

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 Ch. 2 18 19 20 21 22 23 24 25 26 27

Big Questions

What is a computer program?

What are the core features of most

programming languages?

How does programming enable creativity and

individual expression?

What practices and strategies will help me as I

write programs?

Unit 3 - Interactive Animations and Games
In the Animations and Games unit, students build on their coding experience as they create programmatic images,

animations, interactive art, and games. Starting off with simple, primitive shapes and building up to more

sophisticated sprite-based games, students become familiar with the programming concepts and the design

process computer scientists use daily. They then learn how these simpler constructs can be combined to create

more complex programs. In the final project, students develop a personalized, interactive program. Along the way,

they practice design, testing, and iteration, as they come to see that failure and debugging are an expected and

valuable part of the programming process.

Chapter 1: Images and Animations

Week 1

Lesson 1: Programming for Entertainment
Unplugged

Question of the Day: How is computer science used in entertainment? The class is

asked to consider the "problems" of boredom and self expression, and to reflect on how

they approach those problems in their own lives. From there, they will explore how

Computer Science in general, and programming specifically, plays a role in either a

specific form of entertainment or as a vehicle for self expression.

Lesson 2: Plotting Shapes
Unplugged

**Question of the Day: How can we clearly communicate how to draw something on a

screen?** This lesson explores the challenges of communicating how to draw with

shapes and use a tool that introduces how this problem is approached in Game Lab.The

class uses a Game Lab tool to interactively place shapes on Game Lab's 400 by 400

grid. Partners then take turns instructing each other how to draw a hidden image using

this tool, which accounts for many of the challenges of programming in Game Lab.

Lesson 3: Drawing in Game Lab
Game Lab

**Question of the Day: How can we communicate to a computer how to draw shapes on

the screen?** The class is introduced to Game Lab, the programming environment for

this unit, and begins to use it to position shapes on the screen. The lesson covers the

basics of sequencing and debugging, as well as a few simple commands. At the end of

the lesson, students will be able to program images like the ones they made with the

drawing tool in the previous lesson.

Lesson 4: Shapes and Parameters
**Question of the Day: How can we use parameters to give the computer more specific

instructions?** In this lesson, students continue to develop a familiarity with Game Lab

by manipulating the width and height of the shapes they use to draw. The lesson kicks

off with a discussion that connects expanded block functionality (e.g. different sized

shapes) with the need for more block inputs, or "parameters." Finally, the class learns

to draw with versions of ellipse() and rect() that include width and height parameters

and to use the background() block.

Week 2

Lesson 5: Variables
Game Lab

**Question of the Day: How can we use variables to store information in our programs?

** This lesson introduces variables as a way to label a number in a program or save a

randomly generated value. The class begins the lesson with a very basic description of

the purpose of a variable and practices using the new blocks, then completes a level

progression that reinforces the model of a variable as a way to label or name a number.

Lesson 6: Random Numbers
**Question of the Day: How can we make our programs behave differently each time

they are run?** Students are introduced to the randomNumber() block and how it can

be used to create new behaviors in their programs. They then learn how to update

variables during a program, and use those skills to draw randomized images.

Lesson 7: Sprites
Game Lab

**Question of the Day: How can we use sprites to help us keep track of lots of

information in our programs?** In order to create more interesting and detailed images,

the class is introduced to the sprite object. The lesson starts with a discussion of the

various information that programs must keep track of, then presents sprites as a way to

keep track of that information. Students then learn how to assign each sprite an image,

which greatly increases the complexity of what can be drawn on the screen.

Lesson 8: Sprite Properties
**Question of the Day: How can we use sprite properties to change their appearance on

the screen?** Students extend their understanding of sprites by interacting with sprite

properties. The lesson starts with a review of what a sprite is, then moves on to Game

Lab for more practice with sprites, using their properties to change their appearance.

The class then reflects on the connections between properties and variables.

Week 3

Lesson 9: Text
Question of the Day: How can we use text to improve our scenes and animations?

This lesson introduces Game Lab's text commands, giving students more practice using

the coordinate plane and parameters. At the beginning of the lesson, they are asked to

caption a cartoon created in Game Lab. They then move onto Code Studio where they

practice placing text on the screen and controlling other text properties, such as size.

Lesson 10: Mini-Project - Captioned Scenes
Game Lab | Project

Question of the Day: How can we use Game Lab to express our creativity? After a

quick review of the code learned so far, the class is introduced to the first creative

project of the unit. Using the problem solving process as a model, students define the

scene that they want to create, prepare by thinking of the different code they will need,

try their plan in Game Lab, then reflect on what they have created. They also have a

chance to share their creations with their peers.

Lesson 11: The Draw Loop
Game Lab

Question of the Day: How can we animate our images in Game Lab? This lesson

introduces the draw loop, one of the core programming paradigms in Game Lab.

Students learn how to combine the draw loop with random numbers to manipulate

some simple animations first with dots and then with sprites.

Lesson 12: Sprite Movement
Game Lab

Question of the Day: How can we control sprite movement in Game Lab? In this

lesson, the class learns how to control sprite movement using a construct called the

counter pattern, which incrementally changes a sprite's properties. After brainstorming

different ways that they could animate sprites by controlling their properties, students

explore the counter pattern in Code Studio, using the counter pattern to create various

types of sprite movements.

Week 4

Lesson 13: Mini-Project - Animation
Game Lab | Project

**Question of the Day: How can we combine different programming patterns to make a

complete animation?** In this lesson, the class is asked to combine different methods

from previous lessons to create an animated scene. Students first review the types of

movement and animation that they have learned, and brainstorm what types of scenes

might need that movement. They then begin to plan out their own animated scenes,

which they create in Game Lab.

Lesson 14: Conditionals
Game Lab

Question of the Day: How can programs react to changes as they are running? This

lesson introduces students to booleans and conditionals, which allow a program to run

differently depending on whether a condition is true. The class starts by playing a short

game in which they respond according to whether particular conditions are met. They

then move to Code Studio, where they learn how the computer evaluates boolean

expressions, and how they can be used to structure a program.

Big Questions

How do software developers manage complexity

and scale?

How can programs be organized so that

common problems only need to be solved once?

How can I build on previous solutions to create

even more complex behavior?

Lesson 15: Keyboard Input
Game Lab

Question of the Day: How can our programs react to user input? Following the

introduction to booleans and if statements in the previous lesson, students are

introduced to a new block called keyDown(), which returns a boolean and can be used

in conditionals statements to move sprites around the screen. By the end of this lesson

they will have written programs that take keyboard input from the user to control

sprites on the screen.

Lesson 16: Mouse Input
Game Lab

**Question of the Day: What are more ways that the computer can react to user input?

** The class continues to explore ways to use conditional statements to take user input.

In addition to the keyboard commands learned yesterday, they learn about several

ways to take mouse input. They also expand their understanding of conditionals to

include else, which allows for the computer to run a certain section of code when a

condition is true, and a different section of code when it is not.

Week 5

Lesson 17: Project - Interactive Card
Game Lab | Project | Pair Programming

**Question of the Day: What skills and practices are important when creating an

interactive program?** In this culminating project for Chapter 1, students plan for and

develop an interactive greeting card using all of the programming techniques they've

learned to this point.

Chapter Commentary
Students build up toward programming interactive animations in the Game Lab environment. They begin with

simple shapes and sprite objects, then use loops to create flipbook style animations. Next, they learn to use

booleans and conditionals to respond to user input. At the end of the chapter, students design and create an

interactive animation that they can share with the world.

Chapter 2: Building Games

Week 6

Lesson 18: Velocity
Game Lab

**Question of the Day: How can programming languages hide complicated patterns so

that it is easier to program?** After a brief review of how the counter pattern is used to

move sprites, the class is introduced to the idea of hiding those patterns in a single

block, in order to help manage the complexity of programs. They then head to Code

Studio to try out new blocks that set a sprite's velocity directly, and look at the various

ways that they are able to code more complex behaviors in their sprites.

Lesson 19: Collision Detection
Game Lab

**Question of the Day: How can programming help make complicated problems more

simple?** In this lesson, the class learns about collision detection on the computer.

Working in pairs, they explore how a computer could use math, along with the sprite

location and size properties, to detect whether two sprites are touching. They then use

the isTouching() block to create different effects when sprites collide, and practice using

the block to model various interactions.

Lesson 20: Mini-Project - Side Scroller
Game Lab | Project

**Question of the Day: How can the new types of sprite movement and collision

detection be used to create a game?** Students use what they have learned about

collision detection and setting velocity to create simple side scroller games. After

looking at a sample side scroller game, they brainstorm what sort of side scroller they

would like to make, then use a structured process to program the game in Code Studio.

Week 7

Lesson 21: Complex Sprite Movement
Game Lab

**Question of the Day: How can previous blocks be combined in new patterns to make

interesting movements?** The class learns to combine the velocity properties of sprites

with the counter pattern to create more complex sprite movement. After reviewing the

two concepts, they explore various scenarios in which velocity is used in the counter

pattern, and observe the different types of movement that result. In particular, students

learn how to simulate gravity. They then reflect on how they were able to get new

behaviors by combining blocks and patterns that they already knew.

Lesson 22: Collisions
Game Lab

**Question of the Day: How can programmers build on abstractions to create further

abstractions?** In this lesson, the class programs their sprites to interact in new ways.

After a brief review of how they used the isTouching block, students brainstorm other

ways that two sprites could interact. They then use isTouching to make one sprite push

another across the screen before practicing with the four collision blocks (collide,

displace, bounce, and bounceOff).

Lesson 23: Mini-Project - Flyer Game
Game Lab | Project

**Question of the Day: How can the new types of collisions and modeling movement be

used to create a game?** Students use what they have learned about simulating

gravity and the different types of collisions to create simple flyer games. After looking

at a sample flyer game, they brainstorm what sort of flyer they would like, then use a

structured process to program the game in Code Studio.

Week 8

Lesson 24: Functions
Game Lab

**Question of the Day: How can programmers use functions to create their own

abstractions?** This lesson covers functions as a way for students to organize their

code, make it more readable, and remove repeated blocks of code. The class learns that

higher level or more abstract steps make it easier to understand and reason about

steps, then begins to create functions in Game Lab.

Lesson 25: The Game Design Process
Game Lab

Question of the Day: How does having a plan help to make a large project easier?

This lesson introduces the process that students will use to design games for the

remainder of the unit. This process is centered around a project guide that asks

students to define their sprites, variables, and functions before they begin programming

their game. They walk through this process in a series of levels. At the end of the

lesson, students have an opportunity to make improvements to the game to make it

their own.

Lesson 26: Using the Game Design Process
Game Lab

**Question of the Day: How can the problem solving process help programmers to

manage large projects?** In this multi-day lesson, the class uses the problem solving

process from Unit 1 to create a platform jumper game. After looking at a sample game,

they define what their games will look like and use a structured process to build them.

Finally, the class reflects on how the games could be improved, and implements those

changes.

Week 9

Lesson 27: Project - Design a Game
Game Lab | Project | Presenting Information

**Question of the Day: How can the five CS practices (problem solving, persistence,

communication, collaboration, and creativity) help programmers to complete large

projects?** Students plan and build original games using the project guide from the

previous two lessons. Working individually or in pairs, they plan, develop, and give

feedback on the games. After incorporating the peer feedback, students share out their

completed games.

Chapter Commentary

In this chapter students combine the constructs that they learned in the first chapter to program more complex

movement and collisions in their sprites. As they create more complex programs, they begin to use functions to

organize their code. In the end, students use a design process to create an original game.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 Ch. 2 18 19 20 21 22 23 24 25 26 27

Lesson 1: Programming for Entertainment

Overview

Question of the Day: How is computer science used in

entertainment?

Students are asked to consider the "problems" of boredom and

self expression, and to reflect on how they approach those

problems in their own lives. From there, students will explore how

computer science in general, and programming specifically, plays

a role in either a specific form of entertainment or as a vehicle for

self expression.

Purpose

This lesson is intended to kick off this programming unit in a way

that engages students of all backgrounds and interests. Though

the end point of this unit asks students to develop a game, you

should avoid starting out with a strong emphasis on video games.

Instead, we attempt to broaden students' perspective about how

programming is relevant to a form of entertainment or self

expression that is personally engaging. This will provide an

anchor for students to come back to throughout the unit as they

consider the potential applications of the various programming

skills that they learn.

Assessment Opportunities

1. Identify how computer science is used in a field of

entertainment

In the activity guide, look at the "Interesting Fact or Use"

section of the second page and make sure students have

identified a use of computer science in their chosen fields.

Agenda
Warm Up (10 min)

The Entertainment Problem

Activity (45 min)

CS in Entertainment

Researching your Topic

Research Notes

Exploring Games with Game Lab

Wrap Up (5 min)

Looking Forward

View on Code Studio

Objectives
Students will be able to:

Identify how computer science is used in a

field of entertainment

Preparation

Review the research resources linked in

Code Studio

Print a copy of the activity guide for each

group of three students

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

CS in Entertainment - Exemplar

Programming for Entertainment - Slides

For the Students

CS in Entertainment - Activity Guide

Make a Copy

https://curriculum.code.org/csd-20/unit3/
https://studio.code.org/s/csd3-2020/stage/1/puzzle/1/
https://studio.code.org/s/csd3-2020/stage/1/puzzle/1/
https://docs.google.com/presentation/d/1vGPLsDh6Mcm2xmwBoq8YIAq05iy2pQq6JstSh7yaDyo/edit#slide=id.g8312ba68ee_0_0
https://docs.google.com/document/d/1RtwJU7Lh2dKdGoj-zfF1pjn-yxhkwP-05G8pgdYi-BY/edit

View on Code Studio 

 Teaching Tip

Because many of these sites change their content

daily, we have not shared them directly with

students. We suggest that you check these links the

morning before class to ensure that everything is still

appropriate to be shared in school.

 Discussion Goal

The goal here is to get students to reflect more

critically on why people seek out entertainment.

Students are likely to come up with "boredom" as a

common answer, but push them to think more deeply

about what their chosen form of entertainment

actually does for them - what problem does it solve.

Potential answers include:

Connection with others

Learning or experiencing new things

Sparking creativity

An escape from reality

Teaching Guide

Warm Up (10 min)

The Entertainment Problem

Prompt: What is your favorite form of entertainment,

and what problem does it solve for you?

 Discuss: Allow students to share out their ideas

with the group.

Question of the Day: How is computer science used

in entertainment?

Activity (45 min)

CS in Entertainment

 Remarks

Whether it's movies, music, art, games, or any number of other options, we have many types of entertainment

open to us. Today, we're going to look at how computer science plays a role in some of these different fields.

Group: Place students in groups of three. Consider allowing students to group based on common interest as each

group will be exploring a field of entertainment together.

Distribute: Give each group a copy of the activity guide.

 Entertainment Exploration

During this activity student groups will do some light research into the role that CS and programming play in

various fields of entertainment. The primary goal of this activity is to broaden students' perspectives about how

programming can be used to make fun or entertaining things. Some of the fields that students could research

(such as art, animation, and games) can be directly connected to programs they will write later in this unit, while

others may serve more as an inspiration for how the skills that they learn here may be applied in different

domains.

Topics

In the activity guide there are a number of potential fields for research. These specific fields were chosen to go

along with resources that are provided on Code Studio, but you can have students look into other fields if they

wish.

Researching your Topic

 On Code Studio, inside the blue teacher box, there

are a handful of useful sites to help students kick off

their research. Share the links that you feel are most

helpful and appropriate for your class.

 Code Studio levels

Levels

 2

Student Instructions

https://studio.code.org/s/csd3-2020/stage/1/puzzle/2

 Teaching Tip

Here are a few sites to get students started. These

sites are generally appropriate for school, but the

content with them changes frequently, so we strongly

suggest that you check each site for inappropriate

content before sharing it with students.

View on Code Studio to access answer key(s)

View on Code Studio 

 Teaching Tip

While some of these examples are pulled directly from

lessons that students will complete later in the unit, a

few of them use commands or techniques that aren't

explicitly covered in the course. You can view the

source for all of these programs in order to support

students who may want to incorporate some of these

techniques later on.

Starting Your Search
To find out more about how computer science and

programming play a role in entertainment, you'll

need to do some research. Try searching for

"Computer science and ______" and trying out

different types of entertainment such as film,

television, music, games, animation, fashion, etc.

Research Notes

Circulate As students search the web, they may need support in staying focused on the research task. The goal of

this exploration is twofold:

First, develop a deeper understanding of how programming is used in the chosen field. How is computer

technology changing this field, and what are some of the problems that people are trying to solve with

technology?

Second, identify some interesting applications of CS or facts to share. What are some cool things that people

are doing in this field that make use of CS?

Interesting Information

Once groups have learned a bit about how CS is used in their chosen field, they can complete the second page of

the activity guide, which asks them to do the following:

What Problem Does It Solve?: "Problem" in this context can be fairly broad. It might be simplifying an

otherwise laborious or complex task, doing things that wouldn't otherwise be possible, or any number of things

that make this form of entertainment more accessible to end users.

How is it an Improvement?: This could be tightly coupled with the answer to the previous question. Push

students to consider how their form of entertainment was created before programming was prevalent.

An Interesting Fact or Use: Share something fun or interesting about how CS is used in this field.

An Open Question: It's likely that students come away with more questions than answers after just some quick

research. Encourage them to reflect on what they don't yet know, and what questions they'd still like answered.

Share: Give groups a minute each to share their findings.

Exploring Games with Game Lab

 Remarks

In this unit, we're going to have a chance to create

our own entertainment through animations and

games using a tool called Game Lab. Here are some

samples of programs made using the Game Lab

tool.

 Display: Show either as a whole class, or let

students explore independently, the example

programs at the end of this lesson's Code Studio

progression. These programs are designed to show a

variety of different kinds of programs that it's possible to make in Game Lab.

 Code Studio levels

Levels

 3

 4

 5

 6

Student Instructions

https://studio.code.org/s/csd3-2020/stage/1/puzzle/3

View on Code Studio 

View on Code Studio 

View on Code Studio 

Stamp Pad
Click "Run" to start the program, then use the stamp pad to draw pictures with simple colors and animal stamps.

Student Instructions

Animated Comics
Combining images, text, and some subtle animation can make for really interesting comics or graphic stories. Click

"Run" to see an example.

Student Instructions

Alien Jumper
Press "Run" to play the game on the left. You can make the alien jump with the space bar, and move it to the left

and right with the arrow keys. You score by collecting stars, and if you score high enough, the background will

change.

Student Instructions

Hungry Bunny
The bunny is hungry, and it's looking for mushrooms and carrots for dinner.

To win, you'll need to find a dinner bowl, then collect at least ten carrots and five mushrooms.

Make sure to avoid the bugs. Ladybugs and snails will eat your food, and bees will sting you, making you drop

everything!

Use the space bar to jump. You can squash ladybugs and snails by jumping on them.

Click "Run" to start the program.

Wrap Up (5 min)

Looking Forward

Question of the Day: How is computer science used in entertainment?

Journal: Based on what you saw today, both in your research and the example apps, what kinds of programs are

you most interested in learning to create?

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

IC - Impacts of Computing

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://studio.code.org/s/csd3-2020/stage/1/puzzle/4
https://studio.code.org/s/csd3-2020/stage/1/puzzle/5
https://studio.code.org/s/csd3-2020/stage/1/puzzle/6
https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 Ch. 2 18 19 20 21 22 23 24 25 26 27

Lesson 2: Plotting Shapes

Overview

Question of the Day: How can we clearly communicate how to

draw something on a screen?

Students explore the challenges of communicating how to draw

with shapes and use a tool that introduces how this problem is

approached in Game Lab. The warm up activity quickly

demonstrates the challenges of communicating position without

some shared reference point. In the main activity, students

explore a Game Lab tool that allows students to interactively

place shapes on Game Lab's 400 by 400 grid. They then take

turns instructing a partner how to draw a hidden image using this

tool, accounting for many challenges students will encounter

when programming in Game Lab. Students optionally create their

own image to communicate before a debrief discussion.

Purpose

The primary purpose of this lesson is to introduce students to the

coordinate system they will use in Game Lab. Students may have

limited experience with using a coordinate grid or may struggle

with the "flipped" y-axis in Game Lab. The drawing tool also

forces students to think about other features of Game Lab

students will see when they begin programming in the next

lesson. These include the need to consider order while drawing,

the need to specify color, and the fact that circles are positioned

by their center and squares by their top-left corner. By the end of

this activity, students should be ready to transfer what they have

learned about communicating position to the programming they

will do in the next lesson.

Assessment Opportunities

1. Reason about locations on the Game Lab coordinate grid

See the final reflection questions. This objective will also be

assessed in the next lesson, within the context of programming

in Game Lab.

2. Communicate how to draw an image in Game Lab, accounting

for shape position, color, and order

See the final reflection questions.

Agenda
Warm Up (10 min)

Communicating Drawing Information

Activity (35 min)

Drawing with a Computer

View on Code Studio

Objectives
Students will be able to:

Reason about locations on the Game Lab

coordinate grid

Communicate how to draw an image in

Game Lab, accounting for shape position,

color, and order

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Drawing Shapes - Exemplar

Plotting Shapes - Slides

Sample Shape Drawing - Exemplar

For the Students

Drawing Shapes (Version B) - Activity

Guide

Drawing Shapes (Version A) - Activity

Guide

Make a Copy

Make a Copy

https://curriculum.code.org/csd-20/unit3/
https://studio.code.org/s/csd3-2020/stage/2/puzzle/1/
https://studio.code.org/s/csd3-2020/stage/2/puzzle/1/
https://docs.google.com/presentation/d/1vGPLsDh6Mcm2xmwBoq8YIAq05iy2pQq6JstSh7yaDyo/edit#slide=id.g5f673e5a2d_0_0
https://cdo-curriculum.s3.amazonaws.com/media/uploads/Screenshot-2017-05-24-at-1.13.21-PM.png
https://docs.google.com/document/d/1OCYkSeNuuEggdlmhNOG-LOfl51ctcyzyFmsPdQAtq84/
https://docs.google.com/document/d/1ht990ZS0tJFc8dg-B6nmOi6nzayWq3ODiNNL4EBORlM/

Wrap Up (5 min)

Journaling

 Discussion Goal

Goal This discussion is intended to bring up some

challenges that students will need to address in the

next few lessons, such as how to specify position,

order, and color. The students don't necessarily need

to decide how they would specify such things, but

recognize that they will need a method for doing so.

Students who have just come out of the HTML unit

may make connections to how HTML helped solve

similar problems.

Teaching Guide

Warm Up (10 min)

Communicating Drawing Information

 Remarks

We saw a lot of different programs yesterday, and you started to think about what types you might want to

create. When we create a program, one of the things we need to do is draw everything on the screen. We're going

to try that with a "student" computer today.

Ask one or two volunteers to come to the front of the room and act as "computers" for the

activity. They should sit with their backs to the board so that they cannot see what is being

projected. Give each volunteer a blank sheet of paper.

Display: Project Sample Shape Drawing - Exemplar where it can be seen by the class.

 Remarks

You will need to explain to our "computer" how to draw the picture. In the end, we'll

compare the drawing to the actual picture.

Give the students a minute or two to describe the drawing as the students at the front of the room try to draw it.

After one minute, stop them and allow the students to compare both pictures.

Prompt: What are the different "challenges" or problems we're going to need to solve in order to successfully

communicate these kinds of drawings?

 Discuss: Students should silently write their

answers in their journals. Afterwards they should

discuss with a partner and then with the entire class.

 Remarks

There were several challenges we needed to solve

in this activity. We need to be able to clearly

communicate position, color, and order of the

shapes. We're going to start exploring how to solve

this problem.

Question of the Day: How can we clearly

communicate how to draw something on a screen?

Activity (35 min)

Drawing with a Computer

Group: Place students in pairs.

Transition: Have one member of each group open a laptop and go to the contents for this lesson. There is a single

level with a Game Lab tool.

 Code Studio levels

Lesson Overview  1 (click tabs to see student view)

Drawing Shapes  2 (click tabs to see student view)

https://cdo-curriculum.s3.amazonaws.com/media/uploads/Screenshot-2017-05-24-at-1.13.21-PM.png

 Discussion Goal

Goal: Rather than doing a live-demo of the tool, use

this strategy to let students explore the tool

themselves. Afterwards use the debrief to ensure all

students are aware of key features of the tool. The

most important components are the grid and the fact

that the mouse coordinates are displayed below the

drawing space.

 Content Corner

Location of the Origin: The origin of this grid, as well

as the origin in Game Lab, lies at the top left corner.

This reflects the fact that documents tend to start at

the top left, and ensures that every point on the plane

has positive coordinates.

 Teaching Tip

When to Move On: Determine whether this last

activity is worth the time in your schedule. Giving

students a chance to create and communicate their

own drawing can help reinforce their knowledge, but

if students are obviously achieving the learning

objectives of the lesson without it then you can also

just move to the wrap up to synthesize their learning.

Prompt: Working with your partner, take two or three minutes to figure out how this tool works. Afterwards be ready

to share as a class.

  Discuss: After pairs have had a chance to work

with the tool, run a quick share-out where students

discuss features they notice.

 Drawing Shapes

Distribute activity guides to each pair, ensuring that

one student (Student A) receives Version A and the

other student (Student B) receives Version B.

Students should not look at each other's papers.

Set Up: In this activity, students will try to recreate

images based on a partner's directions. The student

who is drawing will use the shape drawing tool on

Game Lab to draw the shapes. Students should

keep their drawings hidden from one another

throughout the activity. While completing a drawing

the instruction-giver should also not be able to see

the computer screen.

Drawing 1: Each member of the pair should complete their first drawing, taking turns giving instructions and using

the tool. These drawings do not feature any overlapping shapes, but students may need to grapple with the fact

that circles are drawn from the middle and squares from the top left corner. Additionally, students may just

struggle with the direction of the Y-axis.

Discuss: Give pairs a couple of minutes to discuss any common issues they're noticing in trying to complete their

drawings.

Drawing 2: Each member of the pair should describe their second drawing to their partner. These drawings

feature overlapping shapes and so students will need to consider the order in which shapes are being placed as

well as when they should change the color of the pen.

 Draw Your Own: If time allows, give students a

chance to create their own drawing to communicate

to their partner.

 Remarks

When we make images, we need a way to

communicate exactly where each shape goes. The

coordinate plane helps us to do that. Our coordinate

plane has two coordinates, x and y. The x-coordinate

tells us how far our shape is from the left of the grid.

The y-coordinate tells us how far our shape is from

the top of the grid. The black dots on the shapes help you be very specific about how the shape is placed on the

grid.

Wrap Up (5 min)

Question of the Day: How can we clearly communicate how to draw something on a screen?

Journaling

 Prompt: Have students reflect on each of the following prompts:

What things were important in communicating about position, color, and order of the shapes in this activity?

What's a way you have seen similar problems solved in the past?

Discuss: Have pairs share their answers with one another. Then open up the discussion to the whole class.

 Remarks

 Assessment Opportunity

Students should be able to explain the coordinate

system of Game Lab. Make sure the students

understand that it was important to note not only

where the shape was positioned on the coordinate

system, but the exact point of the shape (corner or

center) that falls on that point on the grid.

Students should also explain that the code needs to

set a color and specify the shape to be drawn, and

that the order of the code determines which shape is

on top.

The second prompt may be used to reinforce that the

grid system students saw today is different from the

one they may have seen in a math class. They should

see, however, that both solve the same problem.

Finally, this discussion can lead into a teacher

explanation of why the grid in Game Lab is "flipped"

from ones they may have seen previously.

At the beginning of class we saw that

communicating how to draw even simple shapes

can be pretty challenging. The grid we learned

about today is one solution to this problem but

there are many others that could've worked. In fact,

a lot of you probably noticed that the grid in Game

Lab is "flipped". Computer screens come in all

different shapes and sizes, as does the content we

show on them. We need to agree on one point

where all the content can grow from. Since we read

starting at the top left corner, the grid on a

computer screen starts at the top left corner as

well. There's also the benefit of not having to use

any negative numbers to talk about locations on the

screen. Don't worry if this flipped grid is a little

tricky still. We'll have plenty more time to work on it

in coming lessons.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 Ch. 2 18 19 20 21 22 23 24 25 26 27

Lesson 3: Drawing in Game Lab

Overview

Question of the Day: How can we communicate to a computer

how to draw shapes on the screen?

Students are introduced to Game Lab, the programming

environment for this unit, and begin to use it to position shapes

on the screen. They learn the basics of sequencing and

debugging, as well as a few simple commands. At the end of the

lesson, students will be able to program images like the ones

they made with the drawing tool in the previous lesson.

Purpose

The main purpose of this lesson is to give students a chance to

get used to the programming environment, as well as the basic

sequencing and debugging that they will use throughout the unit.

Students begin with an introduction to the GameLab interactive

development environment (IDE), then learn the three commands

(rect , ellipse , and fill) that they will need to code the same

types of images that they created on paper in the previous

lesson. Challenge levels provide a chance for students who have

more programming experience to further explore Game Lab.

Assessment Opportunities

1. Use a coordinate system to place elements on the screen.

See level 10 in Code Studio, in particular the placement of the

square in the picture.

2. Sequence code correctly to overlay shapes.

See level 10 in Code Studio, in particular that the square is

displayed in front of the circles.

Agenda
Warm Up (5 minutes)

Programming Images

Activity (30 minutes)

Simple Drawing in Game Lab

Share Drawings

Wrap Up (10 minutes)

View on Code Studio

Objectives
Students will be able to:

Use a coordinate system to place elements

on the screen.

Sequence code correctly to overlay shapes.

Preparation

Read the Forum

Prepare projector or other means of

showing videos if you wish to watch as a

class

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Drawing in Game Lab - Slides

Vocabulary

Bug - Part of a program that does not work

correctly.

Debugging - Finding and fixing problems in

an algorithm or program.

Program - An algorithm that has been

coded into something that can be run by a

machine.

Introduced Code

fill(color)

ellipse(x, y, w, h)

rect(x, y, w, h)

https://curriculum.code.org/csd-20/unit3/
https://studio.code.org/docs/gamelab/rect/
https://studio.code.org/docs/gamelab/ellipse/
https://studio.code.org/docs/gamelab/fill/
https://studio.code.org/s/csd3-2020/stage/3/puzzle/1/
https://docs.google.com/presentation/d/1vGPLsDh6Mcm2xmwBoq8YIAq05iy2pQq6JstSh7yaDyo/edit#slide=id.g72127a6015_0_82
https://studio.code.org/docs/gamelab/fill/
https://studio.code.org/docs/gamelab/ellipse/
https://studio.code.org/docs/gamelab/rect/

 Discussion Goal

Goal From Unit 2, students may remember that a

computer can only understand what to do if you use a

particular language in order to communicate with it.

For Web Development, that language was HTML.

Computers can't "figure out" what you mean in the

same way that a human can, and they are usually

much more specific in how they follow instructions.

 Teaching Tip

Pair programming is a great way to increase student

confidence and foster the practices of collaboration

and communication. You can read more about how to

use Code Studio's pair programming feature here.

Teaching Guide

Warm Up (5 minutes)

Programming Images

Prompt: Based on what you know about computers,

what do you think will be different between telling a

person about your image and telling a computer

about your image?

 Share: Allow students time to think individually and

discuss with a partner, then bring the class together

and write their ideas on the board.

 Remarks

In order to give instructions to a computer, we need

to use a language that a computer understands. In the last unit, we used HTML, which is great for making web

pages. To make our animations and games, we will use a version of Javascript that uses blocks. The environment

that we'll be programming in is called Game Lab.

Question of the Day: How can we communicate to a computer how to draw shapes on the screen?

Activity (30 minutes)

Simple Drawing in Game Lab

 Group: Place students in pairs to program together.

Transition: Send students to Code Studio.

 Code Studio levels

Lesson Overview  1 (click tabs to see student view)

Introduction to Game Lab  2 (click tabs to see student view)

Video: Drawing in Game Lab - Part 1  3 (click tabs to see student view)

Using the Grid  4 (click tabs to see student view)

Video: Drawing in Game Lab - Part 2  5 (click tabs to see student view)

Skill Building  6  7  8 (click tabs to see student view)

Practice   9  9a  9b  9c

http://teacherblog.code.org/post/147349807334/try-pair-programmingtrack-the-progress-of

 Teaching Tip

Students that are new to programming often have

some common misconceptions they run into. In order

to prevent those, keep reminding students about the

following things:

One command per line

Commands run in order from top to bottom

Order of inputs into shape commands matter

Each input into shape commands are separated by

commas

(0,0) is in the upper left corner of the display

All x and y values on the display are positive

 Support: As students work on the levels, you can

help them, but encourage them to try to spend some

time figuring things out themselves first. If you need

help supporting students, see the exemplars in the

teacher answer viewer. When students hit the

challenge levels, they can choose to pursue one or

more of the challenges, return to improve upon

previous levels, or help a classmate.

Share Drawings

Share: Once students have completed their drawings,

have them share with the class. One way to do this is

with a gallery walk.

Wrap Up (10 minutes)

Question of the Day: How can we communicate to a computer how to draw shapes on the screen?

Prompt: Today you learned how to draw in Game Lab for the first time. What type of advice would you share with a

friend who was going to learn about drawing in Game Lab to make it easier for them?

Share: Allow students to share out their responses with the class.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

Assessment   10 (click tabs to see student view)

Drawing Challenges   11  11a  11b  11c  11d  11e  11f

 11g

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 Ch. 2 18 19 20 21 22 23 24 25 26 27

Lesson 4: Shapes and Parameters

Overview

Question of the Day: How can we use parameters to give the

computer more specific instructions?

In this lesson students continue to develop their familiarity with

Game Lab by manipulating the width and height of the shapes

they use to draw. The lesson kicks off with a discussion that

connects expanded block functionality (e.g. different sized

shapes) with the need for more block inputs, or "parameters".

Students learn to draw with versions of ellipse() and rect()

that include width and height parameters. They also learn to use

the background() block.

Purpose

This lesson gives students a chance to slightly expand their

drawing skills while continuing to develop general purpose

programming skills. They will need to reason about the x-y

coordinate plane, consider the order of their code, and slightly

increase their programs' complexity. This lesson should be

focused primarily on skill-building.

Assessment Opportunities

1. Use and reason about drawing commands with multiple

parameters

See level 8 in Code Studio.

Agenda
Warm Up (5 min)

Shapes of Different Sizes

Activity (40 min)

Programming with Parameters

Wrap Up (5 min)

Journal

View on Code Studio

Objectives
Students will be able to:

Use and reason about drawing commands

with multiple parameters

Preparation

Review the level sequence in Code

Studio

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Shapes and Parameters - Slides

Vocabulary

Parameter - An extra piece of information

passed to a function to customize it for a

specific need

Introduced Code

background(color)

ellipse(x, y, w, h)

rect(x, y, w, h)

https://curriculum.code.org/csd-20/unit3/
https://studio.code.org/docs/gamelab/ellipse/
https://studio.code.org/docs/gamelab/rect/
https://studio.code.org/docs/gamelab/background/
https://studio.code.org/s/csd3-2020/stage/4/puzzle/1/
https://docs.google.com/presentation/d/1vGPLsDh6Mcm2xmwBoq8YIAq05iy2pQq6JstSh7yaDyo/edit#slide=id.g72127a6015_4_130
https://studio.code.org/docs/gamelab/background/
https://studio.code.org/docs/gamelab/ellipse/
https://studio.code.org/docs/gamelab/rect/

 Discussion Goal

Goal: This discussion introduces the vocabulary word

"parameter" and also helps students understand the

need for parameters. Students will be seeing versions

of the ellipse() and rect() block in this lesson that

have additional parameters. Students may say they

want inputs for the size of the shapes, their color, etc.

During this conversation tie the behaviors the

students want to the inputs the block would need. For

example, if you want rectangles to be a different size,

the block will need an input that lets the programmer

decide how large to make it.

Teaching Guide

Warm Up (5 min)

1. ellipse()

2. rect()

Shapes of Different Sizes

Prompt: The rect block has two inputs that control

where it's drawn - the x and y position. If you wanted

these commands to draw different sizes of rectangles,

what additional inputs would you need to give these

blocks?

 Discuss: Students should brainstorm ideas silently,

then share with a neighbor, then share out with the

whole class. Record ideas as students share them on

the board.

 Remarks

If we want our blocks to draw shapes in different

ways they'll need more inputs that let us tell them

how to draw. The inputs or openings in our blocks have a formal name, parameters, and today we're going to be

learning more about how to use them.

Key Vocabulary: Parameter - An extra piece of information passed to a function to customize it for a specific need

Question of the Day: How can we use parameters to give the computer more specific instructions?

Activity (40 min)

Programming with Parameters

Group: Put students into pairs for the programming activity.

Transition: Move students onto Code Studio.

 Code Studio levels

Lesson Overview  1 (click tabs to see student view)

Skill Building  2  3  4  5  6 (click tabs to see student view)

Practice with Parameters   7  7a  7b  7c

Assessment   8 (click tabs to see student view)

Shapes and Parameters Challenges   9  9a  9b  9c

 9d  9e

https://studio.code.org/docs/gamelab/ellipse/
https://studio.code.org/docs/gamelab/rect/
https://studio.code.org/docs/gamelab/ellipse/
https://studio.code.org/docs/gamelab/rect/
https://studio.code.org/docs/gamelab/rect/

 Discussion Goal

Student answers will vary, but they should all follow

the pattern of giving more specific information for how

to carry out a task. If students have trouble thinking of

something, you may want to give some examples for

things a computer could do, such as ring an alarm

(with a parameter for a certain time) or play a song

(with a parameter for the song title).

Wrap Up (5 min)

Journal

Question of the Day: How can we use parameters to

give the computer more specific instructions?

Prompt: You use parameters to control your shape's

location and size. Can you think of any other

situations in which parameters might be useful?

 Share: Allow students to share our their ideas.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 Ch. 2 18 19 20 21 22 23 24 25 26 27

Lesson 5: Variables

Overview

Question of the Day: How can we use variables to store

information in our programs?

In this lesson students learn how to use variables to label a

number. Students begin the lesson with a very basic description

of the purpose of a variable within the context of the storage

component of the input-output-storage-processing model.

Students then complete a level progression that reinforces the

model of a variable as a way to label or name a number.

Purpose

This lesson is the first time students will see variables in the

course, and they are not expected to fully understand how

variables work by its conclusion. Students should leave this

lesson knowing that variables are a way to label a value in their

programs so that they can be reused or referenced later. In the

following lesson students will be introduced to random numbers,

in which they will see a more powerful use for variables.

Using variables to manipulate drawings is a surprisingly

challenging skill that requires a great deal of forethought and

planning. While students will use or modify many programs in this

lesson, they are not expected to compose programs that use

variables to modify the features of a drawing. In later lessons,

students will expand their understanding of variables and more

advanced ways they can be used.

Assessment Opportunities

1. Identify a variable as a way to label and reference a value in a

program

See the reflection prompt in the Wrap Up.

2. Use variables in a program to store a piece of information that

is used multiple times

See Level 8 in Code Studio.

Agenda
Warm Up (10 Mins)

Input-Output-Storage-Processing

Activity (30 Mins)

Programming with Variables

Wrap Up (5 Mins)

Reflection

View on Code Studio

Objectives
Students will be able to:

Identify a variable as a way to label and

reference a value in a program

Use variables in a program to store a piece

of information that is used multiple times

Preparation

Review the level progression in Code

Studio

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Variables - Slides

For the Students

Introduction to Variables - Video

(download)

Vocabulary

Variable - A label for a piece of information

used in a program.

Introduced Code

Declare and assign a value to a variable

Declare a variable

https://curriculum.code.org/csd-20/unit3/
https://studio.code.org/s/csd3-2020/stage/5/puzzle/1/
https://docs.google.com/presentation/d/1vGPLsDh6Mcm2xmwBoq8YIAq05iy2pQq6JstSh7yaDyo/edit#slide=id.g8312ba68ee_0_68
https://youtu.be/UG7Q1Sr0_F0
https://videos.code.org/2015/csp/applab/variables_1.mp4
https://studio.code.org/docs/gamelab/declareAssign_x/
https://studio.code.org/docs/gamelab/declareNoAssign_x/

 Discussion Goal

Allow students to share out their different ideas, but

eventually bring the conversation back to storage to

tie into the lesson topic of variables. Students’

answers may include:

input: values passed as parameters, typing into the

Game Lab workspace

output: shapes shown on the Game Lab screen

storage: remembering the code

processing: the If/then and matching that turn the

code into the pictures on the screen

Teaching Guide

Warm Up (10 Mins)

Input-Output-Storage-Processing

Prompt: At the beginning of the course, we learned

that input, output, storage, and processing were

common to all computers. Where do you see input,

output, storage, and processing in Game Lab?

 Share: Allow students to share out their answers.

 Remarks

Today we're going to focus on storage. We're going

to look at variables, which are a very common way

for computers to store information in a program.

Key Vocabulary: variable - a label for a piece of

information used in a program

Question of the Day: How can we use variables to

store information in our programs?

Activity (30 Mins)

Programming with Variables

Transition: Send students to Code Studio.

 Code Studio levels

Wrap Up (5 Mins)

Lesson Overview  1 (click tabs to see student view)

Prediction  2 (click tabs to see student view)

Video: Introduction to Variables  3 (click tabs to see student view)

Skill Building  4  5  6 (click tabs to see student view)

Variables Practice   7  7a  7b  7c  7d

Assessment   8 (click tabs to see student view)

Variables Challenges   9  9a  9b  9c  9d

 Assessment Opportunity

Use this discussion to assess students' mental models

of a variable. You may wish to have students write

their responses so you can collect them to review

later. You should be looking to see primarily that they

understand that variables can label or name a number

so that it can be used later in their programs. While

there are other properties of a variable students may

have learned, this is the most important thing they

should understand before moving on to the next

lesson.

Reflection

Question of the Day: How can we use variables to store information in our programs?

 Prompt: Give students the following prompts:

What is your own definition of a variable?

Why are variables useful in programs?

Discuss: Have students silently write their ideas

before sharing in pairs and then as a whole group.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 Ch. 2 18 19 20 21 22 23 24 25 26 27

Lesson 6: Random Numbers

Overview

Question of the Day: How can we make our programs behave

differently each time they are run?

Students are introduced to the randomNumber() block and how it

can be used to create new behaviors in their programs. They

them learn how to update variables during a program. Combining

all of these skills, students draw randomized images.

Purpose

This lesson introduces randomness, which is important both as a

way to make programs more interesting, but also to motivate the

use of variables. In the middle of the activity, students are

exposed to a variable that is updated multiple times in the

program, expanding their understanding of how variables can be

used.

Assessment Opportunities

1. Generate and use random numbers in a program

See level 7 in Code Studio.

2. Update a value stored in a variable

See level 5 in Code Studio. Check that students have updated the

value of "petalSize" between drawing the two flowers.

Agenda
Warm Up

Activity

Programming Images

Wrap Up

View on Code Studio

Objectives
Students will be able to:

Generate and use random numbers in a

program

Update a value stored in a variable

Preparation

Review the level progression in Code Studio

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Random Numbers - Slides

Introduced Code

randomNumber()

https://curriculum.code.org/csd-20/unit3/
https://studio.code.org/docs/gamelab/randomNumber/
https://studio.code.org/s/csd3-2020/stage/6/puzzle/1/
https://docs.google.com/presentation/d/1vGPLsDh6Mcm2xmwBoq8YIAq05iy2pQq6JstSh7yaDyo/edit#slide=id.g77eb61112da98ef8_46
https://studio.code.org/docs/gamelab/randomNumber/

 Discussion Goal

The goal of this discussion is to set context for the

introduction of random numbers. Students may come

up with various ideas related to user interaction or

gathering input from other sources. Allow them to

discuss the different ideas that they have, but

eventually turn the conversation to the idea of

randomness.

Teaching Guide

Warm Up

Prompt: So far, our programs have done the same

thing every time that we run them. Are there any

times that you'd want a program to do something

differently each time it was run?

 Discuss: Allow students time to write down some

ideas, then discuss as a group.

 Remarks

So far, we've wanted our programs to do exactly as

we've coded, and most of our surprises have been

bugs. Today we're going to look at how we can code random behaviors into our programs so that we can get

some good surprises.

Question of the Day: How can we make our programs behave differently each time they are run?

Activity

Programming Images

Transition: Move students onto Code Studio

 Code Studio levels

Share: If some students have taken extra time to work on their projects, give them a chance to share their more

complex rainbow snakes. Focus conversation on which parameters students are manipulating or randomizing to

create their drawings.

Wrap Up

Lesson Overview  1 (click tabs to see student view)

Exploration  2 (click tabs to see student view)

Skill Building  3  4  5 (click tabs to see student view)

Practice with Random Numbers   6  6a  6b

Assessment   7 (click tabs to see student view)

Challenges: Random Numbers   8  8a  8b  8c  8d

 8e  8f

 Discussion Goal

The discussion is intended to have students think

about the wider implications of randomness in games

and other programs. Although there is no block to

general random data other than numbers, in later

lessons students will learn techniques that will allow

them to use random numbers to randomly choose

from a variety of behaviors.

Question of the Day: How can we make our programs behave differently each time they are run?

Prompt: So far, we've only looked at random

numbers. Are there any other things that you might

like to be random in your program?

 Share: Allow students to share out what sorts of

random things they might like in their programs.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 Ch. 2 18 19 20 21 22 23 24 25 26 27

Lesson 7: Sprites

Overview

Question of the Day: How can we use sprites to help us keep

track of lots of information in our programs?

In order to create more interesting and detailed images, students

are introduced to the sprite object. The lesson starts with a

discussion of the various information that programs must keep

track of, then presents sprites as a way to keep track of that

information. Students then learn how to assign each sprite an

image, which will greatly increase the complexity of what they

can draw on the screen.

Purpose

Keeping track of many shapes and the different variables that

control aspects of those shapes can get very complex. There will

be lots of variables with different variable names. Instead,

computer scientists created something called an object which

allows for one variable name to control both the shape and all its

aspects. In Game Lab we use a certain type of object called a

sprite. A sprite is just a rectangle with properties for controlling

its look. Properties are the variables that are attached to a sprite.

You can access them through dot notation.

Using the Animation Tab, students can create or import images to

be used with their sprites. Later on, these sprites will become a

useful tool for creating animations, as their properties can be

changed and updated throughout the course of a program.

Assessment Opportunities

1. Create and use a sprite

See levels 12 and 17 on Code Studio.

2. Use dot notation to update a sprite's properties

See level 17 on Code Studio.

Agenda
Warm Up (5 minutes)

How Much Information?

Activity

Introduction to Sprites

Wrap Up (5-10 min)

Journal

View on Code Studio

Objectives
Students will be able to:

Create and use a sprite

Preparation

(Optional) Print a copy of the activity

guide for each student

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Sprites - Slides

Vocabulary

Dot notation - the way that sprites'

properties are used in Game Lab, by

connecting the sprite and property with a

dot.

Property - A label for a characteristic of a

sprite, such as its location and appearance

Sprite - A character on the screen with

properties that describe its location,

movement, and look.

Introduced Code

drawSprites(group)

var sprite = createSprite(x, y, width,

height)

https://curriculum.code.org/csd-20/unit3/
https://studio.code.org/s/csd3-2020/stage/7/puzzle/1/
https://docs.google.com/presentation/d/1vGPLsDh6Mcm2xmwBoq8YIAq05iy2pQq6JstSh7yaDyo/edit#slide=id.g77eb61112da98ef8_146
https://studio.code.org/docs/gamelab/drawSprites/
https://studio.code.org/docs/gamelab/createSprite/

 Discussion Goal

The goal here is to get students thinking about all of

the different values that go into drawing a single

shape on the screen, and how many more values they

may need to control a more detailed character in a

program. If students are struggling to come up with

ideas, you might use some of the following prompts:

How do you tell a shape where to go on the screen?

How do you tell a shape what size it needs to be? How

do you tell a shape what color it should be? What

about its outline? What if you wanted to change any of

those values during your program, or control other

things like rotation?

Teaching Guide

Warm Up (5 minutes)

How Much Information?

Review: So far we've written programs that put

simple shapes on the screen. List of all of the different

pieces of information that you have used to control

how these shapes are drawn.

Prompt:If you wanted to create programs with more

detailed images, maybe even characters that you

could interact with, what other pieces of information

might you need in your code?

 Share: Allow students to share out their lists.

 Remarks

Today we'll learn how to create characters in our

animations called sprites. These sprites will help us keep track of all of the information that we need in our

programs.

Question of the Day: How can we use sprites to help us keep track of lots of information in our programs?

Activity

Introduction to Sprites

Transition: Send students to Code Studio

 Code Studio levels

Lesson Overview  1 (click tabs to see student view)

Exploration  2 (click tabs to see student view)

Video: Introduction to Sprites  3 (click tabs to see student view)

Skill Building  4  5  6 (click tabs to see student view)

Video: The Animation Tab  7 (click tabs to see student view)

Skill Building  8   9 (click tabs to see student view)

Creating sprites and animations   10  10a  10b  10c

 10d  10e  10f

 Discussion Goal

This discussion prompts students to think about the

different properties that a sprite might have, and

prepares them for the next lesson, which explicitly

covers sprite properties.

Wrap Up (5-10 min)

Key Vocabulary:

Sprite - A character on the screen with properties that describe its location, movement, and look.

Property - A label for a characteristic of a sprite, such as its location and appearance.

Dot Notation - the way that sprites' properties are used in Game Lab, by connecting the sprite and property with

a dot.

Journal

Question of the Day: How can we use sprites to help

us keep track of lots of information in our programs?

Prompt: So far we've been able to chance a sprite's

location and image. What else might you want to

change about your sprites?

 Share: Allow students to share out their ideas.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

Assessment   11 (click tabs to see student view)

Challenges: Sprites and Animations   12  12a  12b  12c

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 Ch. 2 18 19 20 21 22 23 24 25 26 27

Lesson 8: Sprite Properties

Overview

Question of the Day: How can we use sprite properties to change

their appearance on the screen?

Students extend their understanding of sprites by interacting with

sprite properties. Students start with a review of what a sprite is,

then move on to Game Lab to practice more with sprites, using

their properties to change their appearance. They then reflect on

the connections between properties and variables.

Purpose

In the last lesson, when students were introduced to sprites, they

focused mainly on creating a sprite and assigning it an animation.

This lesson starts to dig into what makes sprites such a powerful

programming construct--that they have properties that can be

modified as a program is running. This lays the foundation for

much of what students will be doing in the rest of the unit in

terms of accessing and manipulating sprite properties to create

interesting behaviors in their programs.

Assessment Opportunities

Use dot notation to update a sprite's properties

See Code Studio level 6.

Agenda
Warm Up

Activity

Wrap Up

View on Code Studio

Objectives
Students will be able to:

Use dot notation to update a sprite's

properties

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Sprite Properties - Slides

Vocabulary

Property - A label for a characteristic of a

sprite, such as its location and appearance

Introduced Code

sprite.rotation

sprite.scale

sprite.x

sprite.y

https://curriculum.code.org/csd-20/unit3/
https://studio.code.org/s/csd3-2020/stage/8/puzzle/1/
https://docs.google.com/presentation/d/1vGPLsDh6Mcm2xmwBoq8YIAq05iy2pQq6JstSh7yaDyo/edit#slide=id.g77eb61112da98ef8_268
https://studio.code.org/docs/gamelab/rotation/
https://studio.code.org/docs/gamelab/scale/
https://studio.code.org/docs/gamelab/x/
https://studio.code.org/docs/gamelab/y/

 Discussion Goal

Students may note that sprite properties and variables

are similar in that they both store information. They

are different in that variables can be anything, but

sprites have particular properties that are used in

certain ways on the screen.

Teaching Guide

Warm Up

Prompt: What is your definition of a sprite? What sprite properties do you know how to use? What other sprite

properties might be useful?

Allow students time to reflect on their own and then with a partner before sharing out to the entire group. It's okay

if students do not have a canonical definition of a sprite, but they should recognize that a sprite is a part of the

program that has several different properties that control its location and appearance.

 Remarks

So far, we've only been able to control our sprite's location and animation, but today, we're going to learn how to

update other sprite properties so we can make even better programs.

Question of the Day: How can we use sprite properties to change their appearance on the screen?

Activity

Group: Put students in pairs.

Transition: Send students to Code Studio.

 Code Studio levels

Wrap Up

Question of the Day: How can we use sprite

properties to change their appearance on the screen?

Journal Prompt: What is one way sprite properties are

the same as variables? What's one way that sprite

properties are different from variables?

 Discuss: Allow students to discuss in pairs or small

groups before sharing out to the entire group.

Lesson Overview  1 (click tabs to see student view)

Prediction  2 (click tabs to see student view)

Skill Building  3  4 (click tabs to see student view)

Sprite Properties   5  5a  5b

Assessment   6 (click tabs to see student view)

Challenges: Sprite Properties   7  7a  7b

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 Ch. 2 18 19 20 21 22 23 24 25 26 27

Lesson 9: Text

Overview

Question of the Day: How can we use text to improve our scenes

and animations?

This lesson introduces Game Lab's text commands, giving

students more practice using the coordinate plane and

parameters. At the beginning of the lesson, students are asked to

caption a cartoon created in Game Lab. They then move onto

Code Studio where they practice placing text on the screen and

controlling other text properties, such as size. Students who

complete the assessment early may go on to learn more

challenging blocks related to text properties.

Purpose

This lesson introduces text, which students will need as they

begin to build more complex programs (e.g. games with

scoreboards). This is the last type of element that students will be

placing on the screen. After this, students will focus on how they

can control the movement and interactions of these elements.

Agenda
Warm Up

Journal

Activity

Wrap up

Journal

View on Code Studio

Objectives
Students will be able to:

Place text on the screen using a coordinate

plane.

Use arguments to control how text is

displayed on a screen.

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Text - Slides

https://curriculum.code.org/csd-20/unit3/
https://studio.code.org/s/csd3-2020/stage/9/puzzle/1/
https://docs.google.com/presentation/d/1vGPLsDh6Mcm2xmwBoq8YIAq05iy2pQq6JstSh7yaDyo/edit#slide=id.g77eb61112da98ef8_341

Teaching Guide

Warm Up

Journal

Display: Display the cartoon for students to see.

Prompt: Look at the cartoon that was made in Game Lab. What do you think the alien should be saying?

Share: Allow volunteers to share out their ideas.

 Remarks

We've had a lot of fun drawing things and using our sprites, but there's been one thing missing from our Game

Lab pictures: text! Today we're going to learn how to add text to Game Lab projects.

Question of the Day: How can we use text to improve our scenes and animations?

Activity

Transition Send students to Code Studio.

 Code Studio levels

Lesson Overview  1 (click tabs to see student view)

Prediction  2 (click tabs to see student view)

Skill Building  3  4 (click tabs to see student view)

Practice   5  5a  5b

 Discussion Goal

Student answers to the question may vary, but some

similarities are that they both use the coordinate

plane, and that they are drawn automatically, unlike

sprites, which must use the drawSprites command.

One possible difference that it is more difficult to

control the exact size of text, since the amount of text

and font size are not as specific as height and width

parameters.

Wrap up

Journal

Question of the Day: How can we use text to improve

our scenes and animations?

Prompt: You've drawn with both text and shapes on

the screen.

What are two ways drawing with text is similar to

drawing shapes?

What is one way that drawing with text is different

from drawing with shapes?

 Share: If there is time, allow students to share out

their answers.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

Assessment   6 (click tabs to see student view)

Text Challenges   7  7a  7b  7c  7d

https://studio.code.org/docs/gamelab/drawSprites/
https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 Ch. 2 18 19 20 21 22 23 24 25 26 27

Lesson 10: Mini-Project - Captioned Scenes

Overview

Question of the Day: How can we use Game Lab to express our

creativity?

After a quick review of the code they have learned so far,

students are introduced to their first creative project of the unit.

Using the problem-solving process as a model, students define

the scene that they want to create, prepare by thinking of the

different code they will need, try their plan in Game Lab, then

reflect on what they have created. They also have a chance to

share their creations with their peers.

Purpose

This lesson is a chance for students to get more creative with

what they have learned. Some students may spend more time in

the animation tab drawing than programming. Encourage

students to spend time on parts of the activity that interest them,

as long as they meet the requirements of the assignment.

The open-ended nature of this lesson also provides flexibility for

the teacher to decide how long students should spend on their

work, depending on the scheduling demands of the particular

course implementation.

Agenda
Warm Up

Review

Activity

Gallery Walk

Wrap up

Journal

View on Code Studio

Objectives
Students will be able to:

Use a structured process to plan and

develop a program.

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Mini Project - Captioned Scenes - Exemplar

Mini-Project: Captioned Scenes - Slides

For the Students

Captioned Scenes - Rubric

Sprite Scene Planning - Activity Guide

Make a Copy

Make a Copy

https://curriculum.code.org/csd-20/unit3/
https://studio.code.org/s/csd3-2020/stage/10/puzzle/1/
https://studio.code.org/s/csd3-2020/stage/10/puzzle/1/
https://docs.google.com/presentation/d/1vGPLsDh6Mcm2xmwBoq8YIAq05iy2pQq6JstSh7yaDyo/edit#slide=id.g77eb61112da98ef8_417
https://docs.google.com/document/d/1nnknkBeMA8SkIyvVcffbOKV_i5xQmLPGRMwJxORuVwQ/edit
https://docs.google.com/document/d/1I5w4VKBu4qPmoSSve_AwyaVQ47FWkJ-fSq4zfmQCsG8/edit

 Discussion Goal

The goal of this discussion is to review the different

blocks and skills that students have learned. As

students talk about the different blocks, try to steer

the conversation into how they can be used creatively,

to link into the main topic of the day.

 Teaching Tip

You may choose to formalize this process by having

each student write down one positive quality of each

project, or having students "draw names" to comment

on one particular classmate's work.

Teaching Guide

Warm Up

Review

Prompt: Write down as many blocks as you can

remember from Game Lab. Make sure you know what

each one does, especially the inputs, or parameters,

for each of the blocks.

 Share: Allow students to share out what they

remember as a group review.

 Remarks

You've already learned how to do some really great things in Game Lab. Today you'll have a chance to put them

all together to make an interesting scene to share with the world. That means instead of trying to recreate

someone else's idea, you're going to get to come up with an idea of your own, so it's time to get creative!

Question of the Day: How can we use Game Lab to express our creativity?

Activity

Distribute: (Optional) pass out copies of the activity guide. Students can use this sheet to plan out the scene they

create at the end of this lesson, but the planning can also be completed on scratch paper.

Transition Send students to Code Studio.

 Code Studio levels

Gallery Walk

 Allow students to walk around the room and see the

pictures that each of their classmates has coded.

Celebrate all of the different ideas that students were

able to implement with the same basic code.

Lesson Overview  1 (click tabs to see student view)

Sprite Scenes  2 (click tabs to see student view)

Create a Background  3 (click tabs to see student view)

Add Sprites  4 (click tabs to see student view)

Add Text  5 (click tabs to see student view)

Review Your Scene  6 (click tabs to see student view)

 Discussion Goal

This discussion should serve as a celebration of what

the students have accomplished. As students share

out what they have seen, encourage them to learn

from each other and ask questions if they were not

sure how to do something. Highlight how students

were able to do very different things with the same

tool.

Wrap up

Journal

Question of the Day: How can we use Game Lab to

express our creativity?

Prompt: What was one especially creative way you

saw someone else use the blocks today?

 Share: Have students share out what they

appreciated about their classmates' projects. You may

want to do this "popcorn" style, with each student

who responds choosing the next person to share.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 Ch. 2 18 19 20 21 22 23 24 25 26 27

Lesson 11: The Draw Loop

Overview

Question of the Day: How can we animate our images in Game

Lab?

In this lesson students are introduced to the draw loop, one of the

core programming paradigms in Game Lab. To begin the lesson

students look at some physical flipbooks to see that having many

frames with different images creates the impression of motion.

Students then watch a video explaining how the draw loop in

Game Lab helps to create this same impression in their programs.

Students combine the draw loop with random numbers to

manipulate some simple animations with dots and then with

sprites.

Purpose

The draw loop is a core component of Game Lab. The fact that

the Game Lab environment repeatedly calls this function many

times a second (by default 30) is what allows the tool to create

animations. This lesson has two goals. The first is for students to

see how animation in general depends on showing many slightly

different images in a sequence. The second goal is for students to

understand how the draw loop allows them to create this

behavior in Game Lab. Students should leave the lesson

understanding that the commands in the draw loop are called

after all other code but are then called repeatedly to create

animation. Students will have a chance to continue to develop an

understanding of this behavior in the next two lessons, but laying

a strong conceptual foundation in this lesson will serve them well

for the rest of the unit.

Assessment Opportunities

1. Explain how the draw loop allows for the creation of

animations in Game Lab

In the wrap up discussion, check that students mention that

the code in the draw loop is run over and over, whereas code

outside the draw loop is just run once, at the beginning of the

program.

2. Use the draw loop in combination with the randomNumber()

command, shapes, and sprites to make simple animations

See level 9 in Code Studio.

Agenda
Warm Up (5 mins)

Activity (60 min)

Wrap Up (10 mins)

View on Code Studio

Objectives
Students will be able to:

Explain how the draw loop allows for the

creation of animations in Game Lab

Use the draw loop in combination with the

randomNumber() command, shapes, and

sprites to make simple animations

Preparation

Print and assemble the manipulatives

Prepare the video

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

The Draw Loop - Slides

Random Dot Flipbook - Manipulative

Random Sprite Flipbook - Manipulative

Flipbook Example - by Marnic Bos - Video

Introduced Code

function draw() { }

World.frameRate

https://curriculum.code.org/csd-20/unit3/
https://studio.code.org/s/csd3-2020/stage/11/puzzle/1/
https://docs.google.com/presentation/d/1vGPLsDh6Mcm2xmwBoq8YIAq05iy2pQq6JstSh7yaDyo/edit#slide=id.g77eb61112da98ef8_492
https://docs.google.com/drawings/d/1KO4s3j9Zbc6rBxLijxxKIYlN24wej906HHJZ7GQDi9U/edit?usp=sharing
https://docs.google.com/drawings/d/1mVt8SE1N5KYy2TfOlqtvkL_2MmYk6wFpiouMZ-P-kQY/edit?usp=sharing
https://youtu.be/hol0p29cd8o
https://studio.code.org/docs/gamelab/draw/
https://studio.code.org/docs/gamelab/World.frameRate/

 Discussion Goal

Goal: This discussion should introduce some key

understandings about animation. Students should

understand that the key is seeing many pictures in a

row that are slightly different. Introduce the

vocabulary word "frame" as being one of those many

pictures--a single image within an animation. Then

transition to the fact that soon students will be

creating animations of their own.

 Teaching Tip

Pair Programming: This lesson introduces a

challenging new paradigm. Consider having students

pair program. Remember to give students clear

instructions on when to switch driver and navigator.

Teaching Guide

Warm Up (5 mins)

Display: Show Flipbook Example - by Marnic Bos - Video. (Video by Marnic Bos on Youtube)

Prompt: This video shows a flipbook to make animation. In your own words, how is it working? Why does it "trick

our eyes" into thinking something is moving?

 Discuss: Have students write their ideas

independently, then share with partners, then share

as a whole group.

 Remarks

We're going to start learning how to make

animations, not just still images. In order to do this

we need a way to make our programs draw many

pictures a second. Our eyes will blur them together

to make it look like smooth motion. To do this,

though, we're going to need to learn an important

new tool.

Question of the Day: How can we animate our images in Game Lab?

Activity (60 min)

 Video: Watch the video introducing the draw loop.

Demo: If you choose, use the provided manipulatives

to provide a hands-on demo for exploring how the

draw loop and animations are connected.

 Code Studio levels

Lesson Overview  1 (click tabs to see student view)

Video: Introduction to the Draw Loop  2 (click tabs to see student view)

Exploration  3 (click tabs to see student view)

Skill Building  4 (click tabs to see student view)

Prediction  5 (click tabs to see student view)

Skill Building  6  7 (click tabs to see student view)

Practice   8  8a  8b  8c  8d

https://youtu.be/hol0p29cd8o

 Assessment Opportunity

Key Understandings: There are many common

misconceptions with the draw loop. Make sure

students understand the following:

The draw loop is run after all other code in your

program. It does not actually matter where it is

located in your program.

The draw loop is run by Game Lab at a constant

frame rate of 30 frames per second. You do not

actually need to call the function yourself.

The "frames" in Game Lab can be thought of as

transparency sheets. Unless you draw a

background, then all your new shapes or sprites will

simply appear on top of your old ones.

You should only have one draw loop in your

program.

Wrap Up (10 mins)

Question of the Day: How can we animate our images

in Game Lab?

 Prompt: How does the draw loop help us make

animations?

Review: Return to the resources students saw at the

beginning of the lesson (Video, physical flip books) or

under Help and Tips during the lesson. Address

misconceptions that have arisen in the lesson.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

Assessment   9 (click tabs to see student view)

Draw Loop Challenges   10  10a  10b

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 Ch. 2 18 19 20 21 22 23 24 25 26 27

Lesson 12: Sprite Movement

Overview

Question of the Day: How can we control sprite movement in

Game Lab?

In this lesson, students learn how to control sprite movement

using a construct called the counter pattern, which incrementally

changes a sprite's properties. Students first brainstorm different

ways that they could animate sprites by controlling their

properties, then explore the counter pattern in Code Studio. After

examining working code, students try using the counter pattern

to create various types of sprite movements.

Purpose

This lesson builds on the draw loop that students learned

previously to create programs with purposeful motion. By either

incrementing or decrementing sprite properties, such as

sprite.x , students can write programs that move sprites in

expected patterns, instead of the randomization that they used in

the past. The animations that students learn to create in this

lesson lay the foundation for all of the animations and games that

they will make throughout the rest of the unit.

Assessment Opportunities

1. Use the counter pattern to increment or decrement sprite

properties

See Level 8 in Code Studio.

2. Identify which sprite properties need to be changed, and in

what way, to achieve a specific movement

See Level 8 in Code Studio.

Agenda
Warm Up (5 minutes)

Reviewing Sprite Properties

Activity (40 minutes)

Levels: Sprites and Images

Wrap Up (5 minutes)

Journal

View on Code Studio

Objectives
Students will be able to:

Use the counter pattern to increment or

decrement sprite properties

Identify which sprite properties need to be

changed, and in what way, to achieve a

specific movement

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Sprite Movement - Slides

For the Students

Animating Sprites - Video (download)

https://curriculum.code.org/csd-20/unit3/
https://studio.code.org/docs/gamelab/x/
https://studio.code.org/s/csd3-2020/stage/12/puzzle/1/
https://docs.google.com/presentation/d/1vGPLsDh6Mcm2xmwBoq8YIAq05iy2pQq6JstSh7yaDyo/edit#slide=id.g77eb61112da98ef8_613
https://youtu.be/G666sFzAg5g
https://videos.code.org/cs-discoveries/gamelab/gamelab_animating_sprites.mp4

 Discussion Goal

The purpose of this discussion is to start students

thinking about how they might use the various sprite

properties they've seen so far to make animations with

purposeful motion. If students struggle to come up

with ideas, you can narrow down the question to

specific properties. For example:

What would happen to a sprite if you constantly

increased its x property?

What would happen to a sprite if you constantly

increased its y property?

What about other properties, or combining multiple

properties?

Teaching Guide

Warm Up (5 minutes)

Reviewing Sprite Properties

Review: On a piece of scratch paper, list out all of the

sprite properties you can think of and what aspect of

a sprite they affect.

Prompt: What kinds of animations could you make if

you could control these properties? Consider adding

and subtracting from properties, or even updating

multiple properties at the same time.

 Discuss: Allow students to share their ideas with a

partner before sharing with the entire class.

Question of the Day: How can we control sprite

movement in Game Lab?

Activity (40 minutes)

Levels: Sprites and Images

Transition: Send students to Code Studio.

 Code Studio levels

Wrap Up (5 minutes)

Journal

Lesson Overview  1 (click tabs to see student view)

Prediction  2 (click tabs to see student view)

Video: Sprite Movement  3 (click tabs to see student view)

Skill Building  4  5  6  7 (click tabs to see student view)

Practice   8  8a  8b  8c

Assessment   9 (click tabs to see student view)

Sprite Movement Challenges   10  10a  10b  10c

https://studio.code.org/docs/gamelab/x/
https://studio.code.org/docs/gamelab/y/

 Discussion Goal

Student answers may vary, but movements such as

shaking use random numbers, and movements that

are more purposeful use the counter pattern. It's less

important that students have a specific answer than

that their answers reflect a growing understanding of

how the different programming constructs work.

Students may have seen random numbers used on

one property (rotation) and the counter pattern used

on another (x position) in one of the challenges, but if

there is time, encourage them to think about what

would happen if you used the counter pattern to add

or subtract a random number to a sprite property, or

to combine the two constructs in other ways.

Question of the Day: How can we control sprite

movement in Game Lab?

Prompt: You've seen two ways to create animations

with the draw loop: random numbers and the counter

pattern. What is one type of movement that you'd

want to use random numbers for? What is one type of

movement that you would want to use the counter

pattern for? Are there any movements that might

combine the counter pattern and random numbers?

 Discuss: Allow students to discuss with a partner

before sharing with the entire class.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 Ch. 2 18 19 20 21 22 23 24 25 26 27

Lesson 13: Mini-Project - Animation

Overview

Question of the Day: How can we combine different

programming patterns to make a complete animation?

In this lesson, students are asked to combine different methods

that they have learned to create an animated scene. Students

first review the types of movement and animation that they have

learned, and brainstorm what types of scenes might need that

movement. They then begin to plan out their own animated

scenes, which they create in Game Lab.

Purpose

This is a chance for students to get more creative with what they

have learned. Some students may spend more time in the

animation tab drawing than programming. Encourage students to

spend time on parts of the activity that interest them, as long as

they meet the requirements of the assignment.

Agenda
Warm Up

Review

Activity

Gallery Walk

Wrap up

Journal

View on Code Studio

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Animated Scene Planning - Exemplar

Mini-Project: Animation - Slides

For the Students

Animated Scene - Rubric

Animated Scene - Activity Guide

Make a Copy

Make a Copy

https://curriculum.code.org/csd-20/unit3/
https://studio.code.org/s/csd3-2020/stage/13/puzzle/1/
https://studio.code.org/s/csd3-2020/stage/13/puzzle/1/
https://docs.google.com/presentation/d/1vGPLsDh6Mcm2xmwBoq8YIAq05iy2pQq6JstSh7yaDyo/edit#slide=id.g77eb61112da98ef8_724
https://docs.google.com/document/d/10pk8PAdaLzSAnmMvvCP8pYsYWXv6UyxzxN1k9M9ThpE/edit
https://docs.google.com/document/d/1vYDwIgLOLPH4ymHusLyTo4Ydn5OEOCJ4rf5ZbQ9rrOQ/edit

 Discussion Goal

The goal of this discussion is to review the different

types of movement and animations that students have

learned. As students talk about the different methods,

make sure that they are mentioning why that type of

movement would be useful. Press them to be specific

about what they might animate using the various

methods.

Teaching Guide

Warm Up

Review

Prompt: Write down as many types of movement and

animations as you can remember from the previous

lesson. Make sure you know what blocks and patterns

you need to make those movements, and when those

movements would be useful.

 Share: Allow students to share out what they

remember as a group review.

 Remarks

Now that we can control the way that our sprites move a little better, we're going to have a chance to put

everything together to make an animation from scratch.

Question of the Day: How can we combine different programming patterns to make a complete animation?

Activity

Distribute: (Optional) pass out copies of the activity guide. Students can use this sheet to plan out the animation

they create at the end of this lesson, but the planning can also be completed on scratch paper.

Transition Send students to Code Studio.

 Code Studio levels

Gallery Walk

Lesson Overview  1 (click tabs to see student view)

Example Animated Scene  2 (click tabs to see student view)

Plan Your Scene  3 (click tabs to see student view)

Draw a Background  4 (click tabs to see student view)

Add Sprites  5 (click tabs to see student view)

Add Text  6 (click tabs to see student view)

Add Movement  7 (click tabs to see student view)

Review Your Animated Scene  8 (click tabs to see student view)

 Discussion Goal

This discussion should serve as a celebration of what

the students have accomplished. As students share

out what they have seen, encourage them to learn

from each other and ask questions if they were not

sure how to do something. Highlight how students

were able to do very different things with the same

tool.

 Teaching Tip

You may choose to formalize this process by having

each student write down one positive quality of each

project, or having students "draw names" to comment

on one particular classmate's work.

 Allow students to walk around the room and see the

pictures that each of their classmates has coded.

Celebrate all of the different ideas that students were

able to implement with the same basic code.

Wrap up

Journal

Question of the Day: How can we combine different

programming patterns to make a complete

animation?

Prompt: What was one interesting way that you saw

sprite movement used today?

 Share: Have students share out what they

appreciated about their classmates' projects. You may

want to do this "popcorn" style, with each student

who responds choosing the next person to share.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 Ch. 2 18 19 20 21 22 23 24 25 26 27

Lesson 14: Conditionals

Overview

Question of the Day: How can programs react to changes as they

are running?

This lesson introduces booleans and conditionals, which allow a

program to run differently depending on whether a condition is

true. Students start by playing a short game in which they

respond according to whether particular conditions are met. They

then move to Code Studio, where they learn how the computer

evaluates Boolean expressions, and how they can be used to

structure a program.

Purpose

This lesson follows closely the booleans model that students first

experienced in the Booleans Unplugged lesson. As before, we

start with using booleans directly before using booleans to trigger

if statements. In the following lesson we will introduce some

boolean producing blocks, such as keyDown() , which can be used

in place of simple boolean comparisons to write programs that

respond to user input.

Assessment Opportunities

1. Use conditionals to react to changes in variables and sprite

properties

See Level 10 in Code Studio.

Agenda
Warm Up (5 min)

Introducing Conditionals

Activity (40 min)

Conditionals

Wrap Up (5 min)

Considering Conditions

View on Code Studio

Objectives
Students will be able to:

Use conditionals to react to changes in

variables and sprite properties

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Conditionals - Slides

Vocabulary

Boolean Expression - in programming, an

expression that evaluates to True or False.

Condition - Something a program checks

to see whether it is true before deciding to

take an action.

Conditionals - Statements that only run

when certain conditions are true.

Introduced Code

If statement

Equality operator

Inequality operator

Greater than operator

Greater than or equal operator

Less than operator

Less than or equal operator

https://curriculum.code.org/csd-20/unit3/
https://studio.code.org/docs/gamelab/keyDown/
https://studio.code.org/s/csd3-2020/stage/14/puzzle/1/
https://docs.google.com/presentation/d/1vGPLsDh6Mcm2xmwBoq8YIAq05iy2pQq6JstSh7yaDyo/edit#slide=id.g77eb61112da98ef8_858
https://studio.code.org/docs/gamelab/ifBlock/
https://studio.code.org/docs/gamelab/equalityOperator/
https://studio.code.org/docs/gamelab/inequalityOperator/
https://studio.code.org/docs/gamelab/greaterThanOperator/
https://studio.code.org/docs/gamelab/greaterThanOrEqualOperator/
https://studio.code.org/docs/gamelab/lessThanOperator/
https://studio.code.org/docs/gamelab/lessThanOrEqualOperator/

 Teaching Tip

The last two prompts ask students to react to

information that may change as they are answering

the questions. In order to drive this point home,

consider moving from the front of the room and back,

as well as alternately tapping and not tapping a pencil,

so that students realize that their answers may

change according to when they are answering each

question.

 Discussion Goal

This discussion should prepare students to investigate

programs that react to changing conditions. Students

should realize that there is no "one way" that these

questions will be answered, and that the answers will

change according to changing conditions.

Teaching Guide

Warm Up (5 min)

Introducing Conditionals

 Display: Display the following questions on the

board and ask students to answer them.

1. If your last name has more than five letters, draw a

square on your paper.

2. If your last name less than seven letters, draw a

circle.

3. If you are wearing anything green, add 3 + 2.

4. If the teacher is tapping their pencil, draw an 'X'.

5. If the teacher is in the front of the room, fold your

paper in half.

Prompt: When we program, we give the computer

instructions on what to do. How are the instructions

you just followed different from the instructions that

we have been giving in Game Lab?

 Think-Pair-Share: After students have had a chance

to write down their answers, allow them to talk to a

partner before sharing out as a class.

 Remarks

These instructions were a little different because we first had to decide whether something was true or not before

we knew what we should do. In programming, instructions that depend on whether or not something is true are

called conditionals, and the thing that is checked is called the condition. Conditionals are especially useful when

we want the program to react to situations that change while the program is running.

Key Vocabulary:

Condition - Something a program checks to see whether it is true before deciding whether to take an action.

Conditionals - Statements that only run under certain conditions.

Question of the Day: How can programs react to changes as they are running?

Activity (40 min)

Conditionals

Transition: Send students to Code Studio.

 Content Corner

Though seemingly simple, understanding how a

boolean statement will evaluate can be difficult given

that different programming languages have differing

opinions on 'truthiness' and 'falsiness'. In fact,

JavaScript (the language used in this course) has two

different operators to test boolean equality == and

=== .

The double equals operator (==) is pretty generous in

determining truthiness. For example, each of the

following is considered true in JavaScript when using

the == operator, but would be false using the ===

operator:

1 == true;

"1" == true;

5 == "5";

null == undefined;

"" == false;

We use the == operator in this course because it's

more forgiving, but it's important to be aware that it

can sometimes report back truth when you really

didn't intend it to (in which case you might want to

use the more strict === operator)

 Code Studio levels

Lesson Overview  1 (click tabs to see student view)

Prediction  2 (click tabs to see student view)

Video: Booleans  3 (click tabs to see student view)

Quick Check  4 (click tabs to see student view)

Skill Building  5  6 (click tabs to see student view)

Video: Conditional Statements  7 (click tabs to see student view)

Skill Building  8 (click tabs to see student view)

Conditionals Practice   9  9a  9b  9c

Assessment   10 (click tabs to see student view)

Conditionals Challenges   11  11a  11b

 Discussion Goal

This discussion should get students thinking about

how conditionals are used in games they have already

seen, and help them connect those ideas to how they

might want to use conditionals in their own programs.

Student responses might include:

If my username and password are correct, log me

into Facebook

If Pacman has collected all the balls, start the next

level

If my keyboard or mouse hasn't moved in 10

minutes, turn on the screensaver

Wrap Up (5 min)

Considering Conditions

Question of the Day: How can programs react to

changes as they are running?

Key Vocabulary:

Condition - Something a program checks to see

whether it is true before deciding to take an action.

Conditionals - Statements that only run under

certain conditions.

Boolean Expression - In programming, an

expression that evaluates to True or False.

Prompt: Now that you know how conditionals work,

where you do think that they are used in games or

other programs and apps that you already use?

 Discuss: Have students share responses.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 Ch. 2 18 19 20 21 22 23 24 25 26 27

Lesson 15: Keyboard Input

Overview

Question of the Day: How can our programs react to user input?

Following the introduction to booleans and if statements in the

previous lesson, students are introduced to a new block called

keyDown() which returns a boolean and can be used in

conditionals statements to move sprites around the screen. By

the end of this lesson, students will have written programs that

take keyboard input from the user to control sprites on the

screen.

Purpose

One common way conditionals are used is to check for different

types of user input, especially key presses. Having a way for a

user to interact with a program makes it more interesting and

dynamic. Without interaction from the user it is very difficult to

create a game. Therefore the introduction of conditionals and

user inputs for decision making is a critical step toward creating

games.

Assessment Opportunities

1. Use conditionals to react to keyboard input

See Level 7 in Code Studio.

2. Move sprites in response to keyboard input

See Level 7 in Code Studio.

Agenda
Warm Up (5 min)

Taking Input

Activity (40 min)

Keyboard Input

Wrap Up (5 min)

Adding Conditionals

View on Code Studio

Objectives
Students will be able to:

Use conditionals to react to keyboard input

Move sprites in response to keyboard input

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Keyboard Input - Slides

Introduced Code

keyDown(code)

https://curriculum.code.org/csd-20/unit3/
https://studio.code.org/docs/gamelab/keyDown/
https://studio.code.org/s/csd3-2020/stage/15/puzzle/1/
https://docs.google.com/presentation/d/1vGPLsDh6Mcm2xmwBoq8YIAq05iy2pQq6JstSh7yaDyo/edit#slide=id.g77eb61112da98ef8_1042
https://studio.code.org/docs/gamelab/keyDown/

 Discussion Goal

The goal here isn't to get into the technical specifics of

how programs can take input (students will get to that

in the online portion of the lesson), but rather to get

students thinking about how user input could change

the programs they've made. Encourage students to

think back to Unit 1 and the various computer inputs

and outputs they explored then. Which inputs would

be most useful for the types of programs they've been

making?

Teaching Guide

Warm Up (5 min)

Taking Input

 Discuss: So far all of the programs you've written

run without any input from the user. How might

adding user interaction make your programs more

useful, effective, or entertaining? How might a user

provide input into your program?

Question of the Day: How can our programs react to

user input?

Activity (40 min)

Keyboard Input

Transition: Send students to Code Studio

 Code Studio levels

Wrap Up (5 min)

Adding Conditionals

Question of the Day: How can our programs react to user input?

Journal: Think back to all of the programs you've written so far; how might you use user interaction to improve one

of your programs from past lessons? What condition would you check, and how would you respond to it?

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

Lesson Overview  1 (click tabs to see student view)

Prediction  2 (click tabs to see student view)

Skill Building  3  4  5 (click tabs to see student view)

Keyboard Input Practice   6  6a  6b  6c

Assessment   7 (click tabs to see student view)

Keyboard Input Challenges   8  8a  8b  8c

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 Ch. 2 18 19 20 21 22 23 24 25 26 27

Lesson 16: Mouse Input

Overview

Question of the Day: What are more ways that the computer can

react to user input?

In this lesson students continue to explore ways to use

conditional statements to take user input. In addition to the

keyboard commands learned yesterday, students will learn about

several ways to take mouse input. They will also expand their

understanding of conditionals to include else , which allows for

the computer to run a certain section of code when a condition is

true, and a different section of code when it is not.

Purpose

Students have learned how to make simple decisions with

conditionals. Sometimes, however, we want to make decisions

based on whether the condition we asked about originally was

false. That's where else statements come in. Else statements are

a second statement which is attached to an if statement. Else

statements execute when the conditions they are attached to are

false.

This concept is introduced alongside several new mouse input

commands, allowing students to gradually build up programs that

use input in different ways.

Assessment Opportunities

1. Use an if-else statement to control the flow of a program.

See Level 9 in Code Studio.

2. Respond to a variety of types of user input.

Use the wrap up discussion to check students' understanding

of the different types of user input. You may also informally

check their ability to use them as they progress through the

Code Studio lesson.

Agenda
Warm Up (5 minutes)

3-2-1 Review

Activity (40 minutes)

If/Else and More Input

Wrap Up (5 minutes)

Wrap Up

View on Code Studio

Objectives
Students will be able to:

Use an if-else statement to control the flow

of a program.

Respond to a variety of types of user input.

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Mouse Input - Slides

Vocabulary

Conditionals - Statements that only run

when certain conditions are true.

Introduced Code

keyWentDown(code)

keyWentUp(code)

mouseDidMove()

mouseDown(button)

mouseWentDown(button)

mouseWentUp(button)

sprite.visible

If/else statement

https://curriculum.code.org/csd-20/unit3/
https://studio.code.org/s/csd3-2020/stage/16/puzzle/1/
https://docs.google.com/presentation/d/1vGPLsDh6Mcm2xmwBoq8YIAq05iy2pQq6JstSh7yaDyo/edit#slide=id.g77eb61112da98ef8_1134
https://studio.code.org/docs/gamelab/keyWentDown/
https://studio.code.org/docs/gamelab/keyWentUp/
https://studio.code.org/docs/gamelab/mouseDidMove/
https://studio.code.org/docs/gamelab/mouseDown/
https://studio.code.org/docs/gamelab/mouseWentDown/
https://studio.code.org/docs/gamelab/mouseWentUp/
https://studio.code.org/docs/gamelab/visible/
https://studio.code.org/docs/gamelab/ifElseBlock/

 Discussion Goal

Students may come up with many different specific

scenarios, but make sure that they are differentiating

between conditionals that respond to user input and

those that respond to other changes in the program,

such as a score increase, the location of a sprite, or

player lives lost. Major things to remember may

include putting the conditionals in the draw loop or

paying attention to how the blocks are nested.

Teaching Guide

Warm Up (5 minutes)

3-2-1 Review

Prompt: What are three different things that you've

been able to do with conditionals? What are two big

things that everyone should remember when using

conditionals? What's one thing you still want to learn

how to program?

 Share: Allow students to share out their responses.

 Remarks

That's great! Today we're going to look at a way to

make our conditionals even more powerful, and see some new ways to get user input.

Question of the Day: What are more ways that the computer can react to user input?

Activity (40 minutes)

If/Else and More Input

Transition: Move the class to Code Studio, and have students complete the prediction level as a class or in small

groups, then talk about what they found.

Video: Watch the video as a class and review the discussion questions together.

 Code Studio levels

Wrap Up (5 minutes)

Lesson Overview  1 (click tabs to see student view)

Prediction  2 (click tabs to see student view)

Video: If/Else Statements  3 (click tabs to see student view)

Skill Building  4  5  6  7 (click tabs to see student view)

Mouse Input and If/else Practice   8  8a  8b

Assessment   9 (click tabs to see student view)

Mouse Challenges   10  10a  10b  10c  10d  10e

 Assessment Opportunity

This discussion serves as a brief review and

assessment of the new user input commands. As

students share out, press them to explain why their

choice is better than other, similar choices

(mouseDown / mouseWentDown / mouseWentUp). If

any commands are missing after all the groups have

shared out, elicit the missing ones from the group

before moving on.

Wrap Up

Question of the Day: What are more ways that the

computer can react to user input?

 Prompt: You now have many different ways to

detect user input. With a partner, choose three

different user input commands and think of an

example of when you might use them. Be ready to

share with the class!

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 Ch. 2 18 19 20 21 22 23 24 25 26 27

Lesson 17: Project - Interactive Card

Overview

Question of the Day: What skills and practices are important

when creating an interactive program?

In this culminating project for Chapter 1, students plan for and

develop an interactive greeting card using all of the programming

techniques they've learned to this point.

Purpose

This end of chapter assessment is a good place for students to

bring together all the pieces they have learned (drawing,

variables, sprites, images, conditionals, user input) in one place.

Students should still be working with code that is easily readable

and doesn't involve very many high level abstractions. Giving

students the opportunity to really be creative after learning all

these new concepts will help to engage them further as they

head into Chapter 2.

Assessment Opportunities

Use the project rubric attached to this lesson to assess student

mastery of the learning goals of this unit.

Agenda
Warm Up (10 min)

Journal

Activity (2 days)

Demo Project Exemplars (Level 2)

Unplugged: Interactive Card Planning

Levels: Implementing Interactive Card (Level 3 - 7)

Peer Review

Iterate - Update Code

Reflect

Wrap Up (10 minutes)

Reflection

View on Code Studio

Objectives
Students will be able to:

Use conditionals to react to keyboard input

or changes in variables / properties

Sequence commands to draw in the proper

order

Apply an iterator pattern to variables or

properties in a loop

Preparation

Read the Forum

Print out a copy of the project guide for

each student

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Interactive Card - Exemplar

Interactive Card - Slides

For the Students

Interactive Card - Project Guide

Interactive Card - Rubric

Interactive Card - Peer Review

Computer Science Practices - Reflection

Make a Copy

Make a Copy

Make a Copy

Make a Copy

https://curriculum.code.org/csd-20/unit3/
https://studio.code.org/s/csd3-2020/stage/17/puzzle/1/
https://studio.code.org/s/csd3-2020/stage/17/puzzle/1/
https://docs.google.com/presentation/d/1vGPLsDh6Mcm2xmwBoq8YIAq05iy2pQq6JstSh7yaDyo/edit#slide=id.g77eb61112da98ef8_1226
https://docs.google.com/document/d/1MNe3-GpESINByCaRnDTA_EmyIjENEP2R4_0sKBY9E7M/
https://docs.google.com/document/d/18QYy5KmIgtv3Wbsknl7wmRpPzeVzKw6OjQ5dztdb01Y/
https://docs.google.com/document/d/1ZbLM2oRl3eWGBY47oAtmcODga_sGi_DSq8WLVew9F5c/
https://docs.google.com/document/d/1Ccf-WMH2qFDhycKaKSILRrZUe42lWESyRqMgdTymCPw/edit

 Discussion Goal

This discussion introduces the chapter project:

creating an interactive card. This is a good chance to

tie in the 'card' concept to the problem-solving

process, by defining the "problem" as cheering

someone up, or letting them know that we are thinking

about them.

View on Code Studio 

Teaching Guide

Warm Up (10 min)

Journal

Prompt: Think of one time you gave or received a

card from someone. Who was that person? What was

the purpose of the card? What about the card made it

specific to that purpose?

 Share: Have students share out their ideas.

 Remarks

We're going to start designing our own cards today.

Because we have learned how to program, our

cards are going to be interactive. At the end of the project, you'll be able to email or text your card to someone.

Question of the Day: What skills and practices are important when creating an interactive program?

Activity (2 days)

Demo Project Exemplars (Level 2)

Goal: Students see an example of a final project and discuss the different elements that went into making it.

Display: Show students the sample program.

 Code Studio levels

Levels

 2

Student Instructions

Example Project
Run the program a few times and answer the following questions:

1) Which elements appear to use drawing commands?

2) Which elements appear to be sprites?

3) For each sprite, which properties are being updated?

4) Where do you see conditionals being used?

5) Are there elements that you don’t understand?

Discuss: Have students share their observations and analyses of the program.

Encourage the class to consider that there are multiple approaches to programming anything, but that there may

be clues as to how something was created. In particular, when they are sharing their thoughts ask them to specify

the following :

Clues that suggest a sprite was used

Clues that suggest a conditional was used

Clues that suggest an iterator pattern was used

Display: Show students the rubric. Review the different components of the rubric with them to make sure they

understand the components of the project.

https://studio.code.org/s/csd3-2020/stage/17/puzzle/2

View on Code Studio 

View on Code Studio 

Question of the Day: What skills and practices are important when creating an interactive program?

Unplugged: Interactive Card Planning

Goal: Students should plan out what they want to create before they head to the computer so that once they get to

the computer they are just executing the plan.

Distribute: Hand out the project guide to students. This is the tool students will use to scope out their projects

before creating them. Give students some time to brainstorm the type of card they want to create and who the

recipient will be.

Steps

1) The first layer of the interactive card is a background drawn with just the commands in the Drawing drawer. The

front of the Activity Guide provides a grid for students to lay out their background, a reference table of drawing

commands, and an area for students to take notes and write pseudocode.

2) Next, students think through the sprites they'll need, filling out a table with each sprite's label, images, and

properties.

3) Finally, students consider the conditionals they'll need in order to make their card interactive.

Levels: Implementing Interactive Card (Level 3 - 7)

 Transition: Once students have completed their planning sheet, it's time to head to the Code.org website. The

short level sequence asks students to complete each element of their project.

 Code Studio levels

Levels

 3

 4

 5

 6

 7

Student Instructions

Your Interactive Card
In the next few levels, you'll be completing your own interactive card. Here are some examples to give you some

ideas. Don't forget to look at the code to see how they work.

Examples

Student Instructions

Laying Out Your Background

https://studio.code.org/s/csd3-2020/stage/17/puzzle/3
https://studio.code.org/s/csd3-2020/stage/17/puzzle/4
https://studio.code.org/projects/gamelab/OzdFqrZ4oHPYsTddaRWaZxtTvdj9NzZVwCq6NkyONXM/edit
https://studio.code.org/projects/gamelab/fmFrWsocELzP19CfbGI5P_hsgxN5ewVaB5f0Bw5S1_E/edit
https://studio.code.org/projects/gamelab/z4XDrC0lsqoRY0xzYaXdJfChmyCl5O6YM-EOByecscc/edit

View on Code Studio 

View on Code Studio 

View on Code Studio 

Before beginning this project, you should have already completed the Interactive Card Planning activity, and you'll

want to have that paper with you as you develop your program. Preparation is one of the most important elements

of successfully creating a program!

Do This
Refer to your planning activity sheet to help you lay out the shapes that will become the background to your card.

First, figure out what the lowest layer in your image is (this should use the background() block) and add it to the

very top of the draw loop.

Next, layer each additional drawing block in the order you want them to appear in the stack.

Finally, add a comment to the top of this section of code to describe what it does, and if you have any

particularly complicated chunks of code within (such as code to draw a tree or a house), add a descriptive

comment to that as well.

Challenge: Can you use variables or randomNumber() to add some subtle animation to your background layer?

Student Instructions

Adding Sprites
Now that you have the more static elements of your card layed out, it's time to add the Sprites. Your Sprites should

provide the primary animations and interactions for your card - so feel free to get creative here and have fun.

Do This
Check out the Sprites table on the back of your planning sheet. For each Sprite in your table:

Initialize the Sprite at the top of your program with createSprite() .

Find or create the image(s) for the Sprite and set it with setAnimation() .

Inside the draw() loop update any Sprite properties that we will be constantly animating (we'll deal with

conditionals in a minute).

Student Instructions

User Input
You've got a background, you've got Sprites, now it's time to give your user something to do!

Do This
On the interactions table from your planning sheet, find all of the interactions that rely on user input (key presses

and mouse movements). For each of those interactions:

Add an if block (or if-else block if you need a fallback action) inside the draw() loop.

Add the appropriate input block for your condition (such as keyDown() or mouseDown()).

Add the necessary actions inside the if block.

Challenge: Can you create more sophisticated conditionals by nesting them or using compound booleans?

Student Instructions

Other Conditionals

https://studio.code.org/s/csd3-2020/stage/17/puzzle/5
https://studio.code.org/s/csd3-2020/stage/17/puzzle/6
https://studio.code.org/s/csd3-2020/stage/17/puzzle/7
https://studio.code.org/docs/gamelab/background/
https://studio.code.org/docs/gamelab/randomNumber/
https://studio.code.org/docs/gamelab/createSprite/
https://studio.code.org/docs/gamelab/setAnimation/
https://studio.code.org/docs/gamelab/draw/
https://studio.code.org/docs/spritelab/codestudio_ifStatement/
https://studio.code.org/docs/gamelab/draw/
https://studio.code.org/docs/gamelab/keyDown/
https://studio.code.org/docs/gamelab/mouseDown/
https://studio.code.org/docs/spritelab/codestudio_ifStatement/

View on Code Studio 

The surprise in your card comes from conditionals that don't directly respond to user input, but to some other

element of your card. This could be triggered by a variable that gets updated as the user interacts with your card,

or a Sprite moving into a certain part of the screen.

Do This
For each of the remaining items on your interactions table:

Add an if block (or if-else block if you need a fallback action) inside the draw loop.

Add the appropriate Boolean comparison block to the condition (eg. < , > , or ==).

Add the necessary actions inside the if block.

Challenge: Can you create more sophisticated conditionals by nesting them or using compound booleans?

Peer Review

Distribute: Give each student a copy of the peer review guide.

Students should spend 15 minutes reviewing the other student's card and filling out the peer review guide.

Iterate - Update Code

Circulate: Students should complete the peer review guide's back side and decide how to respond to the feedback

they were given. They should then use that feedback to improve their cards.

Reflect

Using the rubric, students should assess their own project before submitting it.

 Send students to Code Studio to complete their reflection on their attitudes toward computer science. Although

their answers are anonymous, the aggregated data will be available to you once at least five students have

completed the survey.

 Code Studio levels

Levels

 8

Student Instructions

Finishing Touches
Now's your chance to put some finishing touches on your card. We've included some new blocks that you haven't

seen before, so take some time to look around and try out some new blocks.

Do This
Consider adding any of the following to finish up your card:

Text

Additional images for your sprites

Subtle animation in the background

Sound effects (Can you figure out how to do this?)

More ways for a user to interact with your card

Wrap Up (10 minutes)

Reflection

https://studio.code.org/s/csd3-2020/stage/17/puzzle/8
https://studio.code.org/docs/spritelab/codestudio_ifStatement/
https://studio.code.org/docs/spritelab/codestudio_ifStatement/

Question of the Day: What skills and practices are important when creating an interactive program?

Prompt: Have students reflect on their development of the five practices of CS Discoveries (Problem Solving,

Persistence, Creativity, Collaboration, Communication).

Choose one of the five practices which you demonstrated growth in during this lesson. Write something you did

that showed this practice.

Choose one practice you think you can continue to grow in. What’s one thing you’d like to do better?

Choose one practice you thought was especially important for this project. What made it so important?

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 Ch. 2 18 19 20 21 22 23 24 25 26 27

Lesson 18: Velocity

Overview

Question of the Day: How can programming languages hide

complicated patterns so that it is easier to program?

After a brief review of how they used the counter pattern to move

sprites in previous lessons, students are introduced to the idea of

hiding those patterns in a single block. Students then head to

Code Studio to try out new blocks that set a sprite's velocity

directly, and look at various ways that they are able to code more

complex behaviors in their sprites.

Purpose

This lesson launches a major theme of the chapter: that complex

behavior can be represented in simpler ways to make it easier to

write and reason about code.

In this lesson students are taught to use the velocity blocks to

simplify the code for moving a sprite across the screen. This

marks a shift in how new blocks are introduced. Whereas

previously blocks were presented as enabling completely new

behaviors, they are now presented as simplifying code students

could have written with the blocks previously available. Over the

next several lessons, students will see how this method of

managing complexity allows them to produce more interesting

sprite behaviors.

Assessment Opportunities

1. Use the velocity and rotationSpeed blocks to create and

change sprite movements

See Level 10 in Code Studio. (Level 6 can be used to check

rotationSpeed.)

2. Describe the advantages of simplifying code by using higher

level blocks

In the wrap up, check students' descriptions of the blocks that

they would create and why they would want to create them.

Agenda
Warm Up (5 min)

Activity (30 minutes)

Wrap Up (5 min)

Journal

View on Code Studio

Objectives
Students will be able to:

Use the velocity and rotationSpeed blocks

to create and change sprite movements

Describe the advantages of simplifying

code by using higher level blocks

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Velocity - Slides

Introduced Code

sprite.rotationSpeed

sprite.velocityX

sprite.velocityY

https://curriculum.code.org/csd-20/unit3/
https://studio.code.org/s/csd3-2020/stage/18/puzzle/1/
https://docs.google.com/presentation/d/1vGPLsDh6Mcm2xmwBoq8YIAq05iy2pQq6JstSh7yaDyo/edit#slide=id.g83790efead_0_2
https://studio.code.org/docs/gamelab/rotationSpeed/
https://studio.code.org/docs/gamelab/velocityX/
https://studio.code.org/docs/gamelab/velocityY/

 Discussion Goal

Goal: The earlier demonstration should have

reinforced the fact that repeatedly giving the same

instruction is something you would never do in real

life. You would instead come up with a way to capture

that the instruction should be repeated, like "keep

moving forward by 1."

Teaching Guide

Warm Up (5 min)

Demonstrate: Ask for a volunteer to come to the front of the class and act as your "sprite". Say that you will be

giving directions to the sprite as though you're a Game Lab program.

When your student is ready, face them so that they have some space in front of them and ask them to "Move

forward by 1". They should take one step forward. Then repeat the command several times, each time waiting for

the student to move forward by 1 step. You should aim for the repetitiveness of these instructions to be clear. After

your student has completed this activity, have them come back to where they started. This time repeat the

demonstration but asking the student to "Move forward by 2" and have the student take 2 steps each time. Once

the student has done this multiple times ask the class to give them a round of applause and invite them back to

their seat.

Prompt: I was just giving instructions to my "sprite", but they seemed to get pretty repetitive. How could I have

simplified my instructions?

 Discuss: Give students a minute to write down

thoughts before inviting them to share with a

neighbor. Then have the class share their thoughts.

You may wish to write their ideas on the board.

 Remarks

Programming languages also have ways to simplify

things for us. Today, we're going to look at some

blocks in Game Lab that hide complicated coding

patterns to make things easier for programmers.

Question of the Day: How can programming languages hide complicated patterns so that it is easier to program?

Activity (30 minutes)

 Remarks

One way to simplify these instructions is to just tell our "sprite" to keep moving by 1 or 2, or however many steps

we want. As humans, this would make instructions easier to understand, and as we're about to see there's a

similar way to make our code simpler as well.

 Transition: Move students to Code Studio

Circulate: These levels introduce the velocityX, velocityY, and rotationSpeed properties that you just discussed with

students. Check in with students to see how they are doing and keep track of when everyone has made it to the

end of level 10.

 Code Studio levels

Lesson Overview  1 (click tabs to see student view)

Skill Building  2 (click tabs to see student view)

Video: Velocity  3 (click tabs to see student view)

Skill Building  4  5  6  7  8 (click tabs to see student view)

 Assessment Opportunity

As students describe the blocks that they would make,

ensure that they are relating the specific code that a

block would use to the higher-level concept of what it

would do. For example, a "velocity" block would move

a sprite across the screen, and it would include blocks

that use the counter pattern on a position property.

Students should describe the advantages of having

these blocks, such as not needing to re-write the code

all the time, or making it easier to read what the

program is doing.

Wrap Up (5 min)

Journal

 Prompt: You learned a few new blocks today. At first

glance, these blocks did the same sorts of things we'd

already done with the counter pattern, but made it

simpler for us to do them. As you went through the

puzzles, though, you started doing some interesting

movements that we hadn't been able to do before.

Describe one of those movements, and how you

made it.

Describe another block that you'd like to have.

What would you name it?

What would it do?

What code would it hide inside?

How would it help you?

 Remarks

All of the movements that we did today are possible without the new blocks, but it would be very complicated to

code them. One of the benefits of blocks like velocity is that when we don't have to worry about the details of

simple movements and actions, we can use that extra brainpower to solve more complicated problems. As you

build up your side scroller game, we'll keep looking at new blocks that make things simpler, so we can build more

and more complicated games.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

Velocity Practice   9  9a  9b

Assessment   10 (click tabs to see student view)

Velocity Challenges   11  11a  11b

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 Ch. 2 18 19 20 21 22 23 24 25 26 27

Lesson 19: Collision Detection

Overview

Question of the Day: How can programming help make

complicated problems more simple?

Students learn about collision detection on the computer. Working

in pairs, they explore how a computer could use sprite location

and size properties and math to detect whether two sprites are

touching. They then use the isTouching() block to create

different effects when sprites collide, and practice using the block

to model various interactions.

Purpose

This lesson formally introduces the use of abstractions, simple

ways of representing underlying complexity.

In the last lesson, students were exposed to the idea of using one

block to represent complex code. Students further explore this

idea in the context of the intentionally complex mathematical

challenge of determining whether two sprites are touching. By

using a single block to represent this complexity, in this case the

isTouching block, it becomes much easier to write and reason

about code, and students can appreciate the value of using

abstractions. In later lessons, students will continue to build on

the isTouching() abstraction to create more complex sprite

interactions.

Assessment Opportunities

1. Detect when sprites are touching or overlapping, and change

the program in response.

See Level 7 in Code Studio.

2. Describe how abstractions help to manage the complexity of

code

In the Wrap Up discussion, make sure students can identify

how more abstract blocks can help with creating larger or more

complex programs.

Agenda
Warm Up (10 min)

Activity

Collisions Unplugged

isTouching()

Wrap Up (5 min)

View on Code Studio

Objectives
Students will be able to:

Detect when sprites are touching or

overlapping, and change the program in

response.

Describe how abstractions help to manage

the complexity of code

Preparation

Print copies of the activity guide such

that each pair of students has a part A and

a part B

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Collision Detection - Exemplar

Collision Detection - Slides

For the Students

Collision Detection (Version B) - Activity

Guide

Collision Detection (Version A) - Activity

Guide

Vocabulary

Abstraction - a simplified representation of

something more complex. Abstractions

allow you to hide details to help you

manage complexity, focus on relevant

concepts, and reason about problems at a

higher level.

Introduced Code

sprite.isTouching(target)

sprite.debug

Make a Copy

Make a Copy

https://curriculum.code.org/csd-20/unit3/
https://studio.code.org/docs/gamelab/isTouching/
https://studio.code.org/docs/gamelab/isTouching/
https://studio.code.org/s/csd3-2020/stage/19/puzzle/1/
https://studio.code.org/s/csd3-2020/stage/19/puzzle/1/
https://docs.google.com/presentation/d/1vGPLsDh6Mcm2xmwBoq8YIAq05iy2pQq6JstSh7yaDyo/edit#slide=id.g83790efead_0_103
https://docs.google.com/document/d/1FquQ6g2xpWsJyXf1GFrBM33aL7mxn-htJpG8plRQ9MU/
https://docs.google.com/document/d/18RKLr5ZwCX5OOpzpnQuekQMpas7JreTcQxL1TyCnv7o/
https://studio.code.org/docs/gamelab/isTouching/
https://studio.code.org/docs/gamelab/debug/

 Teaching Tip

Showing the Game: Avoid signing students into Code

Studio at this point to play the game themselves. They

have a fairly significant unplugged activity

immediately afterwards and it will likely lead to

difficulties in transitioning.

 Discussion Goal

Goal: The purpose of this discussion is just to get

some ideas on the board for students to use in the

next activity. There's no need to actually evaluate or

try them, because students will be working together to

do so immediately after the discussion.

Teaching Guide

Warm Up (10 min)

 Display: On a projector or a computer screen,

demonstrate the game that appears in the first level

in Code Studio for this lesson.

Prompt: An interesting aspect of this animation is that

the sprites change when they touch each other. Can

you think of any way that the computer could use the

sprites’ properties to figure out whether they are

touching each other?

 Discuss: Allow the students to brainstorm ideas for

how the computer could determine whether the two

sprites are touching. List their ideas on the board and

tell them that they’ll have a chance to try out their

theories in a moment.

 Remarks

This is a tough problem, and we're going to get to dig into it today. As we work on it, we're also going to look at

ways that the computer can help us make these tough, complicated problems more simple.

Question of the Day: How can programming help make complicated problems more simple?

Activity

Collisions Unplugged

Group: Group students into pairs.

 Remarks

Now you’re going to have a chance to try out the strategies that you came up with as a group. Each activity guide

has four sheets of paper. One partner should take the papers with the “A” on the top, and the other should take

the papers with the “B” on the top. You’re each going to draw two secret sprites on the chart, and your partner

will try to figure out whether or not they are touching, based on the same information that the computer will have

about each sprite’s properties. Don’t let your partner see what you are drawing.

Distribute the activity guides to each set of partners. Ensure that one partner has taken Version A and the other has

taken Version B.

Each student will have a line on which to draw two squares. The student chooses the location and the size of each

of the squares, and then records the information about the squares in a table. They then switch tables (not

drawings) and try to determine whether or not the two sprites are touching based on the width of each sprite and

the distance between them.

The math to determine whether the sprites are touching is as follows:

1. Subtract the x (or y) positions of the sprites to find the distance between their centers.

2. Divide the width (or height) of each square by 2 to get the distance from the center to the edge.

3. If the distance between the centers of the sprites is greater than the sum of the distances from their centers to

their edges, the sprites are not touching.

4. If the distance between the centers of the sprites is equal to the sum of the distances from their centers to

their edges, the sprites are barely touching.

5. If the distance between the centers of the sprites is less than the sum of the distances from their centers to

their edges, the sprites are overlapping.

 Assessment Opportunity

Students should note that even though they could

program the code to detect whether sprites are

touching each time, it is error-prone and would take up

more time and energy than having a block that

performs the same code automatically. The new block

helps them to take on more difficult challenges by

reducing the risk of errors and freeing them to think

about the bigger picture.

Circulate: Support students as they complete the worksheet. If students are not sure how to determine whether the

sprites are touching, encourage them to use one of the ideas on the board. Remind them that they are not being

graded on whether they are right or wrong, but on their ability to use the problem-solving process. If any students

are finished early, challenge them to find a method that will work for sprites anywhere on the grid, not just on the

same line.

Share: After students have all had a chance to test their solutions, ask them to share what they discovered.

 Remarks

People can use a lot of different strategies to solve a problem like this. Because computers can’t “see” the

drawings in the same way that people can, they need to use math to figure out whether two things are touching.

We looked at how this can work along a line, but we can combine these methods to work anywhere on the game

screen.

isTouching()

Transition: Send students to Code Studio.

 Code Studio levels

Wrap Up (5 min)

Question of the Day: How can programming help make complicated problems more simple?

 Prompt: At the beginning of the lesson, you saw

that it's possible to do everything that the

isTouching block does without using the block at all.

What makes this block useful?

 Remarks

One of the great things about programming is that

once you've figured out a solution to a problem, you

can often program it into the computer to be used

over and over again. When you don't have to worry

about the details of that particular problem, you can

take on bigger challenges, as you did today. Using a

simplified representation of something to hide the details so you can think about the big picture is called

"abstraction", and it's a key tool programmers use to help them write complicated programs.

Key Vocabulary:

Lesson Overview  1 (click tabs to see student view)

Sample Game  2 (click tabs to see student view)

Skill Building  3  4  5  6 (click tabs to see student view)

Collision Practice   7  7a  7b

Assessment   8 (click tabs to see student view)

Collision Challenges   9  9a  9b  9c

https://studio.code.org/docs/gamelab/isTouching/

abstraction - a simplified representation of something more complex.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 Ch. 2 18 19 20 21 22 23 24 25 26 27

Lesson 20: Mini-Project - Side Scroller

Overview

Question of the Day: How can the new types of sprite movement

and collision detection be used to create a game?

Students use what they have learned about collision detection

and setting velocity to create a simple side scroller game. After

looking at a sample side scroller game, students brainstorm what

sort of side scroller they would like to make, then use a

structured process to program the game in Code Studio.

Purpose

This lesson is a chance for students to get more creative with

what they have learned. Encourage students to spend time on

parts of the activity that interest them, as long as they meet the

requirements of the assignment. This lesson can be shortened or

lengthened depending on time constraints.

Agenda
Warm Up

Activity

Wrap up

View on Code Studio

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Mini-Project Guide - Side Scroller -

Exemplar

Mini-Project: Side Scroller - Slides

For the Students

Side Scroller - Rubric

Side Scroller - Project Guide

Make a Copy

Make a Copy

https://curriculum.code.org/csd-20/unit3/
https://studio.code.org/s/csd3-2020/stage/20/puzzle/1/
https://studio.code.org/s/csd3-2020/stage/20/puzzle/1/
https://docs.google.com/presentation/d/1vGPLsDh6Mcm2xmwBoq8YIAq05iy2pQq6JstSh7yaDyo/edit#slide=id.g83790efead_0_202
https://docs.google.com/document/d/1BcPO2oaU-mX3h2YVLeZtX3gSWcqG1BwR6TLnGjQDWH4/edit
https://docs.google.com/document/d/1KyuWeeW72iSOm_NrJDvlsOKLcBqDjRXF1YfgzsF9F_8/edit

Teaching Guide

Warm Up

Review

Ask students to think of all of the things that they have learned how to do in the unit so far, and display their

answers to the class. This is a good time to check in on any concepts that have been challenging for students.

 Remarks

Now that you've learned how to detect sprite interactions, you can start making some more interesting games.

Today, we're going to look at how you can use what you've learned to make a side scroller game.

Question of the Day: How can the new types of sprite movement and collision detection be used to create a

game?

Activity

Distribute: (Optional) pass out copies of the activity guide. Students can use this sheet to plan out the Side Scroller

they create at the end of this lesson, but the planning can also be completed on scratch paper.

Transition Send students to Code Studio.

 Code Studio levels

Wrap up

Lesson Overview  1 (click tabs to see student view)

Intro to Side Scrollers  2 (click tabs to see student view)

Draw Your Background  3 (click tabs to see student view)

Create Your Sprites  4 (click tabs to see student view)

Player Controls  5 (click tabs to see student view)

Looping  6 (click tabs to see student view)

Sprite Interactions  7 (click tabs to see student view)

Scoring & Scoreboard  8 (click tabs to see student view)

Review Your Game  9 (click tabs to see student view)

Question of the Day: How can the new types of sprite movement and collision detection be used to create a

game?

Prompt: What was one challenge in making this game? What is your advice for someone else who has the same

challenge?

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 Ch. 2 18 19 20 21 22 23 24 25 26 27

Lesson 21: Complex Sprite Movement

Overview

Question of the Day: How can previous blocks be combined in

new patterns to make interesting movements?

Students learn to combine the velocity properties of sprites with

the counter pattern to create more complex sprite movement.

After reviewing the two concepts, they explore various scenarios

in which velocity is used in the counter pattern, and observe the

different types of movement that result. In particular, students

learn how to simulate gravity. They then reflect on how they were

able to get new behaviors by combining blocks and patterns that

they already knew.

Purpose

This lesson does not introduce any new blocks and in fact only

uses patterns students have seen in Chapter 1. Instead, it

demonstrates how combining these tools, in particular the

abstractions students learned in the previous two lessons, allows

them to build new behaviors for their sprites. This highlights the

broader point that abstractions not only simplify code, but also

can themselves be used as building blocks of even more complex

behavior.

Assessment Opportunities

1. Use sprite velocity with the counter pattern to create different

types of sprite movement

See Level 7 in Code Studio.

2. Explain how individual programming constructs can be

combined to create more complex behavior

In the wrap up discussions, check that students can explain

how they are creating new types of movement without new

blocks.

Agenda
Warm Up (10 mins)

Activity (30 mins)

Wrap Up (10 mins)

View on Code Studio

Objectives
Students will be able to:

Use sprite velocity with the counter pattern

to create different types of sprite

movement

Explain how individual programming

constructs can be combined to create more

complex behavior

Preparation

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Complex Sprite Movement - Slides

https://curriculum.code.org/csd-20/unit3/
https://studio.code.org/s/csd3-2020/stage/21/puzzle/1/
https://docs.google.com/presentation/d/1vGPLsDh6Mcm2xmwBoq8YIAq05iy2pQq6JstSh7yaDyo/edit#slide=id.g83790efead_0_284

 Discussion Goal

It is unlikely that students will come up with the

solution on their own, but encourage them to think of

as many ideas as possible, and that they will keep

working on the problem throughout the class.

Teaching Guide

Warm Up (10 mins)

Display: Show the two images of a frog jumping to the class.

Prompt: Here are two images of a frog jumping. The

first is from the side scroller. Do you have any ideas

for how to make the second type of jumping?

 Think-Pair-Share Allow students to discuss their

ideas with a classmate before sharing with the entire

class.

 Remarks

We've learned a lot of new blocks that have helped us create some fun animations. Today, we're going to look at

how we can use the blocks that we already know in new ways to make more interesting types of movements. By

the end of the class, you'll be able to code the new type of jumping with blocks that you already know.

Question of the Day: How can previous blocks be combined in new patterns to make interesting movements?

Activity (30 mins)

Transition: Move students to Code Studio.

 Code Studio levels

Lesson Overview  1 (click tabs to see student view)

Prediction  2 (click tabs to see student view)

Skill Building  3  4  5 (click tabs to see student view)

Sprite Movement Practice   6  6a  6b

Assessment   7 (click tabs to see student view)

Collision Challenges   8  8a  8b  8c

 Discussion Goal

Goal: This conversation should highlight that students

did not learn any new blocks in today's lesson, they

just learned new ways to combine blocks and patterns

they had learned previously. The broader point here is

that programming is not always about learning new

blocks, but being creative about combining the tools

you already know how to use.

 Assessment Opportunity

Check that students can explain the new programming

structures and algorithms that they were able to use

to get the new behaviors in the program.

Wrap Up (10 mins)

Share: Have students share with their classmates what additions they made to their final flyer game. Have students

focus not just on how the game works, but on what the code to create that kind of functionality looks like.

 Prompt: On your paper make two lists. First, make

a list of new things you can program sprites to do

after today's lesson. On the second list write down all

the new blocks you learned today.

Discuss: Have students share their lists with

classmates. Afterwards share lists as a class. They

should hopefully have listed many new sprite

movements but students haven't actually learned any

new blocks in this lesson.

Prompt: Today we built lots of new sprite movements

like gravity and jumping, but none of this required us

to learn new blocks. How were you able to do new

things without learning any new blocks?

 Discuss: Lead a quick follow-up to your initial

discussion about this point.

 Remarks

We're going to keep learning a few more tools in Game Lab, but as we do, remember what we saw today. To

create new kinds of programs you don't always need to learn new blocks. Most of the time the creativity of

programming comes from learning to combine things you already know in new and creative ways.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 Ch. 2 18 19 20 21 22 23 24 25 26 27

Lesson 22: Collisions

Overview

Question of the Day: How can programmers build on

abstractions to create further abstractions?

In this lessson, students program their sprites to interact in new

ways. After a brief review of how they used the isTouching block,

students brainstorm other ways that two sprites could interact.

They then use isTouching to make one sprite push another

across the screen before practicing with the four collision blocks

(collide , displace , bounce , and bounceOff).

Purpose

This lesson introduces collisions, another useful abstraction that

will allow students to manipulate their sprites in entirely new

ways. While students could theoretically have written their own

displace, collide, or bounce commands, the ability to ignore the

details of this code allows them to focus their attention on the

high level structure of the games they want to build.

This lesson is also intended to give students more practice using

the new commands they have learned in the second chapter. This

the last time they will learn a new sprite behavior, and following

this lesson students will transition to focusing on how they

organize their increasingly complex code.

Assessment Opportunities

1. Model different types of interactions between sprites.

See Level 8 in Code Studio.

2. Describe how abstractions can be built upon to develop even

further abstractions

In the wrap up, make sure students understand that blocks

such as isTouching hide the complexity or details of the code

inside, allowing them to tackle more complex problems.

Agenda
Warm Up

Activity

Wrap Up (10 mins)

View on Code Studio

Objectives
Students will be able to:

Model different types of interactions

between sprites.

Describe how abstractions can be built

upon to develop even further abstractions

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Collisions - Slides

Vocabulary

Abstraction - a simplified representation of

something more complex. Abstractions

allow you to hide details to help you

manage complexity, focus on relevant

concepts, and reason about problems at a

higher level.

Introduced Code

sprite.bounce(target)

sprite.bounceOff(target)

sprite.collide(target)

sprite.displace(target)

setCollider(type, xOffset, yOffset,

width/radius, height, rotationOffset)

sprite.bounciness

https://curriculum.code.org/csd-20/unit3/
https://studio.code.org/docs/gamelab/isTouching/
https://studio.code.org/docs/gamelab/isTouching/
https://studio.code.org/docs/gamelab/collide/
https://studio.code.org/docs/gamelab/displace/
https://studio.code.org/docs/gamelab/bounce/
https://studio.code.org/docs/gamelab/bounceOff/
https://studio.code.org/docs/gamelab/isTouching/
https://studio.code.org/s/csd3-2020/stage/22/puzzle/1/
https://docs.google.com/presentation/d/1vGPLsDh6Mcm2xmwBoq8YIAq05iy2pQq6JstSh7yaDyo/edit#slide=id.g837afdd891_0_20
https://studio.code.org/docs/gamelab/bounce/
https://studio.code.org/docs/gamelab/bounceOff/
https://studio.code.org/docs/gamelab/collide/
https://studio.code.org/docs/gamelab/displace/
https://studio.code.org/docs/gamelab/setCollider/
https://studio.code.org/docs/gamelab/bounciness/

 Discussion Goal

Goal: The goal of this discussion is for students to

brainstorm ways to solve the problem of having one

sprite push another across the screen. There's no need

for students to come to a consensus, because they will

each have a chance to try out a solution in the next

level in Code Studio. Students should understand that

it is possible to use blocks to produce the desired

movement just with the blocks that they have already

learned.

 Teaching Tip

Students have seen this vocabulary before, but given

its importance to the chapter, it is introduced again

here.

Teaching Guide

Warm Up

Display: Display the animated image. It is also

available as a level in code studio.

Prompt: Using the blocks we already know how to use, how could we create the sprite interaction we can see in this

program?

 Share: Allow students to share out their ideas.

 Remarks

The first part of the problem is figuring out when

the two sprites are touching, but we already figured

out how to do that and can now use the isTouching

block. That means we don’t need to think about

those details anymore. Using abstraction to hide the

complicated details in that part of the problem

means we can focus on the new part.



Vocabulary Review:

abstraction - a simplified representation of something more complex

Question of the Day: How can programmers build on abstractions to create further abstractions?

Activity

 Prompt: This was a challenging problem, but we were able to solve it. What helped us to solve this problem?

 Remarks

All of these things are very important, and they come up in Computer Science a lot. One thing that was

particularly helpful was the isTouching block, which hid the complicated code that tells us whether the two

sprites are touching. There's also a displace block that hides the code we just wrote, and some other blocks that

hide the code for some other types of sprite interactions. You'll have a chance to try out these blocks in the next

few levels.

https://studio.code.org/docs/gamelab/isTouching/
https://studio.code.org/docs/gamelab/isTouching/
https://studio.code.org/docs/gamelab/displace/

 Assessment Opportunity

Make sure students talk about the importance of

higher-level blocks, such as isTouching, and that while

these blocks don't provide new functionality, hiding

the complexity of the code inside of a single block

allows them to tackle more complex problems.

This is also a good time to call out how far the

students have progressed in their skills since the

beginning of the unit. This problem would have

seemed almost impossible at the beginning of the

year. Some things that made the problem easier to

solve were:

Preparation: The students brainstormed and thought

about solutions before trying out their code.

Cooperation: Students worked as a group to come

up with a solution

Abstraction: Students were able to use the

isTouching and velocityY blocks to hide part of

the solution's complexity.

 Assessment Opportunity

Students should understand that these two blocks

represent partial solutions to the problem of one sprite

pushing the other, and that by hiding the details of

those partial solutions, they can more easily focus on

how to fit those partial solutions together to solve

larger and more complex problems.

 Code Studio levels

Wrap Up (10 mins)

Question of the Day: How can programmers build on

abstractions to create further abstractions?

Vocabulary Review:

abstraction - a simplified representation of

something more complex

 Prompt: How did having the isTouching block and

the velocityX block make it easier to solve the

problem of one sprite pushing another?

Standards Alignment

Lesson Overview  1 (click tabs to see student view)

Code Prediction  2 (click tabs to see student view)

Skill Building  3  4  5  6 (click tabs to see student view)

Collisions Practice   7  7a  7b  7c  7d

Assessment   8 (click tabs to see student view)

Collision Challenges   9  9a  9b  9c  9d

https://studio.code.org/docs/gamelab/isTouching/
https://studio.code.org/docs/gamelab/velocityY/
https://studio.code.org/docs/gamelab/isTouching/
https://studio.code.org/docs/gamelab/velocityX/

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 Ch. 2 18 19 20 21 22 23 24 25 26 27

Lesson 23: Mini-Project - Flyer Game

Overview

Question of the Day: How can the new types of collisions and

modeling movement be used to create a game?

Students use what they have learned about simulating gravity

and the different types of collisions to create simple flyer games.

After looking at a sample flyer game, students brainstorm what

sort of flyer games they would like, then use a structured process

to program the game in Code Studio.

Purpose

This lesson is a chance for students to get more creative with

what they have learned. Encourage students to spend time on

parts of the activity that interest them, as long as they meet the

requirements of the assignment.

Agenda
Warm Up

Activity

Wrap up

Share Out and Journal 3-2-1

View on Code Studio

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Mini-Project: Flyer Game - Slides

For the Students

Flyer Game - Rubric

Flyer Game - Project Guide

Make a Copy

Make a Copy

https://curriculum.code.org/csd-20/unit3/
https://studio.code.org/s/csd3-2020/stage/23/puzzle/1/
https://docs.google.com/presentation/d/1vGPLsDh6Mcm2xmwBoq8YIAq05iy2pQq6JstSh7yaDyo/edit#slide=id.g837afdd891_0_106
https://docs.google.com/document/d/1NWIeTvJCpHOauxVZGRdDCpsinbXb6Oo_erT5s-_INCY/edit
https://docs.google.com/document/d/1AymZm1SFJYU85zhdcjtUS3BOK_CWVp7GvDvbw8BchTo/edit

Teaching Guide

Warm Up

Review

Ask students to think of all of the things that they have learned how to do in the unit so far, and display their

answers to the class. This is a good time to check in on any concepts that have been challenging for students.

 Remarks

You've already learned all of the sprite interactions and types of movement that we will cover this unit. Today

you'll have a chance to put them all together to make a flyer game.

Question of the Day: How can the new types of collisions and modeling movement be used to create a game?

Activity

Distribute: (Optional) pass out copies of the project guide. Students can use this sheet to plan out the Flyer Game

they create at the end of this lesson, but the planning can also be completed on scratch paper.

Transition Send students to Code Studio.

 Code Studio levels

Wrap up

Share Out and Journal 3-2-1

Share: Allow students time to play each other's flying games. Ask them to focus not just on the new behavior that

they added but also the code they used to create it.

Journal: Have students write and reflect about the following prompts.

What are three things you saw in someone else's game that you really liked?

Lesson Overview  1 (click tabs to see student view)

Intro to Flyer Game  2 (click tabs to see student view)

Make Your Sprites  3 (click tabs to see student view)

Player Controls  4  5  6 (click tabs to see student view)

Sprite Movement  7 (click tabs to see student view)

Sprite Interactions  8 (click tabs to see student view)

Review Your Game  9 (click tabs to see student view)

What are two improvements you'd make to your game if you had more time?

What's one piece of advice you'd give to someone making this type of game?

Question of the Day: How can the new types of collisions and modeling movement be used to create a game?

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 Ch. 2 18 19 20 21 22 23 24 25 26 27

Lesson 24: Functions

Overview

Question of the Day: How can programmers use functions to

create their own abstractions?

Students learn how to create functions to organize their code,

make it more readable, and remove repeated blocks of code.

Students first think about what sorts of new blocks they would

like in Game Lab, and what code those blocks would contain

inside. Afterwards students learn to create functions in Game Lab.

They will use functions to remove long blocks of code from their

draw loop and to replace repeated pieces of code with a single

function.

Purpose

In previous lessons students have learned to use a number of

abstractions in their programs, including the velocity properties,

isTouching, and collisions. These abstractions have allowed them

to build much more complex programs while ignoring the details

of how that behavior is created. In this lesson students learn to

build abstractions of their own by creating functions.

Students will primarily use functions to break code into logical

chunks that are easier to reason about. This foreshadows the

chapter's transition from building technical skill to the

organizational processes used to develop software.

Assessment Opportunities

1. Create and use functions for blocks of code that perform a

single high-level task within a program

See Level 10 in Code Studio.

2. Explain the advantages of using functions in a program.

In the wrap up discussion, make sure students understand that

functions can increase both the readability and organization of

code.

3. Explain how functions allow programmers to reason about a

program at a higher level

In the wrap up, students should make the connection between

functions and abstraction, that functions allow a programmer

to name a bit of code so that they can think about it at that

higher level, rather than worry about all the details.

Agenda
Warm Up (5 mins)

Your Personal Blocks

View on Code Studio

Objectives
Students will be able to:

Create and use functions for blocks of code

that perform a single high-level task within

a program

Explain the advantages of using functions

in a program

Explain how functions allow programmers

to reason about a program at a higher level

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Functions - Slides

Vocabulary

Function - A named bit of programming

instructions.

Introduced Code

Define a function

Call a function

https://curriculum.code.org/csd-20/unit3/
https://studio.code.org/s/csd3-2020/stage/24/puzzle/1/
https://docs.google.com/presentation/d/1vGPLsDh6Mcm2xmwBoq8YIAq05iy2pQq6JstSh7yaDyo/edit#slide=id.g837afdd891_0_193
https://studio.code.org/docs/gamelab/functionParams_none/
https://studio.code.org/docs/gamelab/callMyFunction/

Activity (30 mins)

Wrap Up (10 mins)

 Discussion Goal

As students share their ideas, make sure they have a

clear idea of the code that they would use to make the

block, reminding them that all of the blocks they have

learned this chapter (e.g. velocity, collisions) have

been built from blocks that they already knew.

Teaching Guide

Warm Up (5 mins)

Your Personal Blocks

Prompt: What's one block you'd like to have in Game

Lab? What would it do? What code would it use to

work?

 Think-Pair-Share: Allow students to explain their

blocks to a partner before sharing out their ideas.

 Remarks

Today, we're going to learn how to create our own

blocks so that we decide exactly how they will work. These special blocks are called functions, and they are one

of the most powerful parts of programming.

Question of the Day: How can programmers use functions to create their own abstractions?

Activity (30 mins)

Transition: Move students into Code Studio where they will learn to create and call functions.

 Code Studio levels

Wrap Up (10 mins)

Key Vocabulary:

Lesson Overview  1 (click tabs to see student view)

Video: Functions  2 (click tabs to see student view)

Skill Building  3  4 (click tabs to see student view)

Predict  5 (click tabs to see student view)

Functions Practice   6  6a  6b  6c  6d

Quick Check   7 (click tabs to see student view)

Collector Game  8  9   10 (click tabs to see student view)

Functions Challenges   11  11a  11b

 Assessment Opportunity

Goal: Use this first prompt to review what students

learned today. When they create a function they are

creating their own block that they can call or use

whenever they like. They saw at least two primary

motivations for creating functions today including:

Simplifying code by breaking it into logically named

chunks

Allowing a programmer to think at a higher level by

hiding the details or a particular bit of programming

instructions

Avoiding repeated code by making one block you

can use multiple times

Students should review the definition of abstraction as

"a simple way of representing something complex".

Note that a function is an abstraction because it allows

you to create one simple name for a more complex

block of code.

Function - a named bit of programming instructions

Prompt: Why would we say that functions allow us to

"create our own blocks?" Why is this something we'd

want to do? Why would a function count as an

abstraction?

 Discuss: Have students discuss at their table before

talking as a class.

 Remarks

Functions are a useful tool for helping us write and

organize more complex pieces of code. As we start

looking to the end of the unit and your final project,

being able to keep your code organized will be an

important skill.

Question of the Day: How can programmers use

functions to create their own abstractions?

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 Ch. 2 18 19 20 21 22 23 24 25 26 27

Lesson 25: The Game Design Process

Overview

Question of the Day: How does having a plan help to make a

large project easier?

This lesson introduces students to the process they will use to

design games for the remainder of the unit. This process is

centered around a project guide which asks students to define

their sprites, variables, and functions before they begin

programming their game. In this lesson students begin by playing

a game on Game Lab where the code is hidden. They discuss

what they think the sprites, variables, and functions would need

to be to make the game. They are then given a completed project

guide which shows one way to implement the game. Students are

then walked through this process through a series of levels. At

the end of the lesson, students have an opportunity to make

improvements to the game to make it their own.

Purpose

This lesson introduces multi-frame animations, and is the first in a

sequence centered around the process of building software.

While previous lessons focused on using abstractions to manage

the complexity of the code, this lesson focuses on managing the

complexity of the software development process. The lesson

heavily scaffolds the software development process by providing

students a completed project guide, providing starter code, and

walking students through its implementation. In the subsequent

lessons students will need to complete a greater portion of this

guide independently, and for the final project they will follow this

process largely independently.

Assessment Opportunities

1. Implement different features of a program by following a

structured project guide

In the Wrap Up discussion, make sure students are clear on

how the project guide helps them to break their programming

work into manageable chunks, and that they understand how

listing the sprites and functions ahead of time can help them

focus on specific bits of code rather than the entire program at

once.

Agenda
Warm Up (15 mins)

Play Cake Defender

Stop: Review Project Guide

Activity (60 mins)

View on Code Studio

Objectives
Students will be able to:

Implement different features of a program

by following a structured project guide

Preparation

Print copies of the the project guide if

you will be giving students physical copies.

Please note that this project guide is

intentionally filled out. (See notes in

Lesson Plan.)

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

The Game Design Process - Slides

For the Students

Defender Game - Project Guide (Filled Out)

Make a Copy

https://curriculum.code.org/csd-20/unit3/
https://studio.code.org/s/csd3-2020/stage/25/puzzle/1/
https://docs.google.com/presentation/d/1vGPLsDh6Mcm2xmwBoq8YIAq05iy2pQq6JstSh7yaDyo/edit#slide=id.g837afdd891_0_300
https://docs.google.com/document/d/10tgS4d9feduPveRZSMzWV0TdyL6AL5VHHGFy_-m2XNQ/edit?usp=sharing

Implement Project Guide

Wrap Up (5 mins)

Using the Project Guide

 Discussion Goal

Running the Conversation: You can write "Variables",

"Sprites", and "Functions" on the board and record

their ideas below each. Ask students to justify their

decisions but don't feel the need to settle on one right

answer.

 Teaching Tip

Project Guide: The project guide is intentionally filled

out for students so that they can experience using it

as a reference when programming. This should give

them more context when filling out their own project

guide in the next two lessons.

You can give each student their own copy for

reference, but you might also choose to print one copy

per pair, share digital copies, or just display the guide

on the projector. So long as it is available for

reference, any approach will work fine.

Teaching Guide

Warm Up (15 mins)

Play Cake Defender

 Transition: This lesson begins immediately in Code Studio. On the first level, students will find a game but will

not be able to see the code. They should play the game and follow the instructions which ask them to list the

variables, sprites, and functions they think are necessary to create this game.

 Code Studio levels

Levels

 2

Stop: Review Project Guide

 Discuss: Students should have individually created

a list of variables, sprites, and functions they would

create to make the defender game they played. Ask

students to share their lists with a neighbor before

discussing as a class.

 Remarks

There's usually lots of ways you can structure a

program to get it to work the way you want. The

important thing when writing complex or large programs is that you start with a plan, including the sprites,

variables, and functions you will want in your program. Today we're going to look at how we could implement this

plan to build our own defender game. By the end of the lesson you'll not only have built your game, but you'll

know how to change it and make it your own. Let's get going!

Question of the Day: How does having a plan help to make a large project easier?

Activity (60 mins)

 Distribute: Give each student or pair of students a

copy of the project guide.

Prompt: Compare the components of the game you

thought would be included to the ones on this project

guide. Do you notice any differences?

Discuss: As a class compare the list you made on the

board to the list of variables, sprites, and functions on

the project guide. Note the similarities. Where there

are differences try to understand why. Don't approach

one set as "right" vs. "wrong" but just confirm both

would be able to make the game students played.

Implement Project Guide

Students are given a large amount of starter code in this project. The sprites, variables, and functions have all

already been given to them. The work of this project is writing the code for the individual functions. These levels

guide students through how to implement those functions. As students move through the levels point out how the

project guide is being used.

 Assessment Opportunity

As students answer the questions, make sure that they

understand that the project guide is there to help

them organize their work, so that they can look at

smaller parts of the problem rather than thinking

about it all at one time. They can use it to focus on

one part of their program at a time as they code.

In the next lesson, as they fill out their own project

guides, they will need to think carefully about the

different parts of their program before they start

coding. You may want to remind then of the "Prepare"

part of the Problem Solving Process, and to think about

how they might need to go back and tweak the project

guide even after they have started coding.

The most challenging skill students use in these levels is recognizing the need to create new functions to replace

repeated code. Students need to build this skill on their own but these levels demonstrate an instance where this

might happen.

 Code Studio levels

Wrap Up (5 mins)

Using the Project Guide

 Prompt: Today, you used a filled-out project guide

as you completed your program.

How did the project guide help you as you coded?

What do you think will be important to remember

when you fill out your own project guide?

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

Lesson Overview  1 (click tabs to see student view)

Same Game (click tabs to see student view)

Plan Your Project  3 (click tabs to see student view)

Set Up Sprites  4  5 (click tabs to see student view)

Control Your Player  6  7  8 (click tabs to see student view)

Sprite Interactions  9  10  11  12  13

(click tabs to see student view)

Challenges   14  14a  14b  14c  14d

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 Ch. 2 18 19 20 21 22 23 24 25 26 27

Lesson 26: Using the Game Design Process

Overview

Question of the Day: How can the problem solving process help

programmers to manage large projects?

In this multi-day lesson, students use the problem solving process

from Unit 1 to create a platform jumper game. They start by

looking at an example of a platform jumper, then define what

their games will look like. Next, they use a structured process to

plan the backgrounds, variables, sprites, and functions they will

need to implement their game. After writing the code for the

game, students will reflect on how the game could be improved,

and implement those changes.

Purpose

Students have already learned all of the programming constructs

that they need to make a game. This lesson reviews many of

those concepts while introducing them to a structured process

that will help them to manage the work. It builds on the use of

the Project Guide in the previous lesson by having students

complete more of this project guide independently before using it

to build a game. This activity prepares students to write their own

game from scratch for the final project.

Assessment Opportunities

1. Identify core programming constructs necessary to build

different components of a game

In the project guide, check that the student has identified key

functions, sprites and variables needed in the program, and

that the general description of the program is accurate.

2. Implement different features of a program by following a

structured project guide

See Level 20 in Code Studio.

Agenda
Warm Up

Activity

Play Alien Jumper

Discuss Project Guide

Share out

Wrap Up

Journal

View on Code Studio

Objectives
Students will be able to:

Identify core programming constructs

necessary to build different components of

a game

Implement different features of a program

by following a structured project guide

Preparation

Print one copy of the project guide for

each student or pair of students

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Planning Your Platform Game - Exemplar

Using the Game Design Process - Slides

For the Students

Planning Your Platform Game - Project

Guide Make a Copy

https://curriculum.code.org/csd-20/unit3/
https://studio.code.org/s/csd3-2020/stage/26/puzzle/1/
https://studio.code.org/s/csd3-2020/stage/26/puzzle/1/
https://docs.google.com/presentation/d/1vGPLsDh6Mcm2xmwBoq8YIAq05iy2pQq6JstSh7yaDyo/edit#slide=id.g8395724e00_0_8
https://docs.google.com/document/d/1-h8vfW6PfppsDKKqVeVDMU6FxbPP8tA1Up_oc5_p9Dk/edit

 Discussion Goal

Goal: Students should share their thoughts but if it

doesn't come up naturally then suggest the examples

provided. This discussion will motivate the use of the

project guide for building a game later in the lesson.

Teaching Guide

Warm Up

Prompt: The Problem Solving Process helps us work through all kinds of problems. Think about the problem of

building a larger piece of software, like the game we built in the last lesson. What did each of the 4 steps look like?

Why were they important?

 Discuss: Students should brainstorm quietly and

write down what each step might be. Afterwards, lead

a share out discussion. You can record ideas on the

board. Possible parts of each step include:

Define: Figuring out what you want the game to

look like, how it should work, who will play it.

Prepare: Plan ahead what your code will look like.

Decide on a structure for your game.

Try: Write the code following your plan.

Reflect: Test your code, play the game to make sure it works, get feedback from other people to make the game

better.

 Remarks

When you build software, the problem solving process can be a helpful guide. Obviously we need to write the

code, but being careful to define what you want to build, making a good plan to build it, and reflecting afterwards

on how to improve it are all part of making good software. Today we’re going to use this process to make a new

game.

Question of the Day: How can the problem solving process help programmers to manage large projects?

Activity

Play Alien Jumper

Distribute: Give each student a copy of the project guide.

 Remarks

We're going to be building a jumper game today. You'll have a chance to play a sample game, then plan out how

you would create the game on your Project Guide.

 Code Studio levels

Levels

 2

Discuss Project Guide

Circulate: Students should complete the project guide in the style of the one they saw in the previous lesson. They

will likely want to keep the game up as they try to determine the behavior each of the sprites will have.

Share: Students share out their plans for making the game. Reassure them that there are many correct ways to

make the same piece of software, and that they will have a chance to try out their ideas in code studio.



 Teaching Tip

Making the game will take at least two class periods. If

there's not enough time for all students to finish the

lesson, groups of students can work to code different

aspects, then share their code with each other. For

example, one group could work on the platforms, one

on the stars, and another on the player. Students who

have finished early can choose more challenges from

the later levels.

 Code Studio levels

Share out

Share: Students share their games with their classmates.

Wrap Up

Journal

Question of the Day: How can the problem solving process help programmers to manage large projects?

Lesson Overview  1 (click tabs to see student view)

Sample Platform Jumper Game (click tabs to see student view)

Build a Platform Jumper  3 (click tabs to see student view)

Platform Jumper - Background and Variables  4  5  6  7

(click tabs to see student view)

Platform Jumper - Platforms  8  9  10 (click tabs to see student view)

Platform Jumper - Items  11  12  13 (click tabs to see student view)

Platform Jumper - Player  14  15  16  17

(click tabs to see student view)

Platform Jumper Review   18 (click tabs to see student view)

Challenges  19  20 (click tabs to see student view)

Challenges   21  21a  21b  21c  21d  21e

Prompt: Before you started coding your game, you first had to fill out a project guide with a plan. How did having a

plan change the way that you coded your game? Will you do anything differently when you make your plan for your

final project?

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 Ch. 2 18 19 20 21 22 23 24 25 26 27

Lesson 27: Project - Design a Game

Overview

Question of the Day: How can the five CS practices (problem

solving, persistence, communication, collaboration, and

creativity) help programmers to complete large projects?

Students will plan and build their own game using the project

guide from the previous two lessons. Working individually or in

pairs, students will first decide on the type of game they'd like to

build, taking as inspiration a set of sample games. They will then

complete a blank project guide where they will describe the

game's behavior and scope out the variables, sprites, and

functions they'll need to build. In Code Studio, a series of levels

prompts them on a general sequence they can use to implement

this plan. Partway through the process, students will share their

projects for peer review and will incorporate feedback as they

finish their game. At the end of the lesson, students will share

their completed games with their classmates. This project will

span multiple classes and can easily take anywhere from 3-5

class periods.

Purpose

This lesson is the culmination of Unit 3 and provides students an

opportunity to build a Game Lab project of their own from the

ground up. The scaffolding provided by the project guide and the

practice they have using it are intended to assist students in

scoping their projects and seeing their ideas through to

completion. This project is an opportunity to showcase technical

skills, but they will also need to collaborate with their partner,

provide constructive peer feedback, and repeatedly use the

problem solving process as they encounter obstacles along the

way. This project should be student-directed whenever possible,

and provide an empowering and memorable conclusion to this

unit of CS Discoveries.

Assessment Opportunities

Use the project rubric attached to this lesson to assess student

mastery of learning goals of this unit. You may also choose to

assign the post-project test through Code Studio.

Agenda
Warm Up (5 mins)

Activity (100-200 mins)

Review Project Guide

Define - Scope Game

Prepare - Complete Project Guide

Try - Write Code

View on Code Studio

Objectives
Students will be able to:

Independently scope the features of a

piece of software

Create a plan for building a piece of

software by describing its major

components

Implement a plan for creating a piece of

software

Preparation

Print copies of the project guide, one for

each student / pair of students

Print copies of the rubric, one for each

student / pair of students

Print copies of the peer review guide,

one for each student / pair of students

Review sample games in Code Studio

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Make Your Own Game - Exemplar

Project - Design a Game - Slides

For the Students

Make Your Own Game - Project Guide

Make Your Own Game - Rubric

Make Your Own Game - Peer Review

Computer Science Practices - Reflection

Make a Copy

Make a Copy

Make a Copy

Make a Copy

https://curriculum.code.org/csd-20/unit3/
https://studio.code.org/s/csd3-2020/stage/27/puzzle/1/
https://studio.code.org/s/csd3-2020/stage/27/puzzle/1/
https://docs.google.com/presentation/d/1vGPLsDh6Mcm2xmwBoq8YIAq05iy2pQq6JstSh7yaDyo/edit#slide=id.g8395724e00_0_96
https://docs.google.com/document/d/1SBye25XfdnytxCrc6a_OtpcS02YsT99nyJ9Vjwp_zeo/edit?usp=sharing
https://docs.google.com/document/d/1HB8T-6XyUiGLgeyYuG43zovAKrO2tyJ4l0NRJXzgdvY/
https://docs.google.com/document/d/1s2Q7SMhJCogVU5mht16UIzZLT-aAVz0gw5JRTuW9Vq0/edit
https://docs.google.com/document/d/1Ccf-WMH2qFDhycKaKSILRrZUe42lWESyRqMgdTymCPw/edit

Reflect - Peer Review

Iterate - Update Code

Share

Wrap Up (10 mins)

Journal

Reflect

Post-Project Test

 Discussion Goal

This discussion serves to set cultural norms for the

project. Students should expect that the project will be

challenging, but that they will have plenty of

opportunities to iterate on their work as they work

together to learn as a community.

Teaching Guide

Warm Up (5 mins)

Prompt: Today, you'll start the final project of the unit,

in which you will design and code your own game.

Before you start, what are three skills or qualities that

you think will be important as you complete this

project?

 Share: Allow students to share out their ideas.

 Remarks

There are lots of practices that programmers use when working on large projects. As you design and build your

game, try to reflect on how you are using the five practices of problem solving, persistence, communication,

collaboration, and creativity.

Question of the Day: How can the five CS practices (problem solving, persistence, communication, collaboration,

and creativity) help programmers to complete large projects?

Activity (100-200 mins)

Review Project Guide

Group: This project can be completed individually or in pairs. At your discretion, you may choose to have students

form larger groups as well.

Distribute: Each student or group of students should be given a copy of the project guide. As a class, review the

different steps of the project and where they appear in the project guide. Direct students towards the rubric so that

they know from the beginning what components of the project you will be looking for.

Define - Scope Game

Circulate: Students should spend the first 15-20 minutes playing the sample games, reviewing past work, and

discussing as a group the type of game they'd like to build. If they want they can sketch ideas on scratch paper or

in their journals.

Prepare - Complete Project Guide

Circulate: Once students have discussed their ideas for the project, they should complete the project guide. While

this should be a fairly familiar process, encourage students to make each component as clear and detailed as they

can. Planning ahead can help them identify issues in their plan before they'll need to make more significant

changes to their code.

Try - Write Code

 Transition: Students are now ready to program their games on Code Studio. These levels provide some guidance

on how students may go about implementing their project guide. None of the steps are significantly different from

what students have seen from the previous two lessons. If they wish, students can work in a different order than

the one suggested in these levels.

 Code Studio levels

Levels

 1

 2

 3

View on Code Studio 

View on Code Studio 

View on Code Studio 

View on Code Studio 

 Teaching Tip

View on Code Studio to access answer key(s)

 4

 5

 6

 7

Student Instructions

Student Instructions

Create your own
game
Now that you have all the skills you need, it's time to make your own game!

With a partner, brainstorm some different ideas for your game. You can think about the games you've already seen,

or look at some more sample games to give you ideas.

Once you have settled on a type of game with your partner, fill out the Project Guide with the backgrounds,

variables, sprites, and functions that you will need to make the game. You'll spend the next few levels creating your

game.

Student Instructions

Create your Variables
First, you'll need to create all of your variables and put them in the variables area of your code. Show me the block

Show me the area in the code

Don't forget, each variable needs a label (name) and a starting value. You can change the value of the variable

later in your code.

Student Instructions

Create your Backgrounds

https://studio.code.org/s/csd3-2020/stage/27/puzzle/1
https://studio.code.org/s/csd3-2020/stage/27/puzzle/2
https://studio.code.org/s/csd3-2020/stage/27/puzzle/3
https://studio.code.org/s/csd3-2020/stage/27/puzzle/4
https://studio.code.org/projects/gamelab/AwDcX5nehOApfzyywI6BOLT1xbf0MIV1dUj8KjQaNtA
https://studio.code.org/projects/gamelab/r9OYVTSj2od8vaCA-nKikTVpx-2Co8qHhuZiBIu30JA
https://studio.code.org/projects/gamelab/hAz7RSdqc0c_MSQVUpvz1XrLDr8QLsansWDVI0ZberQ
https://studio.code.org/projects/gamelab/DmRPNYR3n7bMO--_KkP7r6mOoGynBVyi3BMVPWDiVeI

View on Code Studio 

View on Code Studio 

View on Code Studio 

Next, you'll create all of the background functions that you need for your game. Some games only have one

background, and others have more than one that's chosen according to user score or another aspect of gameplay.

You'll need to create a function for each separate background in your game. You'll write the code to choose the

correct background in the next level.

Show me the block to create a new function

Show me the area in the code to put my function

After you create your functions, test them by calling them inside the draw loop, one background per test.

Show me the block to call my function

Student Instructions

Display Boards
Now that your backgrounds are working, you can add your display boards. Most games have a score board, but you

might also want to display information about player level or lives remaining. Look at Lesson 17 Level 7, Sublevel 2

for an example of how to make a scoreboard.

For each display board: Create a function to display the information Call the function in the draw loop

Be sure to test your boards by changing the starting value of your variables and making sure the board also

changes when you run the code.

Student Instructions

Choose your Backgrounds
Now that you have the backgrounds that you need, you'll write the code to choose the correct background. You've

seen this done in Lesson 24 Level 10.

After you've written the code, test it by changing the starting value of your variables and making sure the correct

background shows up.

Student Instructions

Create your Animations
Next you will create your animations in the animation tab. Don't forget to make multiple animations if you want

your sprite to change appearance according to how it's moving.

Reflect - Peer Review

Distribute: Give each student a copy of the peer review guide.

Students should spend 15 minutes reviewing the other group's game and filling out the peer review guide.

Iterate - Update Code

Circulate: Students should complete the peer review guide's back side and decide how to respond to the feedback

they were given. They should then use that feedback to improve their game.

Share

Share: Give students a chance to share their games. If you choose to let students do a more formal presentation of

their projects, the project guide provides students a set of components to include in their presentations including:

The original game they set out to build

A description of the programming process including at least one challenge they faced and one new feature they

decided to add

https://studio.code.org/s/csd3-2020/stage/27/puzzle/5
https://studio.code.org/s/csd3-2020/stage/27/puzzle/6
https://studio.code.org/s/csd3-2020/stage/27/puzzle/7
https://studio.code.org../19/puzzle/7/sublevel/2
https://studio.code.org../24/puzzle/10

View on Code Studio 

A description of the most interesting or complex piece of code they wrote

A live demonstration of the actual game

Wrap Up (10 mins)

Journal

Question of the Day: How can the five CS practices (problem solving, persistence, communication, collaboration,

and creativity) help programmers to complete large projects?

Prompt: Have students reflect on their development of the five practices of CS Discoveries (Problem Solving,

Persistence, Creativity, Collaboration, Communication). Choose one or more of the following prompts as you deem

appropriate.

Choose one of the five practices in which you believe you demonstrated growth in this unit. Write something you

did that exemplified this practice.

Choose one practice you think you can continue to grow in. What’s one thing you’d like to do better?

Choose one practice you thought was especially important for the project we completed today. What made it so

important?

Reflect

 Send students to Code Studio to complete their reflection on their attitudes toward computer science. Although

their answers are anonymous, the aggregated data will be available to you once at least five students have

completed the survey.

 Code Studio levels

Levels

  13

Student Instructions

This level is an assessment or survey with multiple questions. To view this level click the "View on Code Studio" link.

Post-Project Test

The post-project test is found at the bottom of the Interactive Animations and Games unit overview page on Code

Studio (studio.code.org/s/csd3-2020).

This test is locked and hidden from student view by default. In order for students to see and take this test, you'll

need to unlock it by clicking the "Lock Settings" button and following the instructions that appear.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://studio.code.org/s/csd3-2020/stage/27/puzzle/13
https://docs.google.com/document/d/1FhHPqlC6dU_z9retuBYb-duUwyKpnjwuEgjF4zfdhvI/edit#heading=h.5u3d4jfozbgc
https://studio.code.org/s/csd3-2020
https://creativecommons.org/
https://code.org/contact

