Smart Bike

Group: Place students into groups of 3-4.

Distribute: Give each group a copy of the project guide, and introduce the project. Give students a moment to look

over the guide. This guide is similar to the one they will be using for their own final projects, but it's already been

mostly completed, which allows for them to focus on how to implement the idea, instead of what the idea should

be.

 Discuss: Focusing on the description and sketch on

the first page, how might we use the Circuit

Playground to develop this prototype. Which elements

are we currently unable to replicate with the board?

Display: Watch the How Computers Work: Circuits &

Logic - Video (level two in the progression) as a

class.

 Remarks

The elements of our Circuit Playground are all made

up of circuits so small that we can't even see most

of them, but you can create a simple circuit on your

own by attaching wires to the copper pads on the

edge of the board.

Distribute: Wires, LEDs, and any other hardware you want available for this portion. Let the class know that before

digging too far into building our prototypes, we'll need to learn how to add additional hardware to the board.

Transition: Head to Code Studio to work on the Simple Circuits section.

 Code Studio levels

Levels

 3

 4

 5

https://youtu.be/ZoqMiFKspAA

View on Code Studio 

View on Code Studio 

View on Code Studio 

View on Code Studio 

 Teaching Tip

Learning More About LEDs

We include LED sequins in the Circuit Playground

classroom pack, but if you're careful you can use just

about any LEDs you like. To learn more about pairing

LEDs with the proper resistor, check out Adafruit's LED

primer.

 Teaching Tip

Why Are We Talking Pins?

You may notice that in the early levels of this lesson

students are programming in a much different way

than they have before, directly manipulating pins. The

digitalWrite() and pinMode() commands are useful

to get our wiring set up quickly, but are not the core

concerns of this lesson. As soon as students are

comfortable wiring LED circuits we will introduce

techniques to control those LEDs with the higher level

commands that have been used up to this point (like

led.on() and led.off()).

 6

 7

 8

  9

 10

Student Instructions

Make a Prediction
All of the devices that you've used so far are actually circuits connected to numbered pins! Look for #13 on your

board to see which circuit is connected to pin 13, then read through this code and predict what will happen when

the program is run.

Student Instructions

Student Instructions

Wire a Circuit
You can use any of the numbered pads to add

additional circuits to your board. Let's use pin 2 to

add another LED.

Do This
Using a wire, connect pin 2 to the positive (+) side

of an LED

Using another wire, connect the negative (-) side of

the LED to a ground (GND) pin (it doesn't matter

which one)

Run this program to test your circuit. If it worked,

your LED should turn on.

Debugging Tip: LEDs only work if the electricity is

flowing from positive to negative. If your LED doesn't

light up, make sure that it's oriented the right way.

Student Instructions

Creating Board Objects
You might have noticed that the new blocks we're using are in a different toolbox drawer. The Circuit drawer

contains all of the board objects that are built into the Circuit Playground, but when you start wiring your own

circuits the Maker Toolkit no longer knows where everything is.

The new Maker drawer contains general purpose commands instead of ones that are customized for the Circuit

Playground. In addition to the pinMode() and digitalWrite() commands you've seen, it includes commands to

create new objects on the board that can be programmed in the same way as the blocks in the Circuit drawer. The

var myLed = createLed() command, for example, creates a new LED object that behaves just like the led blocks

you've been using.

Do This

https://studio.code.org/s/csd6-2020/stage/15/puzzle/3
https://studio.code.org/s/csd6-2020/stage/15/puzzle/4
https://studio.code.org/s/csd6-2020/stage/15/puzzle/5
https://studio.code.org/s/csd6-2020/stage/15/puzzle/6
https://learn.adafruit.com/all-about-leds/overview
https://studio.code.org/docs/applab/digitalWrite/
https://studio.code.org/docs/applab/pinMode/
https://studio.code.org/docs/applab/led.on/
https://studio.code.org/docs/applab/led.off/
https://studio.code.org/docs/applab/pinMode/
https://studio.code.org/docs/applab/digitalWrite/
https://studio.code.org/docs/applab/led/

View on Code Studio 

View on Code Studio 

View on Code Studio 

Now that you're creating new board objects that we don't have blocks for, you'll need to work in text mode. You can

still drag out blocks that you're familiar with from the Circuit drawer, you'll just need to change the name of the

object.

Keep your LED wired just as it was before (connected to pin 2)

Make sure you're in text mode, not block mode.

Drag out an led.blink() block below the comment Blink myLed .

Replace the text led with myLed .

Test your code.

Student Instructions

Wiring Multiple LEDs
Using the createLed() block you can connect and control as many LEDs as your board has room for. Each LED

needs to be connected to a separate numbered pin, but they can all share the same ground pin.

Do This
Leave the current LED connected to pin 2, but add another one to a numbered pin of your choice. For your new

LED:

Add a var myLed = createLed() block.

Replace the variable label myLed with a unique label.

Make sure you're in text mode, not block mode.

Add an led.blink() command.

Replace the text led with your new LED variable.

Test your code.

Challenge: Try adding a third LED and make all three LED blink at different intervals.

Student Instructions

Smart Bike - Blinkers
Using your planning guide, wire up the two LEDs that will serve as the blinkers. In order to make sure that the

blinkers can be mounted at the end of the handlebars, make sure you wire them so that they can stretch out in

opposite directions.

Do This
Using alligator clips, wire, or other conductive material, connect two LEDs to your board, one for each turn signal

blinker.

Hook up each LED to a different numbered pin on the board.

Use the createLed() block to create an LED object for each blinker.

Tip: Make your wiring easier by considering how your blinkers will be mounted when selecting a pin to use.

Student Instructions

Smart Bike - Blinker Controls
With your turn signal LEDs hooked up, you just need to program some buttons to control them. You may want to

place buttons elsewhere on the bike to make controlling your turn signals easier, but for now we'll just use the built

in left and right buttons.

https://studio.code.org/s/csd6-2020/stage/15/puzzle/7
https://studio.code.org/s/csd6-2020/stage/15/puzzle/8
https://studio.code.org/s/csd6-2020/stage/15/puzzle/9
https://studio.code.org/docs/applab/led.blink/
https://studio.code.org/docs/applab/led/
https://studio.code.org/docs/applab/createLed/
https://studio.code.org/docs/applab/led.blink/
https://studio.code.org/docs/applab/led/
https://studio.code.org/docs/applab/createLed/

View on Code Studio 

 Assessment Opportunities

Key Concepts:

Connect, troubleshoot, and debug external devices

and integrated computing systems.

Assessment Criteria:

Extensive Evidence

Convincing Evidence

Limited Evidence

No Evidence

 Teaching Tip

Sharing Boards? If you are sharing boards among

multiple classes, you'll need to take that into

consideration before groups start to build their

projects. You may want to add a design constraint that

the board must be easily removable from the design,

or to create group sizes large enough to ensure that

each group in every class has access to a board at all

times.

 Teaching Tip

To provide more student ownership and creativity,

consider allowing students to modify the form (but not

necessary functionality) of the smart bike controller.

For example, they may want to turn it into something

that the rider could wear, or something that works on

skateboards or other modes of transportation. The

import element here is that we work in a form that

requires adding additional circuits to the board,

instead of continuing to work solely within the

contrainsts of the board's form.

Do This
Add event handlers to blink the left turn signal

when the left button is pressed.

Add event handlers to blink the right turn signal

when the right button is pressed.

Test your code!

Hint: You'll need to be in text mode to make the

blinkers work, since there are no built-in blocks for the

elements that you add on to the board.

Student Instructions

Build Your Blinkers
Using the circuit you just built, return to your smart bike prototype and add the blinkers.

Activity 2 (30-45 min)

Building the Prototype

 Transition: At this point students should have put

together the two additional LED circuits necessary for

their turn signals. Now we're going to transition off of

the computers for a bit to work on building that circuit

into a physical prototype.

Distribute: Make available any remaining building

materials that you've gathered, such as cardboard

and tape.

 Build: Allow groups some time to build their

prototypes, using the board and LED circuits. While

there's a lot of potential functionality that we could

build at this point based on the guide, make sure that

students are focusing on making the turn signals

work.

Test: Once the basic prototype is built, have students

test the code they wrote. It's not uncommon at this

point to see new bugs that weren't present when

testing the software alone. Encourage students to test

all elements of their new circuits, ensuring that all of

the connection points are solid, that the circuits are

connected to the correct pins, and that the LEDs are oriented correctly.

Activity 3 (30-45 min)

Adding Inputs

Display: Put up the sketch on the first page of Physical Prototyping - Project Guide where the whole class can see

it. The first prototype that we've constructed takes care of the turn signals, but now we're going to focus on the

"horn" feature. Clearly we can use the buzzer to make the horn sound, but how can we control the horn?

https://studio.code.org/s/csd6-2020/stage/15/puzzle/10
https://docs.google.com/document/d/1MYLYmwNW4DH7n_oCTZFGnYz52e99htwzKTqOcmL5txQ/edit

View on Code Studio 

View on Code Studio 

Transition: Send students back to the online progression to learn about creating button circuits, which they will then

add to their smart bike prototypes. This portion of the progression will take them all the way through finalizing their

designs and submitting the code.

 Code Studio levels

Levels

 11

 12

 13

 14

  15

Student Instructions

Student Instructions

https://studio.code.org/s/csd6-2020/stage/15/puzzle/11
https://cdo-curriculum.s3.amazonaws.com/media/uploads/button_alligator.png
https://studio.code.org/s/csd6-2020/stage/15/puzzle/12

View on Code Studio 

View on Code Studio 

View on Code Studio 

Make Your Own Buttons
Similar to LEDs, buttons are a really simple circuit that you can add to your board pretty easily. Like LEDs, buttons

should be wired from a numbered pin to a ground pin, but unlike LEDs, a button circuit should be disconnected in

the middle. When you connect the circuit, it will produce a button press event.

Do This
Grab two wires.

Connect one wire to an open numbered pin.

Connect the second wire to a ground pin.

Update line 2 so that it's referencing the pin you chose.

Run the provided code.

With the program running, touch the unconnected ends of both wires together to "press" the button.

Tip: A button circuit can be made with many different kinds of materials, as long as they are electrically conductive.

Try making buttons with foil, silverware, or paper clips.

Student Instructions

Smart Bike - Buzzer
Now that we know how to add more buttons, you can add a button to control the smart bike's horn.

Do This
Using the button that you've already wired to the board, find a good spot to place your horn button. Then:

Create a button object for your horn button

Add an event handler to buzz when button is pressed

Hint: The button object that you create won't be in the onBoardEvent() dropdown, so you'll need to type the name

you've chosen in. Make sure not to use quotation marks!

Student Instructions

Smart Bike - Headlight
The last part of the smart bike plan that we need to figure out is the automatic headlight.

Do This
First you'll need to decide what to use for your headlight. You could add another LED circuit, or perhaps you can find

a way to mount the board that allows for using the color LEDs as a headlight. Once you've figured out the physical

layout of your lights, add code to your program that turns on and off the headlight based on how light or dark it is.

Hint: If you're using the built-in color LEDs, you might need to protect the light sensor to make sure that it's

responding to the ambient light level and not the light from the LEDs.

Student Instructions

Smart Bike - Final Touches
At this point your smart bike should have all of its basic functionality in place. Now is your chance to add any

finishing touches.

https://studio.code.org/s/csd6-2020/stage/15/puzzle/13
https://studio.code.org/s/csd6-2020/stage/15/puzzle/14
https://studio.code.org/s/csd6-2020/stage/15/puzzle/15
https://studio.code.org/docs/applab/onBoardEvent/

 Assessment Opportunities

Key Concepts:

Develop an interactive physical prototype that

integrates hardware and software, including simple

circuits.

Assessment Criteria:

Extensive Evidence

Convincing Evidence

Limited Evidence

No Evidence

 Assessment Opportunity

This discussion is intended to tie the physical design

work students are doing now to the work they did in

unit 4. Though we haven't asked students to spend the

same amount of energy thinking about users and their

needs in this project, it's still an essential element of

good design. Push your students to consider how the

design of physical computing devices brings new

challenges and opportunities when it comes to

designing for a diverse set of users. Students may

consider how age, eyesight, or hearing may impact

the usability of this design.

Do This
You may want to divide and conquer at this point,

allowing some members of your group to focus on the

physical aspects of the prototype while others work

on improving the code. As this is a prototype, don't

worry about making everything perfect, but do try to

ensure that the prototype communicates your design

well enough to test and get feedback.

Wrap Up (15 min)

Sharing Designs

Share: Give each group an opportunity to share their designs. Take some time to notice and celebrate the

differences in design - even in a situation where we are all working from the same plan, each individual will bring

their own experiences and perspectives to the design of a product.

 Discuss: Using some of the specific design choices

as an example, discuss with the class how their

design choices impact the usability of their products.

What assumptions did we make about our users, and

how might our design choices have excluded or

disadvantaged different user groups.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CS - Computing Systems

IC - Impacts of Computing

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

6
Ch. 1 1 2 3 4 5 6 7 8 9 Ch. 2 10 11 12

13 14 15 16

Lesson 16: Project - Prototype an Innovation

Overview

In this final project for the course, students team to develop and

test a prototype for an innovative computing device based on the

Circuit Playground. Using the inputs and outputs available on the

board, groups will create programs that allow for interesting and

unique user interactions.

Purpose

This lesson is the culmination of Unit 6 and provides students an

opportunity to build a Maker Toolkit project of their own from the

ground up. This project is an opportunity to showcase technical

skills, but they will also need to demonstrate collaboration,

constructive peer feedback, and iterative problem solving as they

encounter obstacles along the way. This project should be

student-directed whenever possible, and provide an empowering

and memorable conclusion to the final unit of CS Discoveries.

Assessment Opportunities

Use the project rubric attached to this lesson to assess student

mastery of learning goals of this chapter. You may also choose to

assign the post-project test through Code Studio.

Agenda
Warm Up (10 min)

Review Project Guide

Activity (80-200 min)

Define - Scope Innovation

Prepare - Complete Project Guide

Try - Develop Prototypes

Reflect - Peer Review

Iterate - Revise Prototypes

Wrap Up (30-60 min)

Share

Extensions

Pitch Video

Marketing Website

Crowdfunding Campaign

View on Code Studio

Objectives
Students will be able to:

Independently scope the features of a

piece of software

Prototype a physical computing device

Implement a plan for developing a piece of

software that integrates hardware inputs

and outputs

Preparation

Collect materials for physical

prototyping, eg.

Cardboard

Scissors

Tape

Glue

Foil

Print a copy of the project guide for each

pair of students

Print a copy of the peer review sheet for

each student

Print a copy of the rubric for each

student

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Prototype an Innovation - Exemplars

For the Students

Prototype an Innovation - Rubric

Computer Science Practices - Reflection

Prototype an Innovation - Project Guide

Make a Copy

Make a Copy

Make a Copy

https://curriculum.code.org/csd-20/unit6/
https://studio.code.org/s/csd6-2020/stage/16/puzzle/1/
https://studio.code.org/s/csd6-2019/stage/16/puzzle/1
https://docs.google.com/document/d/1iCIp2USouJwLmQcc-VhoBPKMyvnEXDBq28ojLVbTJ90/edit
https://docs.google.com/document/d/1Ccf-WMH2qFDhycKaKSILRrZUe42lWESyRqMgdTymCPw/edit
https://docs.google.com/document/d/14fdmAmOJpOJw6KXielJAws1wf2AWEnSqQnZueUC6GvM/edit

Teaching Guide

Warm Up (10 min)

Review Project Guide

Group: Place students into groups of 2-4 for this project. At your discretion you may choose to have students form

larger groups or work independently.

Distribute: Provide a copy of the project guide to each group. As a class, review the different steps of the project

and where they appear in the project guide. Direct students towards the the rubric so that they know from the

beginning what components of the project you will be looking for.

Activity (80-200 min)

Define - Scope Innovation

Brainstorm: Students should spend the first 15-20 minutes brainstorming ideas for innovative devices built around

the features of the Circuit Playground. Encourage students to review their prior work in this unit as well as the real

world innovations they researched earlier for inspiration.

Prepare - Complete Project Guide

Distribute: Make available any construction materials that students may need for building their prototypes. While

the focus of this step isn't to build the actual prototype, having these materials available can help with the

brainstorming process.

Circulate: Once students have discussed their ideas for the project they should complete the project guide. While

this should be a fairly familiar process, encourage students to make each component as clear and detailed as they

can at this point. Planning ahead can help them identify issues in their plan before they'll need to make more

significant changes to their code or physical device. Encourage students to use additional paper to sketch out

screens for their app or additional views of their physical device.

Try - Develop Prototypes

Distribute: Make available the physical prototyping materials (such as cardboard, tape, scissors, etc). Let students

know that, just as we used paper prototypes to quickly test software ideas, hardware developers often used cheap

materials such as cardboard and tape to quickly iterate on the design of physical devices. While not all student

ideas may require a physically prototyped component, you should encourage students to consider how the shape

and design (or form factor) or their innovation could impact its usability.

Transition: Depending on the nature of their innovations, students may need to spend some time building the

physical components of their projects before moving online. When students are ready to program, they can

transition to Code Studio. These levels provide some guidance on how students may go about implementing their

projects, but are left quite open to allow for a broad range of ideas. If they wish, students can work in a different

order than the one suggested in these levels.

 Code Studio levels

View on Code Studio View on Code Studio to access answer key(s)

Lesson Overview  Teacher Overview Student Overview

Design Your Prototype  Student Overview

https://studio.code.org/s/csd6-2020/stage/16/puzzle/1

 Teaching Tip

If you have the time for it, this can be a good

opportunity to pull in the user testing process that

students learned in Unit 4.

 Teaching Tip

Celebrate: As this is the culminating project for the

entire course, consider going big with this share out.

Bring in parents and administrators, or even host a

after school event to provide students with a real

audience to share their accomplishments with.

Reflect - Peer Review

 Group: Pair up groups to review each other's

projects.

Distribute: Give each student a copy of the peer

review guide. Students should spend 15 minutes

reviewing the other group's project and filling out the

peer review guide.

Iterate - Revise Prototypes

Circulate: Students should complete the peer review guide's back side where they decide how to respond to the

feedback they were given. They should then use that feedback to improve their game.

Wrap Up (30-60 min)

Share

 Share: Give students a chance to share their

innovations, either within the class or to a broader

audience. If you choose to let students do a more

formal presentation of their projects the project guide

provides students a set of components to include in

their presentations including:

The original innovation they set out to build

A description of the programming process including

at least one challenge they faced and one new feature they decided to add

A description of the most interesting or complex piece of code they wrote

A live demonstration of the actual innovation

 Send students to Code Studio to complete their reflection on their attitudes toward computer science. Although

their answers are anonymous, the aggregated data will be available to you once at least five students have

completed the survey.

Extensions

Pitch Video

Record and edit a short video to pitch your innovation.

Marketing Website

User Interface  3  4 (click tabs to see student view)

Board Input and Output  5  6 (click tabs to see student view)

Finishing Touches  7  8 (click tabs to see student view)

Reflection   9 (click tabs to see student view)

Using Web Lab, design a website to market your innovation.

Crowdfunding Campaign

Have students design a crowdfunding campaign (along the lines of Kickstarter or Indiegogo) for their innovations.

This could include:

Design mockups for the final product

A rough cost analysis for production

A short pitch video

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CS - Computing Systems

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

