

UNIT

6
Ch. 1 1 2 3 4 5 6 7 8 9 Ch. 2 10 11

12 13 14 15 16

Big Questions

How does software interact with hardware?
How can computers sense and respond to their
environment?
What kind of information can be communicated
with simple hardware outputs?

Unit 6 - Physical Computing
In the Physical Computing unit, students further develop their programming skills, while exploring more deeply the role of
hardware platforms in computing. Harkening back to the Input/Storage/Processing/Output model for a computer, students
look towards modern “smart” devices to understand the ways in which non-traditional computing platforms take input and
provide output in ways that couldn't be done with the traditional keyboard, mouse, and monitor.

Using App Lab and Adafruit’s Circuit Playground, students develop programs that utilize the same hardware inputs and
outputs that we see in many modern smart devices, and they get to see how a simple rough prototype can lead to a finished
product. The unit concludes with a design challenge that asks students to use the Circuit Playground as the basis for an
innovation of their own design.

Chapter 1: Programming with Hardware

Week 1

Lesson 1: Innovations in Computing
Research | Unplugged

Explore a wide variety of new and innovative computing platforms while expanding your
understanding of what a computer can be.

Lesson 2: Designing Screens with Code
App Lab

By reading and changing the content on the screen of an app, the class starts to build apps
that only need a single screen. Even with just one screen, these techniques allow for lots of
user interaction and functionality.

Lesson 3: The Circuit Playground
App Lab | Maker Toolkit

Get to know the Circuit Playground, the circuit board that will be used throughout the rest of
this unit. Using App Lab, develop programs that use the Circuit Playground for output.

Week 2

file:///csd-19/unit6/
file:///csd-19/unit6/
file:///csd-19/unit6/
file:///csd-19/unit6/
file:///csd-19/unit6/
file:///csd-19/unit6/
file:///csd-19/unit6/
file:///csd-19/unit6/
file:///csd-19/unit6/
file:///csd-19/unit6/
file:///csd-19/unit6/
file:///csd-19/unit6/
file:///csd-19/unit6/
file:///csd-19/unit6/
file:///csd-19/unit6/
file:///csd-19/unit6/

Lesson 4: Input Unplugged
Unplugged

Experience two different ways that an app can take input from a user, while learning more
about the event-driven programming model used in App Lab.

Lesson 5: Board Events
App Lab | Maker Toolkit

Using the hardware buttons and switch, the class develops programs that use the Circuit
Playground as an input.

Lesson 6: Getting Properties
App Lab | Maker Toolkit

This lesson introduces students to the getProperty block, which allows them to access the
properties of different elements with code. Students first practice using the block to determine
what the user has input in various user interface elements. Students later use getProperty and
setProperty together with the counter pattern to make elements move across the screen. A
new screen element, the slider, and a new event trigger, onChange, are also introduced.

Lesson 7: Analog Input
App Lab | Maker Toolkit

Explore the analog inputs on the Circuit Playground, writing programs that respond to the
environment through sensors.

Week 3

Lesson 8: The Program Design Process
App Lab | Maker Toolkit

This lesson introduces students to the process they will use to design programs of their own
throughout this unit. This process is centered around a project guide which asks students to
sketch out their screens, identify elements of the Circuit Playground to be used, define
variables, and describe events before they begin programming. This process is similar to the
Game Design Process that we used in Unit 3. In this lesson students begin by playing a tug o'
war style game where the code is hidden. They discuss what they think the board
components, events, and variables would need to be to make the program. They are then
given a completed project guide which shows one way to implement the project. Students are
then walked through this process through a series of levels. At the end of the lesson students
have an opportunity to make improvements to the program to make it their own.

Lesson 9: Project: Make a Game
App Lab | Maker Toolkit | Project

Students take what they've learned through chapter one, and develop an app of their own
design that uses the board to output information.

Chapter Commentary
This unit begins with an activity that encourages students to explore a wide variety of non-traditional computing platforms,
before kicking off a review of programming in App Lab, with a particular focus on better understanding the event-driven
programming model that was first introduced in Unit 4. Students learn techniques to make the apps they write more flexible

Big Questions

How do programmers work with larger amounts of
similar values?
How can complex real-world information be
represented in code?
How can simple hardware be used to develop
innovative new products?

by modifying design elements through code instead of always relying on design mode. Using the Circuit Playground, they
then explore different approaches to taking input and producing output using hardware. By the end of this chapter, students
will design a develop a game that uses physical hardware for input and output.

Chapter 2: Building Physical Prototypes

Week 4

Lesson 10: Arrays and Color LEDs
App Lab | Maker Toolkit

Learn how lists can be used to store multiple values in a single variable name.

Lesson 11: Making Music
App Lab | Maker Toolkit

In this lesson students will use the buzzer to its full extent by producing sounds, notes, and
songs with the buzzer. Students start with a short review of the buzzer's frequency and
duration parameters, then move on to the concept of notes. Notes allow students to constrain
themselves to frequencies that are used in Western music and provide a layer of abstraction
that helps them to understand which frequencies might sound good together. Once students
are able to play notes on the buzzer, they use arrays to hold and play sequences of notes,
forming simple songs.

Lesson 12: Arrays and For Loops
App Lab | Maker Toolkit

Combining _lists_ and _for loops_ allows you to write code that impacts every element of a
list, regardless of how long it is. The class uses this structure to write programs that process
all of the elements in lists, include the list of color LEDs.

Lesson 13: Accelerometer
App Lab | Maker Toolkit

In this lesson, students will explore the accelerometer and its capabilities. They’ll become
familiar with its events and properties, as well as create multiple programs utilizing the
accelerometer similar to those they’ve likely come across in real world applications.

Week 5

Lesson 14: Functions with Parameters
App Lab | Maker Toolkit

The lesson starts with a quick review of parameters, in the context of App Lab blocks that they
students have seen recently. Students then look at examples of parameters within user-
created functions in App Lab and create and call functions with parameters for themselves,
using them to control multiple elements on a screen. Afterwards, students use for loops to
iterate over an array, passing each element into a function. Last, students use what they have
learned to create a star catching game.

Lesson 15: Circuits and Physical Prototypes
App Lab | Maker Toolkit

Wire simple circuits to create a physical prototype using cheap and easily found materials.

Week 6

Lesson 16: Project: Prototype an Innovation
App Lab | Maker Toolkit | Project

Develop innovative computing devices of your own design, using everything you've learned
throughout this course.

Chapter Commentary
With an understanding of how to use hardware to take input and produce output, students move to thinking about more
complex programs that integrate hardware and software. Using the color LEDs as an example of a a group of like objects,
students learn how to use arrays to keep track of lists of values. From there we introduce the for loop , first simply as a way
to repeat a block of code, and then as a way to run code on each element of an array. By the end of this chapter students
will have explored all components of their boards while learning to structure their code using arrays, loops, and parametric
functions. In the final two lessons students have an opportunity to dig into building physical prototypes using their boards.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

6
Ch. 1 1 2 3 4 5 6 7 8 9 Ch. 2 10 11

12 13 14 15 16

Lesson 1: Innovations in Computing
Research | Unplugged

Overview
To kick off the final unit of this course, students will do some research
into interesting innovations in computing. This lesson will expose
students to wider variety of computing form factors (what a computer
looks like) and fields that are impacted by computing. Later in this unit
students will look back on the devices they encountered in this lesson
as they develop their own physical computing devices.

Purpose
This lesson will lay the groundwork for students' understanding of how
their Circuit Board could be used to model an innovative computing
device. The goal is to get them thinking about how computers can be
embedded into just about anything, and to start considering the
potential impacts of such applications.

Assessment Opportunities
1. Identify computing innovations within a given field

Activity Guide, page 2: The description of the device, its purpose,
and the type of innovation should clearly demonstrate what it does
and why it is innovative.

2. For a given device, articulate the likely inputs and outputs

Activity Guide, page 2: The description of the user interaction
should identify multiple possible inputs and outputs for the device.

3. Suggest improvements to help a device better solve a
specific problem

Activity Guide, page 2: The suggested improvements should relate
to the purpose of the device and how it is used.

Agenda
Warm Up (10 min)

Get Inspired

Activity (45 min)

Innovation Research

Wrap Up (2 min)

Journaling

Extensions

Innovation Posters
Innovation Websites

View on Code Studio

Objectives
Students will be able to:

Identify computing innovations within a given
field
For a given device, articulate the likely inputs
and outputs
Suggest improvements to help a device better
solve a specific problem

Preparation
Review the resource pages linked in Code

Studio
Cue up The Internet of Things - Video

or Computer Science is Changing
Everything - Video

Print out a copy of the activity guide for
each student

Links
Heads Up! Please make a copy of any
documents you plan to share with students.

For the Students

Computing Innovations - Activity Guide

The Internet of Things - Video
Computer Science is Changing
Everything - Video (download)

Vocabulary
Innovation - A new or improved idea, device,
product, etc, or the development thereof

Make a Copy

https://studio.code.org/s/csd6-2019/stage/1/puzzle/1/
https://youtu.be/xQGsubJNbQw
https://youtu.be/1x54GqfL3UY
https://docs.google.com/document/d/1-fvLAoZcGopplA-0bwCFrCRoPFYPCPgSeb2ablNteCg/edit
https://youtu.be/xQGsubJNbQw
https://youtu.be/1x54GqfL3UY
https://videos.code.org/2015/csp/cs_is_changing_everything.mp4

 Discussion
Goal

This should be a quick discussion. The primary goal is for
the class to come to a common understanding of what it
means for something to be innovative. That it's not enough
for a product to look sleeker than the last version, but that
innovation means to really do something better than it's
been done before, or to do things that have never been
done before.

 Teaching Tip

This unit requires the Adafruit Circuit Playground. You can
read more about this microcontroller board at
https://code.org/circuitplayground

Teaching Guide
Warm Up (10 min)

Get Inspired
Video: Watch either The Internet of Things - Video
or Computer Science is Changing Everything -
Video as a class.

Activity (45 min)

Innovation Research
Group: Place students in groups of 3-4

Distribute: Hand out copies of the activity guide

Discuss: What is an innovation? What does it mean for
something to be innovative?

 Computing InnovationsComputing Innovations

During this activity student groups will research the
recent technological innovations related to a chosen
topic. Once they have identified a few interesting
innovations, they will choose one to analyze in greater
depths and report back to the class about.

Innovation Research

Introduce the topics: Make sure that students understand the scope of each of the potential topics.
Wearable Technology (eg. clothing, jewelry, or accessories with built-in computers)
Health and Safety (eg. devices that treat disease, track your health, or protect users from danger)
Agriculture (eg. technology to improve the effectiveness, sustainability, or efficiency of farming)
Manufacturing (eg. advancements in rapid prototyping, industrial robotics, and the production of goods)
Art and Design (eg. interactive art or public installations)
Smart Home (eg. devices that allow you to interact with your thermostat, locks, or lights using computers)

Explain the research task : The goal of this research is twofold:
First, develop a deeper understanding of your chosen topic. How is computer technology changing this field, what
are some of the problems that people are trying to solve with technology?
Second, identify a handful of innovative devices within this topic. Students should focus on finding hardware
devices that demonstrate unique or novel form factors. That is to say, computers that don't look like computers.

Send to Code Studio for resource links : On Code Studio we have compiled more detailed descriptions of the
topics as well as couple of recommended sites to learn more about each topic. Use this as a jumping off point for
student research.

 Code Studio levels

Lesson Overview Student Overview

Innovation Research Teacher Overview Student Overview

https://code.org/circuitplayground
https://youtu.be/xQGsubJNbQw
https://youtu.be/1x54GqfL3UY

An Innovative Solution

Once groups have selected a specific innovative device, they can complete the second page of this activity guide, which
asks them to do the following:

What Problem Does It Solve?: For some topics this may be more clear (for example healthcare devices typically
have a very specific goal), but for others students may need to think more broadly about what they consider problems.
More frivolous wearables or digital art installations may be more concerned with personal expression than solving a
specific problem.
What Is Innovative About It?: Encourage students to refer back to the earlier discussion about innovation for this.
It can also be useful to compare against other devices found during the research phase.
How Do You Interact With It?: Ask students to think back to the Input, Output, Storage, Processing model that
was introduced way back in Unit 1. The goal here is to identify specifically the Inputs and Outputs provided by a given
device - the more specific these are, the more easily students will be able to connect elements of the Circuit
Playground to these devices.
How Could You Improve It?: Feel free to make this as realistic or aspirational as you like. The goal here is just to
get students thinking about how they might develop an innovation of their own by using an existing product as a
jumping off point.

Share: Give groups a minute each to share their findings. See the extension activities for alternate ways to share.

Wrap Up (2 min)

View on Code Studio

Here are some recommended sites for students to start their research. Although these
sites are generally appropriate for school, the content within them changes frequently, so
we strongly suggest you check each site for inappropriate content before sharing it with students .

Wearable Technology
Warable.com

Health and Safety
Modern Healthcare
Medstartr

Agriculture
National Institute of Food and Agriculture
Farm Industry News

Manufacturing
Industry Week
3D Printing

Art and Design
ArtFab
Instructables

Smart Home
CNet
IoT Evolution

https://studio.code.org/s/csd6-2019/stage/1/puzzle/2
https://www.wareable.com/
http://www.modernhealthcare.com/section/medical-devices
http://www.medstartr.com/
https://nifa.usda.gov/topic/agriculture-technology
http://www.farmindustrynews.com/technology
http://www.industryweek.com/technology
https://3dprinting.com/
http://artfab.art.cmu.edu/
http://www.instructables.com/tag/type-id/category-technology/
https://www.cnet.com/smart-home/
http://www.iotevolutionworld.com/smart-home/

Journaling
Journal: What was the most surprising, cool, or impressive thing that you found in your research? If you could develop an
innovation of your own, what would it be?

Extensions

Innovation Posters
Ask groups to create a poster that shares the innovate device that they researched. Posters should include:

Who invented the device
What problem they were trying to solve
Why it is unique or innovative
How users interact with it (specifically, what Inputs does it take and how does it provide Output)

Keep these posters up throughout the unit for students to refer back to as they start to develop physical computing devices
of their own.

Innovation Websites
Instead of (or in addition to) you posters, have students develop websites in Web Lab that include the same required
content. Make sure that students include links to their source websites.

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

IC - Impacts of Computing

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

6
Ch. 1 1 2 3 4 5 6 7 8 9 Ch. 2 10 11

12 13 14 15 16

Lesson 2: Designing Screens with Code
App Lab

Overview
In Unit 4 students learned a very simple approach to app development
in App Lab that required a separate screen for most interactions. To
expand the kinds of apps that students can make, and to encourage
them to think in new ways about how users interact with apps, we
introduce the setProperty() block. This command can be used to set

the content and properties of various UI elements, allowing students
to write programs that update information on a single screen, instead
of manually creating duplicate screens. In this lesson students build
up simple apps that only require a single screen, the content of which
is changed using setProperty() .

Purpose
This lesson allows students some time to get back into programming
with App Lab before introducing the Circuit Playground, but also
introduces the useful concept of a setter. In Unit 4, students primarily
used setScreen() to make their apps respond to user interaction.

While this is a simple and useful technique, it can lead to a lot of
duplication of content across multiple screens. By using setters, and
later getters, students can write apps that actually change the
content on a single screen, by showing and hiding or changing the
content or look of various elements.

Once students have learned about using getters and setters with UI
elements, encourage them to think critically about when to use a
separate screen in the design phase of an app. If screens are more
alike than different, it might be more effective to just change the
elements on screen in reaction to input instead of duplicating content
across multiple screens. While students are only introduced to
setProperty() right now, they will later learn the partner command

getProperty() .

Assessment Opportunities
1. Set the properties of UI elements using code

Code Studio: See rubric on bubble 4

2. Respond to user input using an event handler

Code Studio: See rubric on bubble 9

3. Write programs that change multiple elements on a single
screen instead of changing screens

Code Studio: See rubric on bubble 14

View on Code Studio

Objectives
Students will be able to:

Set the properties of UI elements using code
Respond to user input using an event handler
Write programs that change multiple elements
on a single screen instead of changing
screens

Introduced Code
setProperty(id, property, value)

file://docs.code.org/applab/setProperty/
file://docs.code.org/applab/setProperty/
file://docs.code.org/applab/setScreen/
file://docs.code.org/applab/setProperty/
file://docs.code.org/applab/getProperty/
https://studio.code.org/s/csd6-2019/stage/2/puzzle/1/
file://docs.code.org/applab/setProperty/

Agenda
Warm Up (5 min)

UI Element Properties Refresher

Activity (45 to 60 minutes)

Designing with setProperty()

Wrap Up (5 min)

Reflecting on Unit 4

 Discussion
Goal

The goal of this disucssion is to prime students to think
about the properties of various design elements, which
they will learn to change with code later in this lesson. You
might ask students to think back to a similar discussion we
had in Unit 2 when trying to describe what a web page
looks like, or to the properties of a sprite from Unit 3

Teaching Guide
Warm Up (5 min)

UI Element Properties Refresher
Display: Show students this example image

 Discuss: How would you describe to somebody else how to recreate this screen? What specific details would they need to
know about each design element?

Activity (45 to 60 minutes)

https://cdo-curriculum.s3.amazonaws.com/media/uploads/diamond.png

 Discussion
Goal

Goal: This discussion is intended to clarify for students
why we are changing UI elements with code, and how it
might actually allow them to solve problems that came up
in Unit 4. From this point on students will need to make
reasoned choices about when to use separate screens in
a program and when to update elements with code.

Designing with setProperty()
Transition: Head to Code Studio

 Code Studio levels

Share: The final level in this lesson allows students to customize and submit an "Emotion Machine" app. If time, allow
students to share their programs.

Wrap Up (5 min)

Reflecting on Unit 4
Prompt: Think back to the app you prototyped in Unit 4.
Knowing what you know about using setProperty() to

change UI elements, how might you change your app
prototype?

Discuss: Have the class share the kinds of things they
came up with. See if the class can come up with some
broad types of features that weren't possible, or were
cumbersome, to do with screens alone.

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

Lesson Overview Student Overview

Setting Properties 2 3 4 (click tabs to see student view)

Designing Screens with Code Student Overview

Events and Properties 6 7 8 9 (click tabs to see student view)

Emotion Machine Example Student Overview

Building an App 11 12 13 14 (click tabs to see student view)

file://docs.code.org/applab/setProperty/
http://creativecommons.org/
file://code.org/contact

UNIT

6
Ch. 1 1 2 3 4 5 6 7 8 9 Ch. 2 10 11

12 13 14 15 16

Lesson 3: The Circuit Playground
App Lab | Maker Toolkit

Overview
In this lesson students get their first opportunity to write programs that
use the Circuit Playground. After first inspecting the board visually and
hypothesizing possibly functionalities, students move online where
they will learn to write applications that control an LED. By combining
App Lab screens with the Circuit Playgrounds, students can gradually
start to integrate elements of the board as an ouput device while
relying on App Lab for user input.

Purpose
As the first introduction to using the Circuit Playground, this lesson
leaves time for students to get comfortable with getting the hardware
plugged in. By leveraging students' existing knowledge of event
handling in App Lab, we can quickly get an app up and running that
shows the potential of physical computing with little more than a
single red LED.

Assessment Opportunities
1. Connect and troubleshoot external devices

At the beginning of the online activity, students should connect the
boards themselves, using the setup page to troubleshoot common
problems.

2. Turn on and off an LED with code

Code Studio: See rubric on bubble 9.

3. Use code to control a physical device

Code Studio: see rubric on bubble 14.

Agenda
Warm Up (5 min)

Board Inspection

Activity (45)

Connecting the Board
Programming on Hardware

Wrap Up (5 min)

What's in a Board

View on Code Studio

Objectives
Students will be able to:

Connect and troubleshoot external devices
Turn on and off an LED with code
Use code to control a physical device

Preparation
Make sure that student computers have the

drivers and software necessary to connect to
the Circuit Playground (details here)

Prepare a board and USB cable for each
pair of students

Introduced Code
led.on()

led.off()

led.blink(interval);

led.pulse(interval);

led.toggle()

https://studio.code.org/s/csd6-2019/stage/3/puzzle/1/
file://studio.code.org/maker/setup
file://docs.code.org/applab/led.on/
file://docs.code.org/applab/led.off/
file://docs.code.org/applab/led.blink/
file://docs.code.org/applab/led.pulse/
file://docs.code.org/applab/led.toggle/

 Assessment Opportunity

Ensure that all students are able to set up their boads
correctly. If they have trouble, encourage them to work
with peers to solve the problem with the help of the setup
page. Students should be able to read through the page
and follow the instructions on their own. If not, walk them
through the process, but encourage them to troubleshoot
their own boards in subsequent lessons.

Teaching Guide
Warm Up (5 min)

Board Inspection
Distribute: Pass out a board and USB cable to each pair of students. Let students know that they should not yet plug the
boards in.

Prompt: Ask pairs to spend one minute looking over the board, focusing on the details. What do you think this board does
(or could do) and why?

Share: Have groups share back their thoughts to the whole group, keeping track of ideas on the board. Push students to
support their ideas with evidence from reviewing the board, but don't worry about ensuring correctness at this point. As
students go through this unit, they can refer back and refine this list.

Activity (45)

Connecting the Board
Transition: Ask students to plug their boards in and
head to the Maker Toolkit setup page to confirm that
the software has been correctly configured.

Programming on Hardware
Transition: Send students to Code Studio

 Code Studio levels

Wrap Up (5 min)

What's in a Board

Lesson Overview Student Overview

Hardware and Software Student Overview

Circuit Playground: Introduction Student Overview

Using the LED 4 5 6 7 8 9

(click tabs to see student view)

LED Apps 10 11 12 13 14 (click tabs to see student view)

file://studio.code.org/maker/setup

Journal: Ask students to reflect on their introduction to the Circuit Playground. What did they think it was at first inspection?
How did those expectations change after having programmed on the board?

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CS - Computing Systems

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

6
Ch. 1 1 2 3 4 5 6 7 8 9 Ch. 2 10 11

12 13 14 15 16

Lesson 4: Input Unplugged
Unplugged

Overview
In preparation for delving deeper into programming with App Lab,
students will explore how a handful of different programs written in
both Game Lab and App Lab handle taking input from the user. After
comparing and contrasting the approaches they saw in the example
apps, students group up to act out the two different models for input
(conditionals in an infinite loop and asynchronous events) to gain a
better understanding of how they work.

Purpose
This lesson is intended to help students transition from the draw
loop and conditional model of input used in Game Lab to the event-
driven model used in App Lab. While students have experienced and
learned a bit about event-driven programming in Unit 4, a deeper
understanding of how the events work will help when it comes to
responding to events on the Circuit Playground later in this unit.

Assessment Opportunities
1. Compare and contrast multiple ways to take input

Wrap Up: Students should distinguish between the draw loop
model of Game Lab and the event model of App Lab.

2. Model different methods of taking user input

As students participate in the activity, circulate the room and
ensure that they are following the instructions.

Agenda
Warm Up (10 min)

Comparing Input Methods

Activity (40 min)

Input Unplugged
Activity Debrief

Wrap Up (2 min)

Reflection

View on Code Studio

Objectives
Students will be able to:

Compare and contrast multiple ways to take
input
Model different methods of taking user input

Preparation
Prepare to display example programs for

the whole class.
A half deck of cards for each group of three

students or deck-of-cards.js.org.
Print one copy of the activity guide for each

group of four students.

Links
Heads Up! Please make a copy of any
documents you plan to share with students.

For the Students

Input and Events - Activity Guide

Make a Copy

https://studio.code.org/s/csd6-2019/stage/4/puzzle/1/
https://deck-of-cards.js.org
https://docs.google.com/document/d/1Pqq09UzF8xNP688FwK7x9zrsjxxM4WajAVtEwM1wYPE/edit

 Discussion
Goal

Goal: This is intended to be a very broad question, and as
such could go in a number of different directions. If your
students are struggling, encourage them to think about
specific programs that they wrote in units 3 and 4.

Teaching Guide
Warm Up (10 min)

Comparing Input Methods
Discuss: Yesterday we wrote some apps that took input
from a user, but how did the program know when to take
input?

Display: Open up the Code Studio stage for this level.
For each of the example apps, ask the class to identify:

1. Where is the input coming from? (e.g. keyboard,
mouse, etc)

2. What input value is the program looking for?
3. How will the program respond to input?

 Code Studio levels

Prompt: Ask the class the following questions, keeping track of answers on the board. The goal at this point isn't to answer
questions that come up, but to record them so we can see how the class feels again after the lesson.

How did the different apps we looked at approach taking input similarly or differently?
Which way made the most sense to you?
Which way made the least sense?
What questions to you have about how these programs take input?

Activity (40 min)

Input Unplugged
 Remarks

In the previous activity we explored several different kinds of input, but how do our programs actually process that input?
As a class, and in small groups, we're going to model how input is taken both in Game Lab and App Lab.

Group: Place students in groups of 4

Distribute: Hand out a copy of the activity guide and half of a deck of cards to each group (the deck doesn't need to be
perfectly split, but should include both red and black cards in each half). The activity guide includes four different role
pages, printed front and back.

Model: Choose one group to model the activity for the class.

 Input and EventsInput and Events

The goal of this activity is to help students better understand how events work, and how using events differs from the input
model that they used in Game Lab. In groups of four, students will model the two different approaches to taking input. By
the end of the activity students should understand that the onEvent block sets up a input to watch for events in the

Lesson Overview Student Overview

Input Examples 2 3 (click tabs to see student view)

file://docs.code.org/applab/onEvent/

 Teaching Tip

The programs for both versions of this activity are
purposely very simple to allow students to focus on the
processes involved in each input method. If your students
pick up on the ideas quickly, consider providing some
more detailed example programs to push on their
understanding. In particular, placing the inputs or events
in a different order and nesting conditionals can be useful
in revealing misconceptions.

background, allowing input handling without explicitly asking each input for a value constantly. The roles for this activity
are:

Program: The Program reads the code aloud and performs any actions dictated by the inputs. Inputs 1-3: The Inputs
draw cards from the deck, which represent their changing input values.

Version A: Asking for Input

This first version models the Game Lab approach to
taking input. In this scenario the Program explicitly
asks each input for a value every time the draw loop is
run.

Rules for Version A:

The Program reads each line of code aloud.
At the beginning of each draw loop, each Input draws
a new card from the deck. This represents the current
state of that input.
Whenever the Program reaches an input checking
command (inputOne() , inputTwo() , or inputThree()), the Program asks to see that inputs card.

If the value of the card shown matches the associated conditional, the Program performs the action(s) inside the
conditional.

After groups have run the program a few times and seem to understand how it works, have them switch up roles so that
each student gets a chance to be the Program.

Version B: Input Events

This time around, instead of constantly asking for input in a loop, the Program will assign each Input an Event to watch
for. In the context of this activity, an Event is either a red or black card, but in a program that Event could be a click on a
button, movement of the mouse, press of a key, or more. This is a simplified model for the way input is handled in App
Lab.

Rules for Version B:

Each Input draws a card from the deck at a rate of roughly one per second.
The Program reads each line of code aloud.
When the Program reaches an onEvent command, they tell the specified Input which Event to watch for, and what

the Response should be.
When assigned an Event, the Input writes down the details in their Events to Watch table.
Every time an Input draws a card, they check to see if it matches one of the Events in their table. If it does, they tell
the Program to perform the Response.

There are a few important simplifications that are made in this model to minimize the number of roles and rules:

This model implies that Inputs are actually watching for Events on their own. In reality, an Event Handler running in the
background watching for the specified event.
In this model the Input tells the Program what actions to take. In reality, when an Event Handler is triggered, the
Program goes to that portion of their code and runs everything in the function.

Activity Debrief
Discuss: Looking back at the comments gathered from the warm up activity, what things are more clear after having run
the activity? Do you have any new questions?

Wrap Up (2 min)

Reflection
Journal: What's the difference between the way that Game Lab and App Lab handle inputs?

file://docs.code.org/applab/onEvent/

 Assessment Opportunity

Students may have different ways of explaining the
differences, but Game Lab's draw loop model works
sequentially, with each line of code run after the other, and
the draw loop code running over and over in sequence.
Inputs are only checked when that line of code is run. App
Lab's event model is continuously checking for inputs once
an event handler is created.

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

6
Ch. 1 1 2 3 4 5 6 7 8 9 Ch. 2 10 11

12 13 14 15 16

Lesson 5: Board Events
App Lab | Maker Toolkit

Overview
This lesson transitions students from consider the Circuit Playground
as strictly an output device towards using it as a tool for both input
and output. Starting with the hardware buttons and switch,sing the
hardware buttons and switch, students learn to use onBoardEvent() ,

analogously to onEvent() , in order to take input from their Circuit

Playgrounds.

Purpose
This lesson marks the transition from using the board solely as an
output device to using it for both input and output. The onBoardEvent()

block works much like onEvent() , with the most significant different

being that the first parameter is a board object (a variable) while
onEvent() takes a UI element ID (a string).

Assessment Opportunities
1. Attach an event handler to a hardware input

Code Studio: See rubric on bubble 4.

2. Choose the appropriate event for a given scenario

Wrap Up: Students should describe different scenarios that would
be more appropriate for different events.

Agenda
Warm Up (5 min)

Board Inspection: Inputs

Activity (45 min)

Taking Input from the Board

Wrap Up (2 min)

View on Code Studio

Objectives
Students will be able to:

Attach an event handler to a hardware input
Choose the appropriate event for a given
scenario

Introduced Code
onBoardEvent(component, event, function(event)

{...});

toggleSwitch

toggleSwitch.isOpen

button(L/R)

buttonL.isPressed

file://docs.code.org/applab/onBoardEvent/
file://docs.code.org/applab/onEvent/
file://docs.code.org/applab/onBoardEvent/
file://docs.code.org/applab/onEvent/
file://docs.code.org/applab/onEvent/
https://studio.code.org/s/csd6-2019/stage/5/puzzle/1/
file://docs.code.org/applab/onBoardEvent/
file://docs.code.org/applab/toggleSwitch/
file://docs.code.org/applab/toggleSwitch.isOpen/
file://docs.code.org/applab/buttons/
file://docs.code.org/applab/isPressed/

Teaching Guide
Warm Up (5 min)

Board Inspection: Inputs
Distribute: Pass out a board and USB cable to each pair of students. Let students know that they should not yet plug the
boards in.

Prompt: Ask pairs to spend one minute looking over the board, focusing on potential input devices. Based on what you
already know about this board, how do you think you might use it to get input?

Share: Have groups share back their thoughts to the whole group, keeping track of ideas on the board. Push students to
support their ideas with evidence from reviewing the board, but don't worry about ensuring correctness at this point.

Activity (45 min)

Taking Input from the Board
Transition: Send students to Code Studio.

 Code Studio levels

Wrap Up (2 min)

Journal 3-2-1:

1. What are three types of board events you have seen so far?

Lesson Overview Student Overview

Board Events 2 3 4 (click tabs to see student view)

Responding to Board Events Student Overview

Using the Switch 6 7 8 (click tabs to see student view)

Buttons and Switch Student Overview

The Buzzer 10 11 12 (click tabs to see student view)

Circuit Playground: Buzzer Student Overview

Levels Extra (click tabs to see student view)

 Assessment Opportunity

Students should make reasonable choices for when one
board event might be better than another. You may want
to have a short class discussion before or after this journal
prompt to highlight the advanages and disadvantages of
each event type.

2. Describe two different situations and how they would need two different events.
3. What's one other event you haven't learned yet, but

you think might exist?

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CS - Computing Systems

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

6
Ch. 1 1 2 3 4 5 6 7 8 9 Ch. 2 10 11

12 13 14 15 16

Lesson 6: Getting Properties
App Lab | Maker Toolkit

Overview
This lesson introduces students to the getProperty block, which

allows them to access the properties of different elements with code.
Students first practice using the block to determine what the user has
input in various user interface elements. Students later use
getProperty and setProperty together with the counter pattern to

make elements move across the screen. A new screen element, the
slider, and a new event trigger, onChange , are also introduced.

Purpose
So far, students have only used the button press event to gather
information from the App Lab screen. Using getProperty opens the

students to gathering a wide range of information from the user.
Getting properties also allows students to create programs that don't
rely on knowing an element's properties when the code is written, so
their programs can be more dynamic and interactive. These features
will be important as students move toward making an interactive
game in the next few lessons.

Assessment Opportunities
1. Use getters to access the properties of elements in a

system

Code Studio: see rubric on bubble 6

Agenda
Warm Up (5 min)
Activity (40 min)
Wrap Up (10 min)

View on Code Studio

Objectives
Students will be able to:

Use getters to access the properties of
elements in a system

Introduced Code
getProperty(id, property)

file://docs.code.org/applab/getProperty/
file://docs.code.org/applab/getProperty/
file://docs.code.org/applab/setProperty/
file://docs.code.org/applab/getProperty/
https://studio.code.org/s/csd6-2019/stage/6/puzzle/1/
file://docs.code.org/applab/getProperty/

Teaching Guide
Warm Up (5 min)

Review: Ask students to think of the different types of information that they were able to get from the board in the last
lesson (e.g. button presses, toggle state, etc.)

 Remarks

So far we've seen lots of ways that we can get information from our Circuit Playground. Today we're going to look at more
ways that we can get information from the screen of our app.

Activity (40 min)

 Send students to Code Studio.

 Code Studio levels

Wrap Up (10 min)

Journal Prompt: So far, you've seen several different
types of input, some from the screen, and some from the
circuit playground. Choose one type of input and answer
the following questions about it.

1. What code do you need to get information from this
input?

Lesson Overview Student Overview

Getting Properties 2 3 4 5 6 (click tabs to see student view)

getProperty Student Overview

Sliders 8 9 10 (click tabs to see student view)

Change 11 12 13 (click tabs to see student view)

Event Types Student Overview

Motorcycle 15 16 (click tabs to see student view)

Levels Extra (click tabs to see student view)

 Teaching Tip

For this prompt, you can "jigsaw" the answers by
assigning different students or different groups each a
type of input and answering questions on each type. The
different answers can then be combined for a class
reference on input types.

2. What's one example of when you would want to use
this input?

3. What's an example of when you wouldn't want to use
this input?

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

6
Ch. 1 1 2 3 4 5 6 7 8 9 Ch. 2 10 11

12 13 14 15 16

Lesson 7: Analog Input
App Lab | Maker Toolkit

Overview
In this lesson, students explore how the three analog sensors (sound,
light, and temperature) can be used to write programs that respond to
changes in the environment. The use of these sensors marks a
transition in terms of how users interact with a program. By using
sensors as an input, the user of an app doesn't have to directly
interact with it at all, or may interact without actually realizing they are
doing so.

Purpose
This lesson builds on the previous by introducing analog sensors as a
new form of input. These sensors all perform analog-to-digital
conversion, allowing programs to sense things as represented by a 10
bit number (0-1023).

Assessment Opportunities
1. Develop programs that respond to analog input

Code Studio: See rubric on bubble 15

2. Scale a range of numbers to meet a specific need

Code Studio: See rubric on bubble 15

3. Represent a sensor value in a variety of ways

Code Studio: See rubric on bubble 15

Agenda
Warm Up (10 min)

Analog and Digital

Activity (40 min)

Analog Inputs

Wrap Up (5 min)

Sensors All Around

View on Code Studio

Objectives
Students will be able to:

Develop programs that respond to analog
input
Scale a range of numbers to meet a specific
need
Represent a sensor value in a variety of ways

Preparation
Cue up the Difference between Analog

and Digital Signals - Video
If your room isn't very bright, it's useful to

have some flashlights or other light sources
on hand for testing the light sensor

Links
Heads Up! Please make a copy of any
documents you plan to share with students.

For the Students

Difference between Analog and Digital
Signals - Video

Vocabulary
Analog - Any continuously changing signal
that is not restricted to finite set of values. For
example, the wave forms of spoken words are
an analog signal.
Digital - Data or signals represented by a
finite number of values. Analog signals (which
can have infinite values) must be converted to
digital in order to be computed with.

Introduced Code
soundSensor

soundSensor.value

soundSensor.setScale(min, max)

lightSensor

https://studio.code.org/s/csd6-2019/stage/7/puzzle/1/
https://www.youtube.com/watch?v=RQc_frX50BA
https://www.youtube.com/watch?v=RQc_frX50BA
file://docs.code.org/applab/soundSensor/
file://docs.code.org/applab/value/
file://docs.code.org/applab/setScale/
file://docs.code.org/applab/lightSensor/

tempSensor

file://docs.code.org/applab/tempSensor/

 Discussion
Goal

The goal here is to get students thinking about how an
natural (or analog) value can be converted into a
computable format. Encourage students to consider what
the upper and lower bounds of each value might be (for
example, is there a minimum or maximum amount of
sound?).

Teaching Guide
Warm Up (10 min)

Analog and Digital
Think, Pair, Share: How would you quantify each of
your five senses (touch, taste, sight, smell, and hearing).
Think back to the previous unit and the various ways you
came up with to encode data for a computer.

Video: Today we're going to write programs that have
"senses" of their own! Show Difference between
Analog and Digital Signals - Video

Activity (40 min)

Analog Inputs
Distribute: Pass out Circuit Playgrounds.

Transition: Send students to Code Studio. Let them know that today they will be experimenting with some sensors that
detect analog signals and convert them to digital values that can be used by the computer.

 Code Studio levels

Lesson Overview Student Overview

Sensor Experiment Student Overview

Reading Sensors 3 4 5 (click tabs to see student view)

Analog Sensors Student Overview

Sensor Events 7 8 9 10 (click tabs to see student view)

Polling Events Student Overview

Changing Sensor Scale Student Overview

Sensors to Colors 13 14 15 (click tabs to see student view)

Levels Extra (click tabs to see student view)

https://www.youtube.com/watch?v=RQc_frX50BA

Wrap Up (5 min)

Sensors All Around
Journal: Considering all of the computing devices that you interact with on a regular basis, identify as many potential
analog sensors as you can. Where do your computing devices take a continuously changing signal and convert it into
digital data?

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CS - Computing Systems

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

6
Ch. 1 1 2 3 4 5 6 7 8 9 Ch. 2 10 11

12 13 14 15 16

Lesson 8: The Program Design Process
App Lab | Maker Toolkit

Overview
This lesson introduces students to the process they will use to design
programs of their own throughout this unit. This process is centered
around a project guide which asks students to sketch out their
screens, identify elements of the Circuit Playground to be used, define
variables, and describe events before they begin programming. This
process is similar to the Game Design Process that we used in Unit 3.
In this lesson students begin by playing a tug o' war style game where
the code is hidden. They discuss what they think the board
components, events, and variables would need to be to make the
program. They are then given a completed project guide which shows
one way to implement the project. Students are then walked through
this process through a series of levels. At the end of the lesson
students have an opportunity to make improvements to the program
to make it their own.

Purpose
This lesson gives students to practice developing a larger scale
program in order to prepare them to do so independently. While
previous lessons have focused on building skills around using specific
elements of the Circuit Playground and related programming
concepts, this lesson focuses on combining everything learned so far
into a more complex program. The lesson heavily scaffolds the
software development process by providing students a completed
project guide, providing starter code, and walking students through its
implementation. In the subsequent lessons students will need to
complete a greater portion of this guide independently, and for the
final project they will follow this process largely independently.

Assessment Opportunities
1. Implement different features of a program by following a

structured project guide

The final program should reflect the functions, events, and screen
design as shown in the project guide.

2. Develop a program that responds to events from a
hardware input

Code Studio: See rubric on bubble 13

3. Create a function that uses parameters to generalize
behavior

Code Studio: See rubric on bubble 13

View on Code Studio

Objectives
Students will be able to:

Implement different features of a program by
following a structured project guide
Develop a program that responds to events
from a hardware input
Create a function that uses parameters to
generalize behavior

Preparation
Provide students with copies of the project

guide

Links
Heads Up! Please make a copy of any
documents you plan to share with students.

For the Students

Emoji Race - Project Guide

Make a Copy

https://studio.code.org/s/csd6-2019/stage/8/puzzle/1/
https://docs.google.com/document/d/1dn4FIRKYaVb1o7TNiyeKqoT1fBL9FPoqOmJV-nvJYUM/

Agenda
Warm Up (15 min)

Play Emoji Race
Stop: Review Project Guide

Activity (45-60 min)

Implement Project Guide

Wrap Up (20 min)

Make It Your Own

 Teaching Tip

Keeping Focus: Students can easily get distracted by
the fun of playing the game. Let them play for a while but
eventually encourage them to follow the on-screen
instructions and make a list of the board components,
events, and variables that would be necessary to create
the game.

 Discussion
Goal

Running the Conversation: You can write "Board",
"Events", and "Functions" on the board and record their
ideas below each. Ask students to justify their decisions
but don't feel the need to settle on one right answer.

 Teaching Tip

Sharing the Project Guide: Students are not actually
writing on the project guide in this lesson. You can give
each student their own copy for reference but you might
also choose to print one copy per pair, share digital
copies, or just display the guide on the projector. So long
as it is available for reference any approach will work fine.

Teaching Guide
Warm Up (15 min)

Play Emoji Race
Group: Place students in pairs

Demo: Show students the Emoji Race demo, available at the beginning of this lesson.

Transition: Send students online to try out the game on their own. Each pair should play the game and follow the
instructions which ask them to list the board components, events, and variables they think are necessary to create this
game.

Stop: Review Project Guide
Discuss: Students should have individually created a list
of board components, events, and functions they would
need to make the game they played. Ask students to
share their lists with a neighbor before discussing as a
class.

Distribute: Give each student or pair of students a copy
of the project guide.

Prompt: Compare the list of things you thought would be
needed to the ones on this project guide. Do you notice
any differences?

Discuss: As a class compare the list you had on the
board to the list of board components, events, and
functions on the project guide. Note the similarities.
Where there are differences try to understand why. Don't
approach one set as "right" vs. "wrong" but just confirm
both would be able to make the game students played.

 Remarks

There's usually lots of ways you can structure a
program to get it to work the way you want. The
important thing when writing complex or large programs
is that you start with a plan. Today we're going to look
at how we could implement this plan to build our own emoji race game. By the end of the lesson you'll not only have built
your game, but you'll know how to change it and make it your own. Let's get going!

Activity (45-60 min)

Implement Project Guide
Students are given starter code to establish the functions and event handlers needed for this project. These levels guide
students through how to use the provided variables and what ought to occur within the event handlers. As students move
through the levels point out how the project guide is being used. Though this project is highly scaffolded, the next lesson will
ask students to develop a hardware-based program of their own design, so make sure to reinforce the connection between
the planning that was done in the project guide and the programming levels.

 Code Studio levels

Wrap Up (20 min)

Make It Your Own
This last level encourages students to make the game their own. If students have made their way to this point they have all
the skills they need to progress through the curriculum, so there is no pressure to complete any of the modifications
suggested in this level. If you have time, however, getting practice planning and implementing new features will be a useful
skill. Even just modifying the look of the screens is an easy way students can make the game their own.

Share: Once students have completed the project they can share their work with their classmates. Encourage students to
showcase the additional code they wrote and explain how it has changed the way the game works.

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CS - Computing Systems

If you are interested in licensing Code.org materials for commercial purposes, contact us.

Lesson Overview Student Overview

Sample Program Student Overview

Plan Your Project Student Overview

Screen Design 4 5 6 (click tabs to see student view)

Finishing Functions 7 8 9 (click tabs to see student view)

Checking for a Winner 10 11 12 13 (click tabs to see student view)

Make it Your Own Student Overview

http://creativecommons.org/
file://code.org/contact

UNIT

6
Ch. 1 1 2 3 4 5 6 7 8 9 Ch. 2 10 11

12 13 14 15 16

Lesson 9: Project: Make a Game
App Lab | Maker Toolkit | Project

Overview
Students take what they've learned through chapter one, and develop
an app of their own design that uses the board to output information.

Purpose
This end of chapter assessment is a good place for students to bring
together all the pieces they have learned (event handlers, using the
board as output, etc.) in one place. This project is purposefully left
very open to allow students thing broadly about how physical output
might be useful in an app - this is a great opportunity to encourage
students to revisit programs they've written earlier in this unit or in
Unit 4 that would benefit from using the board to output information.

Assessment Opportunities
Use the project rubric attached to this lesson to assess student
mastery of learning goals of this chapter.

Agenda
Warm Up (10 min)

Demo Project Exemplars

Activity (90 - 120 min)

Unplugged: Program Planning
Prototyping the Program

Wrap Up (10 min)

Sharing Projects
Self Assessment

View on Code Studio

Objectives
Students will be able to:

Use event handlers to respond to user
interaction
Design a piece of software that uses
hardware for non-traditional input and output
Prototype a program that integrates software
and hardware

Preparation
Print a copy of the project guide for each

group of students
Print a copy of the rubric for each student

Links
Heads Up! Please make a copy of any
documents you plan to share with students.

For the Students

Make a Game - Rubric

Computer Science Practices - Reflection

Make a Game - Project Guide

Make a Copy

Make a Copy

Make a Copy

https://studio.code.org/s/csd6-2019/stage/9/puzzle/1/
https://docs.google.com/document/d/1ylMbaQYDNyYOAVSspCpeumRGFxAkjgRAD47RsQQQtDs/edit
https://docs.google.com/document/d/1Ccf-WMH2qFDhycKaKSILRrZUe42lWESyRqMgdTymCPw/edit
https://docs.google.com/document/d/1vPeG-bJlGJTVU91eNzxIzp1gTCK-s5AGAX_T-SrfBZE/edit

 Teaching Tip

Students may find it particularly difficult to predict all of
the events that they'll want to respond to or the functions
that they'll need to create. Make sure that they know this
is an iterative process and planning is only the first step.
We want to start this project with as clear a plan as
possible, but there will likely be things that weren't
considered from the start and the plan will need to
change accordingly.

Teaching Guide
Warm Up (10 min)

Demo Project Exemplars
Display: On the projector, show the example project at the beginning of this lesson.

Prompt: Analyze the exemplar for the following elements:

Where is input being taken?
What events do you think are being used for each input?

What information is being output through the board?
Where might this program be using a loop?

Discuss: Have students share their observations and analyses of the exemplar.

Distribute: Provide each student with a copy of the rubric. Review the different components of the rubric with them to
make sure they understand the components of the project.

Activity (90 - 120 min)

Unplugged: Program Planning
Group: Place students in groups of 2-3.

Distribute: Hand out the project guide to students. This is the tool students will use to scope out their projects before
getting onto the computers. Give students some time to brainstorm the type of program they want to make.

 Make a Game Project GuideMake a Game Project Guide

Brainstorming

Give groups some time to brainstorm ideas for their project. The goal is to come up with a simple game that can be
controlled using elements of the Circuit Playground. Encourage students to think about all of the programs and projects
that they've made so far as potential starting points (including the prototypes from Unit 4).

1. Once groups have settled on an idea, they can record
it on the activity guide under Project Brainstorming.

2. Next students think through the Events they'll need to
respond to.

3. Finally students consider the functions that they may
need to create.

Prototyping the Program
Transition: Once teams have completed their planning
sheet, they can head to Code Studio to work on
prototyping their projects.

 Code Studio levels

Lesson Overview Student Overview

Demo - Bug Grab Student Overview

Wrap Up (10 min)

Sharing Projects
Share: Find a way for groups to share their projects with each other. It will likely be helpful to use the share link for the
project so that students can share the project with other students.

Self Assessment
Using the rubric, students should assess their own project before submitting it.

 Send students to Code Studio to complete their reflection on their attitudes toward computer science. Although their
answers are anonymous, the aggregated data will be available to you once at least five students have completed the
survey.

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CS - Computing Systems

If you are interested in licensing Code.org materials for commercial purposes, contact us.

Plan Your Project Student Overview

Screen Design 4 (click tabs to see student view)

Events 5 6 (click tabs to see student view)

Functions 7 8 (click tabs to see student view)

Finishing Touches 9 (click tabs to see student view)

Reflection 10 (click tabs to see student view)

http://creativecommons.org/
file://code.org/contact

UNIT

6
Ch. 1 1 2 3 4 5 6 7 8 9 Ch. 2 10 11

12 13 14 15 16

Lesson 10: Arrays and Color LEDs
App Lab | Maker Toolkit

Overview
An array is an ordered collection of items, usually of the same type. In
this lesson, students learn ways to access either a specific or random
value from a list using its index. They then learn how to access the
colorLEDs array that controls the behavior of the color LEDs on the
Circuit Playground. Students will control the color and intensity of each
LED, then use what they have learned to program light patterns to
create a light show on their Circuit Playground.

Purpose
Arrays are a common data structure in computer science, used to
make storing and accessing information easier. The lesson prepares
students to access items within an array, but doesn't yet cover
creating and modifying arrays, which will be addressed in the
following lesson. Students are also introduced to the ring of color
LEDs, which are exposed as an array called colorLeds . Students

learn how to access and control each LED in the array individually,
preparing them to access multiple LEDs though iteration later in the
chapter.

Assessment Opportunities
1. Access an element in an array using its index

Code Studio: See the rubric on bubble 7 and the quick check on
bubble 9

2. Use the color LED array to individually control each color
LED

Code Studio: See the rubric on bubble 17

Agenda
Warm Up (5 min)

Discussion: What is a List?

Activity (45 min)

Arrays and Color LEDs

Wrap Up (5 min)

Discussion: Objects Vs Arrays

View on Code Studio

Objectives
Students will be able to:

Access an element in an array using its index
Use the color LED array to individually control
each color LED

Vocabulary
Array - A data structure in JavaScript used to
represent a list.

Introduced Code
colorLeds

colorLeds[index].on()

colorLeds[index].blink(interval)

colorLeds[index].intensity(brightness)

colorLeds[index].color(color)

list[index];

file://docs.code.org/applab/colorLeds/
https://studio.code.org/s/csd6-2019/stage/10/puzzle/1/
file://docs.code.org/applab/colorLeds/
file://docs.code.org/applab/on/
file://docs.code.org/applab/blink/
file://docs.code.org/applab/intensity/
file://docs.code.org/applab/color/
file://docs.code.org/applab/accessListItem/

 Discussion
Goal

While the types of lists students come up with vary from
class to class, the two main characteristics of lists that
students should understand is that they usually are
comprised of items of the same type (tasks to complete,
names of people, song titles, grocery items, etc.) and that
they have an order. Some common types of lists include a
to-do list, a class roster, a playlist, or a grocery list.

Teaching Guide
Warm Up (5 min)

Discussion: What is a List?
Set Up: Have students take out their journals. In their journals have students respond to the following prompt.

Prompt: What is a list? What do you use lists for?

Discuss: Once students have had time to write down
their own thoughts, have them share out to the whole
class. Work as a class to try to get an understanding of
what a list is.

 Remarks

When we program, we sometimes want to store lists of
items. In Javascript, we do this using an array. An array
is a collection of items that are stored in a particular
order. We're going to look at different ways to use arrays, and then see how they will help us to control more LEDs on the
Circuit Playground.

Activity (45 min)

Arrays and Color LEDs
Transition: Head to Code Studio

 Code Studio levels

Lesson Overview Student Overview

Video: Introduction to Arrays Student Overview

Introduction to Arrays 3 4 5 6 7

(click tabs to see student view)

Arrays Student Overview

Using Arrays Student Overview

Color LEDs 10 11 12 13 14 (click tabs to see student view)

Circuit Playground: Color LEDs Student Overview

 Content Corner

Arrays are frequently used to collect items of the same
type (a bunch of numbers, a bunch of strings, a bunch of
button names, etc), but in JavaScript all list items need not
be of the same type. You can create lists the include
numbers, strings, objects, and even other lists.

An Object is a data structure that combines many values
(such as numbers, strings, and even functions) that
represent the attributes of that object (height, width,
rotation, name) which are easier to keep track of if done in
one place. The attributes can be of many different types
but they all describe one object.

Wrap Up (5 min)

Discussion: Objects Vs Arrays
Prompt: You have now seen both objects, such as the
Sprite object, and arrays. How is an array different from
the attributes of an object? When would you use an
array? When would you use an object?

You can either use this as an exit ticket or have a class
discussion if you have time.

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CS - Computing Systems

If you are interested in licensing Code.org materials for commercial purposes, contact us.

Light Show 16 17 (click tabs to see student view)

Challenge Levels Extra (click tabs to see student view)

http://creativecommons.org/
file://code.org/contact

UNIT

6
Ch. 1 1 2 3 4 5 6 7 8 9 Ch. 2 10 11

12 13 14 15 16

Lesson 11: Making Music
App Lab | Maker Toolkit

Overview
In this lesson students will use the buzzer to its full extent by
producing sounds, notes, and songs with the buzzer. Students start
with a short review of the buzzer's frequency and duration
parameters, then move on to the concept of notes. Notes allow
students to constrain themselves to frequencies that are used in
Western music and provide a layer of abstraction that helps them to
understand which frequencies might sound good together. Once
students are able to play notes on the buzzer, they use arrays to hold
and play sequences of notes, forming simple songs.

Purpose
This lesson allows students to get more creative with the buzzer by
introducing the concept of a "note" and by using arrays to hold
sequential collections of notes. Using notes rather than frequencies
provides a layer of abstraction that makes it easier for students to
identify sounds that can be used to make music. Arrays provide a way
to group together sounds in sequence, so that they can be played as
music. Using the playNotes block to iterate over an array of notes

provides a conceptual foundation for working with for loops in the

next lesson.

Assessment Opportunities
1. Create and modify an array

Code Studio: see rubric on bubble 9

2. Use the buzzer to produce sequences of notes

Code Studio: see rubric on bubble 14

3. Recognize an array as a list of elements that can be
operated on sequentially.

Wrap up: Students should recognize that the playNotes block

operates on each element of the notes array in sequence.

Agenda
Warm-Up (5 min)

Color LEDs vs the Buzzer

Activity

Making Music

Wrap-Up (5 min)

Journal

View on Code Studio

Objectives
Students will be able to:

Create and modify an array
Use the buzzer to produce sequences of
notes
Recognize an array as a list of elements that
can be operated on sequentially.

Introduced Code
buzzer.note(note, duration)

buzzer.playNotes(array, tempo)

list.length

var list = ["a","b","d"];

https://studio.code.org/s/csd6-2019/stage/11/puzzle/1/
file://docs.code.org/applab/buzzer.note/
file://docs.code.org/applab/buzzerplaynotes/
file://docs.code.org/applab/listLength/
file://docs.code.org/applab/declareAssign_list_abd/

 Discussion
Goal

Students may come up with many different ideas, but
there are two aspects of this problem that should be
highlighted before students move on to the activity. First,
specifying frequencies is not the best way to indicate how
high or low a buzz should be, since music only uses a
limited number of frequencies, and other frequencies are
considered "out of tune". Music is usually written down as
specific notes on a scale, which makes it much easier to
see which sounds will go well together. (Students with a
musical background will likely have a much better grasp of
this issue.) Second, students will need a way to string
sounds, or notes, together to make a song. This second
point should be more universally understood.

Teaching Guide
Warm-Up (5 min)

Color LEDs vs the Buzzer
Prompt: We've been using the buzzer to make sounds,
but those buzzes didn't always sound too great. What do
you think you need to make real music on the buzzer?

Activity

Making Music
Transition: Send students to Code Studio.

 Code Studio levels

Wrap-Up (5 min)

Journal
Prompt: Today, instead of just choosing one element from an array, we used the playNotes block to do something to every

element. Think back to the other arrays you have seen. How might doing something to every element in an array be useful
there?

Lesson Overview Student Overview

Playing Notes 2 3 4 5 (click tabs to see student view)

Making Music Student Overview

Musical Arrays 7 8 9 (click tabs to see student view)

Modifying Arrays Student Overview

Making Songs 11 12 13 14 (click tabs to see student view)

Levels Extra Extra (click tabs to see student view)

 Assessment Opportunity

Students should reconize that the playNotes block plays
each note in the array in sequence, and extend that idea
to other times when operating on each element of an array
would be useful. This will prepare them to for the next
lesson, in which for loops are used to operate on each
element of a list in sequence.

Share After giving students time to reflect in their own
journals, have them share with a partner or in small
groups.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

6
Ch. 1 1 2 3 4 5 6 7 8 9 Ch. 2 10 11

12 13 14 15 16

Lesson 12: Arrays and For Loops
App Lab | Maker Toolkit

Overview
Using a for loop to iterate over all of the elements in an array is a
really useful construct in most programming languages. In this lesson,
students learn the basics of how a for loop can be used to repeat
code, and then combine it with what they've already learned about
arrays to write programs that process all elements in an array.
Students use for loops to go through each element in a list one at a
time without having to write code for each element. Towards the end
of the lesson students will apply this with the colorLed list on the

board to create an app that changes all of the LEDs each time a
button is clicked.

Purpose
As students start using arrays more frequently, a common pattern
emerges wherein you want to run some code on each element of an
array. While for loops are a generally useful structure for repeating
code, they are a particularly useful for iterating over an array. In this
lesson we build on the understanding of arrays that students have
developed in the last two lessons by introducing the for loop , which
combines a variable, the counter pattern, and a conditional all in a
single construct.

Assessment Opportunities
1. Modify the exit condition of a for loop to control how

many times it repeats

Code Studio: see rubric on bubble 13

2. Use a for loop to iterate over an array

Code Studio: see rubric on bubble 13

Agenda
Warm Up (5 min)

Run Code on All Elements of an Array

Activity (40 min)

Arrays and For Loops

Wrap Up

Journal

View on Code Studio

Objectives
Students will be able to:

Modify the exit condition of a for loop to
control how many times it repeats
Use a for loop to iterate over an array

Vocabulary
Array - A data structure in JavaScript used to
represent a list.
For Loop - Loops that have a predetermined
beginning, end, and increment (step interval).

Introduced Code
for(var i=0; i<4; i++){ //code }

function myFunction(n){ //code }

Call a function with parameters

https://studio.code.org/s/csd6-2019/stage/12/puzzle/1/
file://docs.code.org/applab/forLoop_i_0_4/
file://docs.code.org/applab/functionParams_n/
file://docs.code.org/applab/callMyFunction_n/

 Discussion
Goal

You shouldn't expect students to know how exactly a
computer would do this, but to start thinking about what is
needed to keep track of where you are in an array (the
index), how you would know you've reached the end of the
array (the array length), and how you might incrementally
increase where you are in the list (the counter pattern).

Teaching Guide
Warm Up (5 min)

Run Code on All Elements of an Array
Discuss: If you had a list full of all of your ToDos and you
wanted the computer to print out each one, how might
you do it? Don't worry about the specific code, focus on
the what information your program would need to know
and keep track of. Would your approach still work if you
added or removed a ToDo from your list?

 Remarks

Doing something to every element of an array is a
really common problem in Computer Science, and figuring out how to solve this problem will let us write more efficient
programs. Today we're going to focus on three things to help us with this problem

1. Using the index to do something to elements in an array
2. Keeping track of a counter so we can move through the elements of an array by index
3. Using the length of an array to know when we've reached the end

Activity (40 min)

Arrays and For Loops
Transition: Send students to Code Studio

 Code Studio levels

Wrap Up

Lesson Overview Student Overview

Programs that Repeat 2 3 (click tabs to see student view)

Video: For Loops Student Overview

For Loops 5 6 7 8 (click tabs to see student view)

For Loops Student Overview

For Loops and Color LEDs 10 11 12 13

(click tabs to see student view)

Journal
Prompt: Have students reflect on their development of the five practices of CS Discoveries (Problem Solving,
Persistence, Creativity, Collaboration, Communication). Choose one of the following prompts as you deem appropriate.

Choose one of the five practices in which you believe you demonstrated growth in this lesson. Write something you did
that exemplified this practice.

Choose one practice you think you can continue to grow in. What’s one thing you’d like to do better?

Choose one practice you thought was especially important for the activity we completed today. What made it so
important?

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CS - Computing Systems

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://docs.google.com/document/d/1FhHPqlC6dU_z9retuBYb-duUwyKpnjwuEgjF4zfdhvI/edit#heading=h.5u3d4jfozbgc
http://creativecommons.org/
file://code.org/contact

UNIT

6
Ch. 1 1 2 3 4 5 6 7 8 9 Ch. 2 10 11

12 13 14 15 16

Lesson 13: Accelerometer
App Lab | Maker Toolkit

Overview
In this lesson, students will explore the accelerometer and its
capabilities. They’ll become familiar with its events and properties, as
well as create multiple programs utilizing the accelerometer similar to
those they’ve likely come across in real world applications.

Purpose
This lesson gives students an opportunity to work with the
accelerometer sensor and explore its orientation properties and
accelerometer-specific board events. Students will see the purpose
and uses of an accelerometer in real world devices and programs and
create their own versions of some of these applications. To do this,
students will need to refer back to their past knowledge of the counter
pattern to create functional accelerometer-based apps.

Assessment Opportunities
1. Recognize the use and need for accelerometer orientation

(pitch and roll).

Wrap Up: Students should mention several real world applications
for the accelerometer.

2. Use the data event to continually update an element's
properties.

Code Studio: see rubric on bubble 11.

Agenda
Warm Up (5 Min)

What Makes a Sensor?

Activity

The Accelerometer

Wrap Up (5 Min)

Journal

View on Code Studio

Objectives
Students will be able to:

Recognize the use and need for
accelerometer orientation (pitch and roll).
Use the data event to continually update an
element's properties.

Introduced Code
accelerometer.getOrientation()

https://studio.code.org/s/csd6-2019/stage/13/puzzle/1/
file://docs.code.org/applab/accelerometer.getOrientation/

 Discussion
Goal

Students have been exposed to sensors in previous
lessons but have only seen a few aspects of what a sensor
can measure. This discussion gives students a chance to
think about the characteristics of a sensor, while also
thinking about the other possible characteristics of a
sensor they haven’t been exposed to.

 Assessment Opportunity

Students should think of several applications for the
accelerometer, explaining how knowing the pitch and roll
could be useful.

Teaching Guide
Warm Up (5 Min)

What Makes a Sensor?
Prompt: Refer back to the analog sensors, what makes
a sensor a sensor? Could an accelerometer be a sensor?

Share: Have students share their thoughts and ideas in
small groups.

Activity

The Accelerometer
Transition: Send students to Code Studio.

 Code Studio levels

Wrap Up (5 Min)

Journal
Prompt: What are some uses for pitch and roll in an
everyday app?

Lesson Overview Student Overview

Orientation 2 3 4 5 (click tabs to see student view)

The Accelerometer Student Overview

Accelerometer Events 7 8 (click tabs to see student view)

Using Accelerometer Events Student Overview

Revisiting the Counter Pattern Student Overview

Accelerometer Events 11 12 13 (click tabs to see student view)

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

6
Ch. 1 1 2 3 4 5 6 7 8 9 Ch. 2 10 11

12 13 14 15 16

Lesson 14: Functions with Parameters
App Lab | Maker Toolkit

Overview
The lesson starts with a quick review of parameters, in the context of
App Lab blocks that they students have seen recently. Students then
look at examples of parameters within user-created functions in App
Lab and create and call functions with parameters for themselves,
using them to control multiple elements on a screen. Afterwards,
students use for loops to iterate over an array, passing each element
into a function. Last, students use what they have learned to create a
star catching game.

Purpose
In previous lessons, students have used functions to define blocks of
code that can be used in multiple places in a program. In this lesson,
students learn how to use parameters to generalize the purpose of a
function. Parameters allow a program to specify the details of how a
function works when it is called, rather than when the program is
defined. Although students have seen functions with parameters
earlier in the unit, this is the first time that they are expected to define
and call their own. Students also learn how to use a for loop to
iteratively pass in the elements of an array as parameters to a
function, allowing them to use the same function on multiple elements
on the screen.

Assessment Opportunities
1. Use parameters to generalize the purpose of a function.

Code Studio: See rubric on bubble 15

Agenda
Warm Up
Activity
Wrap Up

View on Code Studio

Objectives
Students will be able to:

Use parameters to generalize the purpose of
a function.

Vocabulary
Parameter - An extra piece of information
passed to a function to customize it for a
specific need

Introduced Code
function myFunction(n){ //code }

Call a function with parameters

https://studio.code.org/s/csd6-2019/stage/14/puzzle/1/
file://docs.code.org/applab/functionParams_n/
file://docs.code.org/applab/callMyFunction_n/

 Discussion
Goal

Goal: Students should eventually see that parameters
give a program flexibility. Sometimes, multiple commands
are similar enough that it makes sense to combine them
into one, but with a parameter to distinguish between their
differences. Sometimes, such as the case of
buzzer.frequency , there are too make options to make a
separate block for each one. Parameters allow a
programmer to use a single solution to solve multiple,
related problems.

Teaching Guide
Warm Up

Prompt: When you needed to access the pitch and roll
of the accelerometer in the last lesson, you used the
block accelerometer.getOrientation , and you chose

whether to get the pitch or the roll. Why do you think the
creators make the program work that way, rather than
having two blocks, one for the pitch and one for the roll?

What other blocks that you have seen take parameters?
Why are parameters so useful?

 Remarks

So far, the functions that you have used always did the
exact same thing. Today, we're going to look at a way to make functions even more useful by giving them parameters,
just like some of the blocks that you just talked about.

Activity

 Send students to Code Studio

 Code Studio levels

Wrap Up

Prompt: Think back to some of the programs that you have made before. What are two times that you could have used
functions with parameters? What would the parameter be? How should the function's behavior change when the parameter
changes?

Lesson Overview Student Overview

Functions with Parameters 2 (click tabs to see student view)

Functions with Parameters Student Overview

Functions with Parameters 4 5 6 (click tabs to see student view)

Iteration and Parameters 7 8 9 (click tabs to see student view)

Star Chaser 10 11 12 13 14 15 Extra Extra

(click tabs to see student view)

file://docs.code.org/applab/buzzer.frequency/
file://docs.code.org/applab/accelerometer.getOrientation/

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

6
Ch. 1 1 2 3 4 5 6 7 8 9 Ch. 2 10 11

12 13 14 15 16

Lesson 15: Circuits and Physical
Prototypes
App Lab | Maker Toolkit

Overview
In preparation for this chapter's final project, students will learn how to
develop a prototype of a physical object that includes a Circuit
Playground. Using a modelled project planning guide, students will
learn how to wire a couple of simple circuits and to build prototypes
that can communicate the intended design of a product, using cheap
and easily found materials such as cardboard and duct tape.

Purpose
The goal of this lesson is both to model for students how thinking
about the physical design of a product impacts the prototyping
process, and to introduce a handful of practical skills that will make
creating their final projects easier.

Assessment Opportunities
1. Create and debug simple circuits

Code Studio: See rubric on bubble 9. Note that you will need
access to the student's physical prototype for this assessment.

2. Develop an interactive physical protype that combines
software and hardware

Code Studio: See rubric on bubble 15. Note that you will need
access to the student's physical prototype for this assessment.

3. Consider the needs of diverse users when designing a
product

Wrap Up: Students should identify multiple target users and how
different features of the design might impact them.

Agenda
Warm Up (5 min)

Designing a Physical Device

Activity 1 (30 min)

Introducing the Smart Bike

Activity 2 (30-45 min)

Building the Prototype

Activity 3 (30-45 min)

Adding Inputs

Wrap Up (15 min)

View on Code Studio

Objectives
Students will be able to:

Create and debug simple circuits
Develop an interactive physical protype that
combines software and hardware
Consider the needs of diverse users when
designing a product

Preparation
Gather prototyping materials, such as:

Structural material (cardboard,
construction paper, etc)

Connective material (tape, glue, hot
glue, etc)

Construction tools (scissors, staplers,
etc)

Other materials (cups, binder clips,
paper plates, etc)

Prepare circuit wiring materials, such as:
Alligator clip wires (included in Circuit

Playground classroom kit)
LEDs (included in Circuit Playground

classroom kit)
Other conductive material (wire, paper

clips, foil, etc)
(optional) Buttons or switches

Print a copy of the project guide for each
group of 2-3 students

Prepare a model button to show the class

Links
Heads Up! Please make a copy of any
documents you plan to share with students.

For the Students

How Computers Work: Circuits & Logic
- Video (download)
Physical Prototyping - Project Guide

https://studio.code.org/s/csd6-2019/stage/15/puzzle/1/
https://youtu.be/ZoqMiFKspAA
http://videos.code.org/cs-discoveries/concept/04_CircuitsLogic_sm.mp4
https://docs.google.com/document/d/1MYLYmwNW4DH7n_oCTZFGnYz52e99htwzKTqOcmL5txQ/edit

Sharing Designs

Vocabulary
Circuit - A device that provides a path for an
electric current to flow, often modifying that
current. In computers, circuits allow for simple
logical and mathematical operations using
electricity.
Prototype - A first or early model of a
product that allows you to test assumptions
before developing a final version.

Introduced Code
pinMode(pin, mode);

digitalWrite()

var myLed = createLed(pin);

var myButton = createButton(pin);

Make a Copy

file://docs.code.org/applab/pinMode/
file://docs.code.org/applab/digitalWrite/
file://docs.code.org/applab/createled/
file://docs.code.org/applab/createbutton/

 Discussion
Goal

The point of this short discussion is to get students
thinking about how we might use a board like the Circuit
Playground as part of a larger computing device. It's not
important that we're able to completely replicate student's
ideas with the board, but that we can start thinking about
where the board could be used and where we might need
to add additional functionality.

 Discussion
Goal

Students should be able to identify that almost all of the
functionality (such as blinking lights, responding to button
presses, and buzzing) can be done with the Circuit
Playground as is. The major barrier we want to identify is
how the physical requirements of the plan (such as placing
the blinker lights on the ends of the handlebars) would
require adding new hardware to the board. This is intended
to tee up the next activity, in which students wire additional
circuits onto their boards.

Teaching Guide
Warm Up (5 min)

Designing a Physical Device
Prompt: If you could create any kind of computational
device, what would it be? What would it do? How would
people interact with it?

Share: After a few minutes of thinking time, have
students share their ideas.

Discuss: How might a device like the Circuit Playground
help us design and prototype some of these ideas?
Consider picking a couple of ideas to put up on the board
and list with the class which things features of a given
device could be replicated with an element of the board, and which might require additional hardware.

Activity 1 (30 min)

Introducing the Smart Bike
Group: Place students into groups of 3-4.

Distribute: Give each group a copy of the project guide, and introduce the project. Give students a moment to look over
the guide. This guide is similar to the one they will be using for their own final projects, but it's already been mostly
completed, which allows for them to focus on how to implement the idea, instead of what the idea should be.

Discuss: Focusing on the description and sketch on the
first page, how might we use the Circuit Playground to
develop this prototype. Which elements are we currently
unable to replicate with the board?

Display: Watch the How Computers Work: Circuits
& Logic - Video (level two in the progression) as a
class.

 Remarks

The elements of our Circuit Playground are all made up
of circuits so small that we can't even see most of them,
but you can create a simple circuit on your own by
attaching wires to the copper pads on the edge of the board.

Distribute: Wires, LEDs, and any other hardware you want available for this portion. Let the class know that before digging
too far into building our prototypes, we'll need to learn how to add additional hardware to the board.

Transition: Head to Code Studio to work on the Simple Circuits section.

 Code Studio levels
Levels
 3
 4
 5
 6

https://youtu.be/ZoqMiFKspAA

View on Code Studio

View on Code Studio

View on Code Studio

View on Code Studio

 Teaching
Tip

Learning More About LEDs

We include LED sequins in the Circuit Playground
classroom pack, but if you're careful you can use just
about any LEDs you like. To learn more about pairing
LEDs with the proper resistor, check out Adafruit's LED
primer.

 Teaching
Tip

Why Are We Talking Pins?
You may notice that in the early levels of this lesson
students are programming in a much different way than
they have before, directly manipulating pins. The
digitalWrite() and pinMode() commands are useful to get
our wiring set up quickly, but are not the core concerns of
this lesson. As soon as students are comfortable wiring
LED circuits we will introduce techniques to control those
LEDs with the higher level commands that have been used
up to this point (like led.on() and led.off()).

 7
 8
 9
 10

Student Instructions

Make a Prediction
All of the devices that you've used so far are actually circuits connected to numbered pins! Look for #13 on your board to
see which circuit is connected to pin 13, then read through this code and predict what will happen when the program is run.

Student Instructions

Student
Instructions

Wire a Circuit
You can use any of the numbered pads to add additional
circuits to your board. Let's use pin 2 to add another LED.

Do This
Using a wire, connect pin 2 to the positive (+) side of
an LED
Using another wire, connect the negative (-) side of the
LED to a ground (GND) pin (it doesn't matter which
one)
Run this program to test your circuit. If it worked, your
LED should turn on.

Debugging Tip: LEDs only work if the electricity is
flowing from positive to negative. If your LED
doesn't light up, make sure that it's oriented the
right way.

Student Instructions

Creating Board Objects
You might have noticed that the new blocks we're using are in a different toolbox drawer. The Circuit drawer contains all of
the board objects that are built into the Circuit Playground, but when you start wiring your own circuits the Maker Toolkit no
longer knows where everything is.

The new Maker drawer contains general purpose commands instead of ones that are customized for the Circuit
Playground. In addition to the pinMode() and digitalWrite() commands you've seen, it includes commands to create new

objects on the board that can be programmed in the same way as the blocks in the Circuit drawer. The var myLed =

createLed() command, for example, creates a new LED object that behaves just like the led blocks you've been using.

Do This

https://studio.code.org/s/csd6-2019/stage/15/puzzle/3
https://studio.code.org/s/csd6-2019/stage/15/puzzle/4
https://learn.adafruit.com/all-about-leds/overview
https://studio.code.org/s/csd6-2019/stage/15/puzzle/5
file://docs.code.org/applab/digitalWrite/
file://docs.code.org/applab/pinMode/
file://docs.code.org/applab/led.on/
file://docs.code.org/applab/led.off/
https://studio.code.org/s/csd6-2019/stage/15/puzzle/6
file://docs.code.org/applab/pinMode/
file://docs.code.org/applab/digitalWrite/
file://docs.code.org/applab/led/

View on Code Studio

View on Code Studio

View on Code Studio

Now that you're creating new board objects that we don't have blocks for, you'll need to work in text mode. You can still
drag out blocks that you're familiar with from the Circuit drawer, you'll just need to change the name of the object.

Keep your LED wired just as it was before (connected to pin 2)
Make sure you're in text mode, not block mode.
Drag out an led.blink() block below the comment Blink myLed .

Replace the text led with myLed .

Test your code.

Student Instructions

Wiring Multiple LEDs
Using the createLed() block you can connect and control as many LEDs as your board has room for. Each LED needs to

be connected to a separate numbered pin, but they can all share the same ground pin.

Do This
Leave the current LED connected to pin 2, but add another one to a numbered pin of your choice. For your new LED:

Add a var myLed = createLed() block.

Replace the variable label myLed with a unique label.

Make sure you're in text mode, not block mode.
Add an led.blink() command.

Replace the text led with your new LED variable.

Test your code.

Challenge: Try adding a third LED and make all three LED blink at different intervals.

Student Instructions

Smart Bike - Blinkers
Using your planning guide, wire up the two LEDs that will serve as the blinkers. In order to make sure that the blinkers can
be mounted at the end of the handlebars, make sure you wire them so that they can stretch out in opposite directions.

Do This
Using alligator clips, wire, or other conductive material, connect two LEDs to your board, one for each turn signal blinker.

Hook up each LED to a different numbered pin on the board.
Use the createLed() block to create an LED object for each blinker.

Tip: Make your wiring easier by considering how your blinkers will be mounted when selecting a pin to use.

Student Instructions

Smart Bike - Blinker Controls
With your turn signal LEDs hooked up, you just need to program some buttons to control them. You may want to place
buttons elsewhere on the bike to make controlling your turn signals easier, but for now we'll just use the built in left and right
buttons.

file://docs.code.org/applab/led.blink/
file://docs.code.org/applab/led/
https://studio.code.org/s/csd6-2019/stage/15/puzzle/7
file://docs.code.org/applab/createled/
file://docs.code.org/applab/led.blink/
file://docs.code.org/applab/led/
https://studio.code.org/s/csd6-2019/stage/15/puzzle/8
file://docs.code.org/applab/createled/
https://studio.code.org/s/csd6-2019/stage/15/puzzle/9

View on Code Studio

 Assessment
Opportunities

Key Concepts:
Connect, troubleshoot, and debug external devices and
integrated computing systems.

Assessment Criteria:
Extensive Evidence
Convincing Evidence
Limited Evidence
No Evidence

 Teaching Tip

Sharing Boards? If you are sharing boards among
multiple classes, you'll need to take that into consideration
before groups start to build their projects. You may want to
add a design constraint that the board must be easily
removable from the design, or to create group sizes large
enough to ensure that each group in every class has
access to a board at all times.

 Teaching Tip

To provide more student ownership and creativity,
consider allowing students to modify the form (but not
necessary functionality) of the smart bike controller. For
example, they may want to turn it into something that the
rider could wear, or something that works on skateboards
or other modes of transportation. The import element here
is that we work in a form that requires adding additional
circuits to the board, instead of continuing to work solely
within the contrainsts of the board's form.

Do This
Add event handlers to blink the left turn signal when
the left button is pressed.
Add event handlers to blink the right turn signal when
the right button is pressed.
Test your code!

Hint: You'll need to be in text mode to make the
blinkers work, since there are no built-in blocks
for the elements that you add on to the board.

Student Instructions

Build Your Blinkers
Using the circuit you just built, return to your smart bike prototype and add the blinkers.

Activity 2 (30-45 min)

Building the Prototype
Transition: At this point students should have put
together the two additional LED circuits necessary for
their turn signals. Now we're going to transition off of the
computers for a bit to work on building that circuit into a
physical prototype.

Distribute: Make available any remaining building
materials that you've gathered, such as cardboard and
tape.

Build: Allow groups some time to build their prototypes,
using the board and LED circuits. While there's a lot of
potential functionality that we could build at this point
based on the guide, make sure that students are
focusing on making the turn signals work.

Test: Once the basic prototype is built, have students
test the code they wrote. It's not uncommon at this point
to see new bugs that weren't present when testing the
software alone. Encourage students to test all elements
of their new circuits, ensuring that all of the connection
points are solid, that the circuits are connected to the
correct pins, and that the LEDs are oriented correctly.

Activity 3 (30-45 min)

Adding Inputs
Display: Put up the sketch on the first page of Physical Prototyping - Project Guide where the whole class can see it.
The first prototype that we've constructed takes care of the turn signals, but now we're going to focus on the "horn" feature.
Clearly we can use the buzzer to make the horn sound, but how can we control the horn?

https://studio.code.org/s/csd6-2019/stage/15/puzzle/10
https://docs.google.com/document/d/1MYLYmwNW4DH7n_oCTZFGnYz52e99htwzKTqOcmL5txQ/edit

View on Code Studio

View on Code Studio

Transition: Send students back to the online progression to learn about creating button circuits, which they will then add to
their smart bike prototypes. This portion of the progression will take them all the way through finalizing their designs and
submitting the code.

 Code Studio levels
Levels
 11
 12
 13
 14
 15

Student Instructions

Student Instructions

Make Your Own Buttons

https://studio.code.org/s/csd6-2019/stage/15/puzzle/11
https://studio.code.org/s/csd6-2019/stage/15/puzzle/12
https://cdo-curriculum.s3.amazonaws.com/media/uploads/button_alligator.png

View on Code Studio

View on Code Studio

View on Code Studio

Similar to LEDs, buttons are a really simple circuit that you can add to your board pretty easily. Like LEDs, buttons should
be wired from a numbered pin to a ground pin, but unlike LEDs, a button circuit should be disconnected in the middle.
When you connect the circuit, it will produce a button press event.

Do This
Grab two wires.
Connect one wire to an open numbered pin.
Connect the second wire to a ground pin.
Update line 2 so that it's referencing the pin you chose.
Run the provided code.
With the program running, touch the unconnected ends of both wires together to "press" the button.

Tip: A button circuit can be made with many different kinds of materials, as long as they are electrically
conductive. Try making buttons with foil, silverware, or paper clips.

Student Instructions

Smart Bike - Buzzer
Now that we know how to add more buttons, you can add a button to control the smart bike's horn.

Do This
Using the button that you've already wired to the board, find a good spot to place your horn button. Then:

Create a button object for your horn button
Add an event handler to buzz when button is pressed

Hint: The button object that you create won't be in the onBoardEvent() dropdown, so you'll need to type the
name you've chosen in. Make sure not to use quotation marks!

Student Instructions

Smart Bike - Headlight
The last part of the smart bike plan that we need to figure out is the automatic headlight.

Do This
First you'll need to decide what to use for your headlight. You could add another LED circuit, or perhaps you can find a way
to mount the board that allows for using the color LEDs as a headlight. Once you've figured out the physical layout of your
lights, add code to your program that turns on and off the headlight based on how light or dark it is.

Hint: If you're using the built-in color LEDs, you might need to protect the light sensor to make sure that
it's responding to the ambient light level and not the light from the LEDs.

Student Instructions

Smart Bike - Final Touches
At this point your smart bike should have all of its basic functionality in place. Now is your chance to add any finishing
touches.

https://studio.code.org/s/csd6-2019/stage/15/puzzle/13
file://docs.code.org/applab/onBoardEvent/
https://studio.code.org/s/csd6-2019/stage/15/puzzle/14
https://studio.code.org/s/csd6-2019/stage/15/puzzle/15

 Assessment
Opportunities

Key Concepts:
Develop an interactive physical prototype that integrates
hardware and software, including simple circuits.

Assessment Criteria:
Extensive Evidence
Convincing Evidence
Limited Evidence
No Evidence

 Assessment Opportunity

This discussion is intended to tie the physical design work
students are doing now to the work they did in unit 4.
Though we haven't asked students to spend the same
amount of energy thinking about users and their needs in
this project, it's still an essential element of good design.
Push your students to consider how the design of
physical computing devices brings new challenges and
opportunities when it comes to designing for a diverse set
of users. Students may consider how age, eyesight, or
hearing may impact the usability of this design.

Do This
You may want to divide and conquer at this point,
allowing some members of your group to focus on the
physical aspects of the prototype while others work on
improving the code. As this is a prototype, don't worry
about making everything perfect, but do try to ensure that
the prototype communicates your design well enough to
test and get feedback.

Wrap Up (15 min)

Sharing Designs
Share: Give each group an opportunity to share their designs. Take some time to notice and celebrate the differences in
design - even in a situation where we are all working from the same plan, each individual will bring their own experiences
and perspectives to the design of a product.

Discuss: Using some of the specific design choices as
an example, discuss with the class how their design
choices impact the usability of their products. What
assumptions did we make about our users, and how
might our design choices have excluded or
disadvantaged different user groups.

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CS - Computing Systems

IC - Impacts of Computing

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

6
Ch. 1 1 2 3 4 5 6 7 8 9 Ch. 2 10 11

12 13 14 15 16

Lesson 16: Project: Prototype an
Innovation
App Lab | Maker Toolkit | Project

Overview
In this final project for the course, students team to develop and test a
prototype for an innovative computing device based on the Circuit
Playground. Using the inputs and outputs available on the board,
groups will create programs that allow for interesting and unique user
interactions.

Purpose
This lesson is the culmination of Unit 6 and provides students an
opportunity to build a Maker Toolkit project of their own from the
ground up. This project is an opportunity to showcase technical skills,
but they will also need to demonstrate collaboration, constructive peer
feedback, and iterative problem solving as they encounter obstacles
along the way. This project should be student-directed whenever
possible, and provide an empowering and memorable conclusion to
the final unit of CS Discoveries.

Assessment Opportunities
Use the project rubric attached to this lesson to assess student
mastery of learning goals of this chapter. You may also choose to
assign the post-project test through Code Studio.

Agenda
Warm Up (10 min)

Review Project Guide

Activity (80-200 min)

Define - Scope Innovation
Prepare - Complete Project Guide
Try - Develop Prototypes
Reflect - Peer Review
Iterate - Revise Prototypes

Wrap Up (30-60 min)

Share

Extensions

Pitch Video
Marketing Website
Crowdfunding Campaign

View on Code Studio

Objectives
Students will be able to:

Independently scope the features of a piece of
software
Prototype a physical computing device
Implement a plan for developing a piece of
software that integrates hardware inputs and
outputs

Preparation
Collect materials for physical prototyping,

eg.
Cardboard
Scissors
Tape
Glue
Foil

Print a copy of the project guide for each
pair of students

Print a copy of the peer review sheet for
each student

Print a copy of the rubric for each student

Links
Heads Up! Please make a copy of any
documents you plan to share with students.

For the Students

Prototype an Innovation - Peer Review

Prototype an Innovation - Rubric

Computer Science Practices - Reflection

Prototype an Innovation - Project Guide

Make a Copy

Make a Copy

Make a Copy

Make a Copy

https://studio.code.org/s/csd6-2019/stage/16/puzzle/1/
https://docs.google.com/document/d/1g9mDgXX5iaf2rhvR7nCLAmgMzKNNXRlIbExlBym3ILM/edit
https://docs.google.com/document/d/1iCIp2USouJwLmQcc-VhoBPKMyvnEXDBq28ojLVbTJ90/edit
https://docs.google.com/document/d/1Ccf-WMH2qFDhycKaKSILRrZUe42lWESyRqMgdTymCPw/edit
https://docs.google.com/document/d/14fdmAmOJpOJw6KXielJAws1wf2AWEnSqQnZueUC6GvM/edit

Teaching Guide
Warm Up (10 min)

Review Project Guide
Group: Place students into groups of 2-4 for this project. At your discretion you may choose to have students form larger
groups or work independently.

Distribute: Provide a copy of the project guide to each group. As a class, review the different steps of the project and
where they appear in the project guide. Direct students towards the the rubric so that they know from the beginning what
components of the project you will be looking for.

Activity (80-200 min)

Define - Scope Innovation
Brainstorm: Students should spend the first 15-20 minutes brainstorming ideas for innovative devices built around the
features of the Circuit Playground. Encourage students to review their prior work in this unit as well as the real world
innovations they researched earlier for inspiration.

Prepare - Complete Project Guide
Distribute: Make available any construction materials that students may need for building their prototypes. While the focus
of this step isn't to build the actual prototype, having these materials available can help with the brainstorming process.

Circulate: Once students have discussed their ideas for the project they should complete the project guide. While this
should be a fairly familiar process, encourage students to make each component as clear and detailed as they can at this
point. Planning ahead can help them identify issues in their plan before they'll need to make more significant changes to
their code or physical device. Encourage students to use additional paper to sketch out screens for their app or additional
views of their physical device.

Try - Develop Prototypes
Distribute: Make available the physical prototyping materials (such as cardboard, tape, scissors, etc). Let students know
that, just as we used paper prototypes to quickly test software ideas, hardware developers often used cheap materials such
as cardboard and tape to quickly iterate on the design of physical devices. While not all student ideas may require a
physically prototyped component, you should encourage students to consider how the shape and design (or form factor) or
their innovation could impact its usability.

Transition: Depending on the nature of their innovations, students may need to spend some time building the physical
components of their projects before moving online. When students are ready to program, they can transition to Code
Studio. These levels provide some guidance on how students may go about implementing their projects, but are left quite
open to allow for a broad range of ideas. If they wish, students can work in a different order than the one suggested in
these levels.

 Code Studio levels

Lesson Overview Student Overview

Design Your Prototype Student Overview

 Teaching Tip

If you have the time for it, this can be a good opportunity
to pull in the user testing process that students learned in
Unit 4.

 Teaching Tip

Celebrate: As this is the culminating project for the entire
course, consider going big with this share out. Bring in
parents and administrators, or even host a after school
event to provide students with a real audience to share
their accomplishments with.

Reflect - Peer Review
Group: Pair up groups to review each other's projects.

Distribute: Give each student a copy of the peer review
guide. Students should spend 15 minutes reviewing the
other group's project and filling out the peer review guide.

Iterate - Revise Prototypes
Circulate: Students should complete the peer review guide's back side where they decide how to respond to the feedback
they were given. They should then use that feedback to improve their game.

Wrap Up (30-60 min)

Share
Share: Give students a chance to share their
innovations, either within the class or to a broader
audience. If you choose to let students do a more formal
presentation of their projects the project guide provides
students a set of components to include in their
presentations including:

The original innovation they set out to build
A description of the programming process including at
least one challenge they faced and one new feature they decided to add
A description of the most interesting or complex piece of code they wrote
A live demonstration of the actual innovation

 Send students to Code Studio to complete their reflection on their attitudes toward computer science. Although their
answers are anonymous, the aggregated data will be available to you once at least five students have completed the
survey.

Extensions

Pitch Video
Record and edit a short video to pitch your innovation.

Marketing Website
Using Web Lab, design a website to market your innovation.

User Interface 3 4 (click tabs to see student view)

Board Input and Output 5 6 (click tabs to see student view)

Finishing Touches 7 8 (click tabs to see student view)

Reflection 9 (click tabs to see student view)

Crowdfunding Campaign
Have students design a crowdfunding campaign (along the lines of Kickstarter or Indiegogo) for their innovations. This
could include:

Design mockups for the final product
A rough cost analysis for production
A short pitch video

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CS - Computing Systems

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

	Unit 6 - Physical Computing
	Chapter 1: Programming with Hardware
	Big Questions
	Week 1
	Lesson 1: Innovations in Computing
	Research | Unplugged

	Lesson 2: Designing Screens with Code
	App Lab

	Lesson 3: The Circuit Playground
	App Lab | Maker Toolkit

	Week 2
	Lesson 4: Input Unplugged
	Unplugged

	Lesson 5: Board Events
	App Lab | Maker Toolkit

	Lesson 6: Getting Properties
	App Lab | Maker Toolkit

	Lesson 7: Analog Input
	App Lab | Maker Toolkit

	Week 3
	Lesson 8: The Program Design Process
	App Lab | Maker Toolkit

	Lesson 9: Project: Make a Game
	App Lab | Maker Toolkit | Project

	Chapter Commentary
	Chapter 2: Building Physical Prototypes
	Big Questions
	Week 4
	Lesson 10: Arrays and Color LEDs
	App Lab | Maker Toolkit

	Lesson 11: Making Music
	App Lab | Maker Toolkit

	Lesson 12: Arrays and For Loops
	App Lab | Maker Toolkit

	Lesson 13: Accelerometer
	App Lab | Maker Toolkit

	Week 5
	Lesson 14: Functions with Parameters
	App Lab | Maker Toolkit

	Lesson 15: Circuits and Physical Prototypes
	App Lab | Maker Toolkit

	Week 6
	Lesson 16: Project: Prototype an Innovation
	App Lab | Maker Toolkit | Project

	Chapter Commentary
	Lesson 1: Innovations in Computing
	Research | Unplugged
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Preparation
	Assessment Opportunities
	Links
	For the Students

	Agenda
	Vocabulary

	Teaching Guide
	Warm Up (10 min)
	Get Inspired

	Activity (45 min)
	Innovation Research
	Computing Innovations
	Innovation Research

	Code Studio levels
	Wearable Technology
	Health and Safety
	Agriculture
	Manufacturing
	Art and Design
	Smart Home
	An Innovative Solution

	Wrap Up (2 min)
	Journaling

	Extensions
	Innovation Posters
	Innovation Websites

	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)

	Lesson 2: Designing Screens with Code
	App Lab
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Introduced Code
	Purpose
	Assessment Opportunities
	Agenda

	Teaching Guide
	Warm Up (5 min)
	UI Element Properties Refresher

	Activity (45 to 60 minutes)
	Designing with setProperty()
	Code Studio levels

	Wrap Up (5 min)
	Reflecting on Unit 4

	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)

	Lesson 3: The Circuit Playground
	App Lab | Maker Toolkit
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Preparation
	Purpose
	Introduced Code
	Assessment Opportunities
	Agenda

	Teaching Guide
	Warm Up (5 min)
	Board Inspection

	Activity (45)
	Connecting the Board
	Programming on Hardware
	Code Studio levels

	Wrap Up (5 min)
	What's in a Board

	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)

	Lesson 4: Input Unplugged
	Unplugged
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Preparation
	Purpose
	Links
	Assessment Opportunities
	For the Students

	Agenda

	Teaching Guide
	Warm Up (10 min)
	Comparing Input Methods
	Code Studio levels

	Activity (40 min)
	Input Unplugged
	Input and Events
	Version A: Asking for Input
	Version B: Input Events

	Activity Debrief

	Wrap Up (2 min)
	Reflection

	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)

	Lesson 5: Board Events
	App Lab | Maker Toolkit
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Introduced Code
	Purpose
	Assessment Opportunities
	Agenda

	Teaching Guide
	Warm Up (5 min)
	Board Inspection: Inputs

	Activity (45 min)
	Taking Input from the Board
	Code Studio levels

	Wrap Up (2 min)
	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)

	Lesson 6: Getting Properties
	App Lab | Maker Toolkit
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Introduced Code
	Purpose
	Assessment Opportunities
	Agenda

	Teaching Guide
	Warm Up (5 min)
	Activity (40 min)
	Code Studio levels

	Wrap Up (10 min)

	Lesson 7: Analog Input
	App Lab | Maker Toolkit
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Preparation
	Assessment Opportunities
	Links
	For the Students

	Agenda
	Vocabulary
	Introduced Code

	Teaching Guide
	Warm Up (10 min)
	Analog and Digital

	Activity (40 min)
	Analog Inputs
	Code Studio levels

	Wrap Up (5 min)
	Sensors All Around

	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)

	Lesson 8: The Program Design Process
	App Lab | Maker Toolkit
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Preparation
	Links
	Purpose
	For the Students

	Assessment Opportunities
	Agenda

	Teaching Guide
	Warm Up (15 min)
	Play Emoji Race
	Stop: Review Project Guide

	Activity (45-60 min)
	Implement Project Guide
	Code Studio levels

	Wrap Up (20 min)
	Make It Your Own

	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)

	Lesson 9: Project: Make a Game
	App Lab | Maker Toolkit | Project
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Preparation
	Assessment Opportunities
	Links
	Agenda
	For the Students

	Teaching Guide
	Warm Up (10 min)
	Demo Project Exemplars

	Activity (90 - 120 min)
	Unplugged: Program Planning
	Make a Game Project Guide
	Brainstorming

	Prototyping the Program
	Code Studio levels

	Wrap Up (10 min)
	Sharing Projects
	Self Assessment

	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)

	Lesson 10: Arrays and Color LEDs
	App Lab | Maker Toolkit
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Vocabulary
	Purpose
	Introduced Code
	Assessment Opportunities
	Agenda

	Teaching Guide
	Warm Up (5 min)
	Discussion: What is a List?

	Activity (45 min)
	Arrays and Color LEDs
	Code Studio levels

	Wrap Up (5 min)
	Discussion: Objects Vs Arrays

	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)

	Lesson 11: Making Music
	App Lab | Maker Toolkit
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Introduced Code
	Purpose
	Assessment Opportunities
	Agenda

	Teaching Guide
	Warm-Up (5 min)
	Color LEDs vs the Buzzer

	Activity
	Making Music
	Code Studio levels

	Wrap-Up (5 min)
	Journal

	Lesson 12: Arrays and For Loops
	App Lab | Maker Toolkit
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Vocabulary
	Purpose
	Introduced Code
	Assessment Opportunities
	Agenda

	Teaching Guide
	Warm Up (5 min)
	Run Code on All Elements of an Array

	Activity (40 min)
	Arrays and For Loops
	Code Studio levels

	Wrap Up
	Journal

	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)

	Lesson 13: Accelerometer
	App Lab | Maker Toolkit
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Introduced Code
	Assessment Opportunities
	Agenda

	Teaching Guide
	Warm Up (5 Min)
	What Makes a Sensor?

	Activity
	The Accelerometer
	Code Studio levels

	Wrap Up (5 Min)
	Journal

	Lesson 14: Functions with Parameters
	App Lab | Maker Toolkit
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Vocabulary
	Purpose
	Introduced Code
	Assessment Opportunities
	Agenda

	Teaching Guide
	Warm Up
	Activity
	Code Studio levels

	Wrap Up

	Lesson 15: Circuits and Physical Prototypes
	App Lab | Maker Toolkit
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Preparation
	Assessment Opportunities
	Agenda
	Links
	For the Students

	Vocabulary
	Introduced Code

	Teaching Guide
	Warm Up (5 min)
	Designing a Physical Device

	Activity 1 (30 min)
	Introducing the Smart Bike
	Code Studio levels
	Student Instructions

	Make a Prediction
	Student Instructions
	Student Instructions
	Learning More About LEDs

	Wire a Circuit
	Do This
	Why Are We Talking Pins?
	Student Instructions

	Creating Board Objects
	Do This
	Student Instructions

	Wiring Multiple LEDs
	Do This
	Student Instructions

	Smart Bike - Blinkers
	Do This
	Student Instructions

	Smart Bike - Blinker Controls
	Do This
	Student Instructions

	Build Your Blinkers
	Activity 2 (30-45 min)
	Building the Prototype

	Activity 3 (30-45 min)
	Adding Inputs
	Code Studio levels
	Student Instructions
	Student Instructions

	Make Your Own Buttons
	Do This
	Student Instructions

	Smart Bike - Buzzer
	Do This
	Student Instructions

	Smart Bike - Headlight
	Do This
	Student Instructions

	Smart Bike - Final Touches
	Do This
	Wrap Up (15 min)
	Sharing Designs

	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)

	Lesson 16: Project: Prototype an Innovation
	App Lab | Maker Toolkit | Project
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Preparation
	Assessment Opportunities
	Agenda
	Links
	For the Students

	Teaching Guide
	Warm Up (10 min)
	Review Project Guide

	Activity (80-200 min)
	Define - Scope Innovation
	Prepare - Complete Project Guide
	Try - Develop Prototypes
	Code Studio levels
	Reflect - Peer Review
	Iterate - Revise Prototypes

	Wrap Up (30-60 min)
	Share

	Extensions
	Pitch Video
	Marketing Website
	Crowdfunding Campaign

	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)

