
UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13

14 Ch. 2 15 16 17 18 19 20 21 22

Big Questions

What is a computer program?
What are the core features of most programming
languages?
How does programming enable creativity and
individual expression?
What practices and strategies will help me as I write
programs?

Unit 3 - Interactive Games and Animations
In the Interactive Games and Animations unit, students build on their coding experience as they create programmatic
images, animations, interactive art, and games. Starting off with simple, primitive shapes and building up to more
sophisticated sprite-based games, students become familiar with the programming concepts and the design process
computer scientists use daily. They then learn how these simpler constructs can be combined to create more complex
programs. In the final project, students develop a personalized, interactive program. Along the way, they practice design,
testing, and iteration, as they come to see that failure and debugging are an expected and valuable part of the programming
process.

Chapter 1: Images and Animations

Week 1

Lesson 1: Programming for Entertainment
Unplugged

The class is asked to consider the "problems" of boredom and self expression, and to reflect on
how they approach those problems in their own lives. From there, they will explore how Computer
Science in general, and programming specifically, plays a role in either a specific form of
entertainment or as a vehicle for self expression.

Lesson 2: Plotting Shapes
Unplugged

This lesson explores the challenges of communicating how to draw with shapes and use a tool that
introduces how this problem is approached in Game Lab.The class uses a Game Lab tool to
interactively place shapes on Game Lab's 400 by 400 grid. Partners then take turns instructing
each other how to draw a hidden image using this tool, accounting for many of the challenges of
programming in Game Lab.

file:///csd-18/unit3/
file:///csd-18/unit3/
file:///csd-18/unit3/
file:///csd-18/unit3/
file:///csd-18/unit3/
file:///csd-18/unit3/
file:///csd-18/unit3/
file:///csd-18/unit3/
file:///csd-18/unit3/
file:///csd-18/unit3/
file:///csd-18/unit3/
file:///csd-18/unit3/
file:///csd-18/unit3/
file:///csd-18/unit3/
file:///csd-18/unit3/
file:///csd-18/unit3/
file:///csd-18/unit3/
file:///csd-18/unit3/
file:///csd-18/unit3/
file:///csd-18/unit3/
file:///csd-18/unit3/
file:///csd-18/unit3/

Lesson 3: Drawing in Game Lab
Game Lab

The class is introduced to Game Lab, the programming environment for this unit, and begins to use
it to position shapes on the screen. The lesson covers the basics of sequencing and debugging, as
well as a few simple commands. At the end of the lesson, the class creates an online version of the
image they designed in the previous lesson.

Lesson 4: Shapes and Randomization
Game Lab

This lesson extends the drawing skills to include width and height and introduces the concept of
random number generation. The class learns to draw with versions of ellipse() and rect() that
include width and height parameters and to use the background() block to fill the screen with color.
At the end of the progression the class is introduced to the randomNumber() block and uses the
new blocks to draw a randomized rainbow snake.

Week 2

Lesson 5: Variables
Game Lab

This lesson introduces variables as a way to label a number in a program or save a randomly
generated value. The class begins the lesson with a very basic description of the purpose of a
variable and practices using the new blocks. Afterwards, the class uses variables to save a random
number, allowing the programs to use the same random number multiple times.

Lesson 6: Sprites
Game Lab

In order to create more interesting and detailed images, the class is introduced to the sprite object.
Every sprite can be assigned an image to show, and sprites also keep track of multiple values
about themselves, which will prove useful down the road when making animations. At the end of
the lesson, everyone creates a scene using sprites.

Lesson 7: The Draw Loop
Game Lab

This lesson introduces the draw loop, one of the core programming paradigms in Game Lab. The
class combines the draw loop with random numbers to manipulate some simple animations with
dots and then with sprites. Afterwards, everyone uses what they learned to update the sprite scene
from the previous lesson.

Lesson 8: Counter Pattern Unplugged
Unplugged

This unplugged lesson explores the underlying behavior of variables. Using notecards and string to
simulate variables within a program, the class implements a few short programs. Once comfortable
with this syntax, the class uses the same process with sprite properties, tracking a sprite's
progress across the screen.

Week 3

Lesson 9: Sprite Movement
Game Lab

By combining the Draw Loop and the Counter Pattern, the class writes programs that move sprites
across the screen, as well as animate other sprite properties.

Lesson 10: Booleans Unplugged
Unplugged

This lesson introduces boolean values and logic, as well as conditional statements. The class
starts by playing a simple game of Stand Up, Sit Down in which the boolean (true/false) statements
describe personal properties (hair or eye color, clothing type, age, etc). The class then groups
objects based on increasingly complex boolean statements, then looks at how conditionals can
impact the flow of a program.

Lesson 11: Booleans and Conditionals
Game Lab

The class starts by using booleans to compare the current value of a sprite property with a target
value, using that comparison to determine when a sprite has reached a point on the screen, grown
to a given size, or otherwise reached a value using the counter pattern. After using booleans
directly to investigate the values or sprite properties, the class adds conditional if statements to
write code that responds to those boolean comparisons.

Lesson 12: Conditionals and User Input
Game Lab

Following the introduction to booleans and if statements in the previous lesson, students are
introduced to a new block called keyDown() which returns a boolean and can be used in
conditionals statements to move sprites around the screen. By the end of this lesson students will
have written programs that take keyboard input from the user to control sprites on the screen.

Week 4

Lesson 13: Other Forms of Input
Game Lab

The class continues to explore ways to use conditional statements to take user input. In addition to
the simple keyDown() command learned yesterday, the class learns about several other keyboard
input commands as well as ways to take mouse input.

Lesson 14: Project - Interactive Card
Game Lab | Project

In this cumulative project for Chapter 1, the class plans for and develops an interactive greeting
card using all of the programming techniques they've learned to this point.

Chapter Commentary
Students build up toward programming interactive animations in the Game Lab environment. They begin with simple
shapes and sprite objects, then use loops to create flipbook style animations. Next, they learn to use booleans and
conditionals to respond to user input. At the end of the chapter, students design and create an interactive animation that
they can share with the world.

Big Questions

How do software developers manage complexity and
scale?
How can programs be organized so that common
problems only need to be solved once?
How can I build on previous solutions to create even
more complex behavior?

Chapter 2: Building Games

Week 5

Lesson 15: Velocity
Game Lab

After a brief review of how the counter pattern is used to move sprites, the class is introduced to
the properties that set velocity and rotation speed directly. As they use these new properties in
different ways, they build up the skills they need to create a basic side scroller game.

Lesson 16: Collision Detection
Game Lab

The class learns about collision detection on the computer. Pairs explore how a computer could
use sprite location and size properties and math to detect whether two sprites are touching. The
class then uses the isTouching() block to create different effects when sprites collide, including
playing sounds. Last, they use their new skills to improve the sidescroller game that they started in
the last lesson.

Lesson 17: Complex Sprite Movement
Game Lab

The class learns to combine the velocity properties of sprites with the counter pattern to create
more complex sprite movement, such as simulating gravity, making a sprite jump, and allowing a
sprite to float left or right. In the final levels the class combine these movements to animate and
control a single sprite and build a simple game in which a character flies around and collects coins.

Lesson 18: Collisions
Game Lab

The class programs their sprites to interact in new ways. After a brief review of how they used the
isTouching block, the class brainstorms other ways that two sprites could interact. They then use
isTouching to make one sprite push another across the screen before practicing with the four
collision blocks (collide, displace, bounce, and bounceOff).

Week 6

Lesson 19: Functions
Game Lab

This lesson covers functions as a way to organize their code, make it more readable, and remove
repeated blocks of code. The class learns that higher level or more abstract steps make it easier to
understand and reason about steps, then begins to create functions in Game Lab. At the end of the
lesson the class uses these skills to organize and add functionality to the final version of their side
scroller game.

Lesson 20: The Game Design Process
Game Lab

This lesson introduces the process the class will use to design games for the remainder of the unit.
The class walks through through this process in a series of levels. As part of this lesson the class
also briefly learn to use multi-frame animations in Game Lab. At the end of the lesson they have an
opportunity to make improvements to the game to make it their own.

Lesson 21: Using the Game Design Process
Game Lab

In this multi-day lesson, the class uses the problem solving process from Unit 1 to create a platform
jumper game. After looking at a sample game, the class defines what their games will look like and
uses a structured process to build them. Finally, the class reflects on how the games could be
improved, and implements those changes.

Week 7

Lesson 22: Project - Design a Game
Game Lab | Project

The class plans and builds original games using the project guide from the previous two lessons.
Working individually or in pairs, the class plans, develops, and gives feedback on the games. After
incorporating the peer feedback, the class shares out the completed games.

Chapter Commentary
In this chapter students combine the constructs that they learned in the first chapter to program more complex movement
and collisions in their sprites. As they create more complex programs, they begin to use functions to organize their code. In
the end, students use a design process to create an original game.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13

14 Ch. 2 15 16 17 18 19 20 21 22

Lesson 1: Programming for Entertainment
Unplugged

Overview
Students are asked to consider the "problems" of boredom and self
expression, and to reflect on how they approach those problems in
their own lives. From there, students will explore how Computer
Science in general, and programming specifically, plays a role in
either a specific form of entertainment or as a vehicle for self
expression.

Purpose
This lesson is intended to kick off this programming unit in a way that
engages students of all backgrounds and interests. Though the end
point of this unit asks students to develop a game, you should avoid
starting out with a strong emphasis on video games. Instead, we
attempt to broaden students' perspective about how programming is
relevant to a form of entertainment or self expression that is
personally engaging. This will provide an anchor for students to come
back to throughout the unit as they consider the potential applications
of the various programming skills that they learn.

Agenda
Warm Up (10 min)

The Entertainment Problem

Activity (45 min)

CS in Entertainment

Wrap Up (5 min)

Looking Forward

Objectives
Students will be able to:

Identify how Computer Science is used in a
field of entertainment

Preparation
Review the research resources linked in

Code Studio
Print a copy of CS in Entertainment -

Activity Guide for each group of three
students

Links
Heads Up! Please make a copy of
any documents you plan to share
with students.

For the Teacher

CS in Entertainment - Exemplar

For the Students

CS in Entertainment - Activity Guide

Make a Copy

https://docs.google.com/document/d/1RtwJU7Lh2dKdGoj-zfF1pjn-yxhkwP-05G8pgdYi-BY/edit
https://studio.code.org/s/csd3-2018/stage/1/puzzle/1
https://docs.google.com/document/d/1RtwJU7Lh2dKdGoj-zfF1pjn-yxhkwP-05G8pgdYi-BY/edit




 Teaching Tip

Because many of these sites change their content daily,
we have not shared them directly with students. We
suggest that you check these links the morning before
class to ensure that everything is still appropriate to be
shared in school

 Discussion
Goal

The goal here is to get students to reflect more critically on
why people seek out entertainment. Students are likely to
come up with "boredom" as a common answer, but push
them to think more deeply about what their chosen form of
entertainment actually does for them - what problem does
it solve. Potential answers include:

Escape from difficult reality
Connection with others
Learning or experiencing new things
Sparking creativity

Teaching Guide
Warm Up (10 min)

The Entertainment Problem
 Remarks

Why do we seek out entertainment? Whether it's movies, music, art, games, or any number of other forms of
entertainment, what problem does entertainment solve for us?

Discuss: What is your favorite form of entertainment, and
what problem does it solve for you?

Activity (45 min)

CS in Entertainment
Prompt: Select a few of the forms of entertainment that
students identified in the warm up and ask them whether
(and how) Computer Science plays a role in that field.

Group: Place students in groups of three. Consider
allowing students to group based on common interest as
each group will be exploring a field of entertainment
together.

Distribute: Give each group a copy of CS in Entertainment - Activity Guide

 CS in Entertainment

During this activity student groups will do some light research into the role that CS and programming play in various fields
of entertainment. The primary goal of this activity is to broaden students' perspective about how programming can be
used to make fun or entertaining things. Some of the fields that students could research (such as art, animation, and
games) can be directly connected to programs they will write later in this unit, while others may serve more as an
inspiration for how the skills that they learn here may be applied in different domains.

Entertainment Exploration

Introduce the topics: In the activity guide we've listed a number of potential fields for research. These specific fields
were chosen to go along with resources that are provided on Code Studio, but you can allow students to look into
other fields if they wish.
Explain the exploration task : The goal of this exploration is twofold:

First, develop a deeper understanding of how programming is used in your chosen field. How is computer
technology changing this field, what are some of the problems that people are trying to solve with technology?
Second, identify some interesting applications of CS or facts to share. What are some cool things that people are
doing in this field that make use of CS?

Share selected research links : On Code Studio,
inside the blue teacher box, we have compiled a
handful of useful sites to help students kick off their
research. Share the links that you feel are most
helpful and appropriate for your class.

 Code Studio levels

https://docs.google.com/document/d/1RtwJU7Lh2dKdGoj-zfF1pjn-yxhkwP-05G8pgdYi-BY/edit

View on Code
Studio

View on Code Studio to access answer key(s)

Lesson Overview  Teacher Overview Student Overview

View on Code
Studio

Here are a few sites to get students started. These sites are generally appropriate for
school, but the content with them changes frequently, so we strongly suggest that you
check each site for inappropriate content before sharing it with students.

Inside the Magic - insidethemagic.net

Overview
This site is focused on news about Disney, but you might be surprised by the large role that CS plays in all of
their different forms of entertainment. Because this isn't a CS focused site, you'll need to use the search function
to find relevant articles.

Relevant fields
Film/TV
Animation
Robotics/Animatronics
Games

Critical Path Videos -
criticalpathproject.com/explore/playlists/

Overview
Videos featuring a range of people working in diverse areas of the game industry, talking about what they do.

Relevant Fields
Games
Animation
Art

Music Think Tank - musicthinktank.com

Overview
Music Think Tank is a blog targeted at people working in the music industry. It's not a CS specific site, but
searching for "computer science" or "programming" will reveal some interesting articles.

Relevant Fields
Music

Creative Coding Podcast -

Exploring CS in Entertainment  Teacher Overview Student Overview

https://studio.code.org/s/csd3-2018/stage/1/puzzle/1
https://studio.code.org/s/csd3-2018/stage/1/puzzle/2
http://www.insidethemagic.net
http://www.criticalpathproject.com/explore/playlists/
http://www.musicthinktank.com/


 Teaching Tip

While some of these examples are pulled directly from
lessons that students will complete later in the unit, a few
of them use commands or techniques that aren't explicitly
covered in the course. You can view the source for all of
these programs in order to support students who may want
to incorporate some of these techniques later on.

Interesting Information

Once groups have learned a bit about how CS is used in their chosen field, they can complete the second page of this
activity guide, which asks them to do the following:

What Problem Does It Solve?: "Problem" in this context can be fairly broad. It might be simplifying an otherwise
laborious or complex task, doing things that wouldn't otherwise be possible, or any number of things that make this
form of entertainment more accessible to end users.
How is it an Improvement?: This could be tightly coupled with the answer to the previous question. Push students
to consider how their form of entertainment was created before programming was prevalent.
An Interesting Fact or Use: Share something fun or interesting about how CS is used in this field.
An Open Question: It's likely that students come away with more questions than answers after just some quick
research. Encourage them to reflect on what they don't yet know, and what questions they'd still like answered.

Share: Give groups a minute each to share their findings.

Wrap Up (5 min)

Looking Forward
Display: Show either as a whole class, or let students
explore independently, the example programs at the end
of this lesson's Code Studio progression. These
programs are designed to show a variety of different
kinds of programs that it's possible to make in Game Lab.

Journal: Based on what you saw today, both in your
research and the example apps, what kinds of programs
are you most interested in learning to create?

Standards Alignment
CSTA K-12 Computer Science Standards

IC - Impacts of Computing

If you are interested in licensing Code.org materials for commercial purposes, contact us.

Creative Coding Podcast -
creativecodingpodcast.com

Overview
While this podcast doesn't feature much in the way of formal professional programming (as in, people who do this
for a living), it is a great resource to see the varied ways in which amateurs are making entertainment with code.

Relevant Fields
All

Sample Programs  3  4  5  6 (click tabs to see student view)

http://creativecodingpodcast.com/
http://creativecommons.org/
file://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13

14 Ch. 2 15 16 17 18 19 20 21 22

Lesson 2: Plotting Shapes
Unplugged

Overview
Students explore the challenges of communicating how to draw with
shapes and use a tool that introduces how this problem is
approached in Game Lab. The warm up activity quickly demonstrates
the challenges of communicating position without some shared
reference point. In the main activity students explore a Game Lab tool
that allows students to interactively place shapes on Game Lab's 400
by 400 grid. They then take turns instructing a partner how to draw a
hidden image using this tool, accounting for many challenges
students will encounter when programming in Game Lab. Students
optionally create their own image to communicate before a debrief
discussion.

Purpose
The primary purpose of this lesson is to introduce students to the
coordinate system they will use in Game Lab. Students may have
limited experience with using a coordinate grid or may struggle with
the "flipped" y-axis in Game Lab. The drawing tool also forces
students to think about other features of Game Lab students will see
when they begin programming in the next lesson. These include the
need to consider order while drawing, the need to specify color, and
the fact that circles are positioned by their center and squares by their
top-left corner. By the end of this activity, students should be ready to
transfer what they have learned about communicating position to the
programming they will do in the next lesson.

Agenda
Warm Up (10 min)

Communicating Drawing Information

Activity (35 min)

Drawing with a Computer

Wrap Up (5 min)

Journaling

Objectives
Students will be able to:

Reason about locations on the Game Lab
coordinate grid
Communicate how to draw an image in Game
Lab, accounting for shape position, color, and
order

Links
Heads Up! Please make a copy of
any documents you plan to share
with students.

For the Teacher

Drawing Shapes - Exemplar
Sample Shape Drawing

For the Students

Drawing Shapes - Activity Guide

Make a Copy

https://studio.code.org/s/csd3-2018/stage/2/puzzle/1
https://cdo-curriculum.s3.amazonaws.com/media/uploads/Screenshot-2017-05-24-at-1.13.21-PM.png
https://docs.google.com/document/d/1BKFLM2cmov3Lh23vsw1hGfUwTz9bM-diFCGHBf_GH6Y/edit?usp=sharing


 Discussion
Goal

Goal This discussion is intended to bring up some
challenges that students will need to address in the next
few lessons, such as how to specify position, order, and
color. The students don't necessarily need to decide how
they would specify such things, but recognize that they will
need a method for doing so. Students who have just come
out of the HTML unit may make connections to how HTML
helped solve similar problems.

Teaching Guide
Warm Up (10 min)

Communicating Drawing Information
 Remarks

We saw a lot of different programs yesterday, and you started to think about what types you might want to create. When
we create a program, one of the things we need to do is draw everything on the screen. We're going to try that with a
"student" computer today.

Ask one or two volunteers to come to the front of the room and act as "computers" for the
activity. They should sit with their backs to the board so that they cannot see what is being
projected. Give each volunteer a blank sheet of paper.

Display: Project Sample Shape Drawing where it can be seen by the class.

 Remarks

You will need to explain to our "computer" how to draw the picture. In the end, we'll compare
the drawing to the actual picture.

Give the students a minute or two to describe the drawing as the students at the front of the room try to draw it. After one
minute, stop them and allow the students to compare both pictures.

Prompt: What are the different "challenges" or problems we're going to need to solve in order to successfully communicate
these kinds of drawings.

Discuss: Students should silently write their answers in
their journals. Afterwards they should discuss with a
partner and finally with the entire class.

 Remarks

There were several challenges we needed to solve in
this activity. We need to be able to clearly communicate
position, color, and order of the shapes. We're going to
start exploring how to solve this problem.

Activity (35 min)

Drawing with a Computer
Group: Place students in pairs.

Transition: Have one member of each group open a laptop and go to the contents for this lesson. There is a single level
with a Game Lab tool.

 Code Studio levels

View on Code
Studio

View on Code Studio to access answer key(s)

Lesson Overview  Teacher Overview Student Overview

Drawing Shapes  Student Overview

https://cdo-curriculum.s3.amazonaws.com/media/uploads/Screenshot-2017-05-24-at-1.13.21-PM.png
https://cdo-curriculum.s3.amazonaws.com/media/uploads/Screenshot-2017-05-24-at-1.13.21-PM.png
https://studio.code.org/s/csd3-2018/stage/2/puzzle/1




 Discussion
Goal

Goal: Rather than doing a live-demo of the tool, use this
strategy to let students explore the tool themselves.
Afterwards use the debrief to ensure all students are
aware of key features of the tool. The most important
components are the grid and the fact that the mouse
coordinates are displayed below the drawing space.



 Content Corner

Location of the Origin The origin of this grid, as well as
the origin in Game Lab, lies at the top left corner. This
reflects the fact that documents tend to start at the top left,
and ensures that every point on the plane has positive
coordinates.

 Teaching Tip

When to Move On: Determine whether this last activity
is worth the time in your schedule. Giving students a
chance to create and communicate their own drawing can
help reinforce their knowledge, but if students are
obviously achieving the learning objectives of the lesson
without it then you can also just move to the wrap up to
synthesize their learning.

Prompt: Working with your partner take two or three minutes to figure out how this tool works. Afterwards be ready to
share as a class.

Discuss: After pairs have had a chance to work with the
tool run a quick share-out where students discuss
features they notice.

 Drawing Shapes

Distribute the Drawing Shapes - Activity Guide to
each pair, ensuring that one student (Student A)
receives the first two pages and the other student
(Student B) receives the second two pages. Students
should not look at each other's papers.

Set Up: In this activity, students will try to recreate
images based on a partner's directions. The student
who is drawing will use the shape drawing tool on
Game Lab to draw the shapes. Students should keep
their drawings hidden from one another throughout the
activity. While completing a drawing the instruction giver
should also not be able to see the computer screen.

Drawing 1: Each member of the pair should complete their first drawing, taking turns giving instructions and using the
tool. These drawings do not feature any overlapping shapes, but students may need to grapple with the fact that circles
are drawn from the middle and squares from the top left corner. Additionally students may just struggle with the direction
of the Y-axis.

Discuss: Give pairs a couple minutes to discuss any common issues they're noticing in trying to complete their drawings.

Drawing 2: Each member of the pair should describe their second drawing to their partner. These drawing feature
overlapping shapes and so students will need to consider the order in which shapes are being placed as well as when
they should change the color of the pen.

Draw Your Own: If time allows, give students a
chance to create their own drawing to communicate to
their partner.

 Remarks

When we make images, we need a way to communicate
exactly where each shape goes. The coordinate plane
helps us to do that. Our coordinate plane has two
coordinates, x and y. The x-coordinate tells us how far
our shape is from the left of the grid. The y-coordinate
tells us how far our shape is from the top of the grid. The
black dots on the shapes help you be very specific about how the shape is placed on the grid.

Wrap Up (5 min)

Journaling
Journal: Have students reflect on each of the following prompts

What problem is the grid helping to solve in Game Lab?
Have you seen different ways of solving this problem in the past? What are they?

Discuss: Have pairs share their answers with one another. Then open up the discussion to the whole class.

 Remarks

https://docs.google.com/document/d/1BKFLM2cmov3Lh23vsw1hGfUwTz9bM-diFCGHBf_GH6Y/edit?usp=sharing


 Discussion
Goal

Goal This discussion should act as a recap of what
students learned about the grid system in Game Lab. This
wrap up should also make references back to the problem
solving process. Students saw at the beginning of the
lesson that there is a problem of communicating how to
draw shapes. What they have seen in Game Lab today is
the solution to that problem. This discussion should be
used to reinforce that the grid system students saw today
is different from the one they may have seen in a math
class. They should see, however, that both solve the same
problem. Finally this discussion leads into a teacher
explanation of why the grid in Game Lab is "flipped".

At the beginning of class we saw that communicating
how to draw even simple shapes can be pretty
challenging. The grid we learned about today is one
solution to this problem but there are many others that
could've worked. In fact a lot of you probably noticed
that the grid in Game Lab is "flipped". Computer
screens come in all different shapes and sizes, as does
the content we show on them. We need to agree on
one point where all the content can grow from. Since
we read starting at the top left corner, the grid on a
computer screen starts at the top left corner as well.
There's also the benefit of not having to use any
negative numbers to talk about locations on the screen.
Don't worry if this flipped grid is a little tricky still. We'll
have plenty more time to work on it in coming lessons.

Standards Alignment
CSTA K-12 Computer Science Standards

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13

14 Ch. 2 15 16 17 18 19 20 21 22

Lesson 3: Drawing in Game Lab
Game Lab

Overview
Students are introduced to Game Lab, the programming environment
for this unit, and begin to use it to position shapes on the screen.
They learn the basics of sequencing and debugging, as well as a few
simple commands. At the end of the lesson, students will be able to
program images like the ones they made with the drawing tool in the
previous lesson.

Purpose
The main purpose of this lesson is to give students a chance to get
used to the programming environment, as well as the basic
sequencing and debugging that they will use throughout the unit.
Students begin with an introduction to the GameLab interactive
development environment (IDE), then learn the three commands
(rect , ellipse , and fill) that they will need to code the same types of

images that they created on paper in the previous lesson. Challenge
levels provide a chance for students who have more programming
experience to further explore Game Lab.

Agenda
Warm Up (5 minutes)

Programming Images

Activity (30 minutes)

Simple Drawing in Game Lab

Wrap Up (10 minutes)

Share Drawings
Exit Ticket

Objectives
Students will be able to:

Use the Game Lab IDE to plot different
colored shapes on the screen.
Sequence code correctly to overlay shapes.
Debug code written by others.

Preparation
Read the Forum
Prepare projector or other means of

showing videos if you wish to watch as a
class

Vocabulary
Bug - Part of a program that does not work
correctly.
Debugging - Finding and fixing problems in
an algorithm or program.
Program - An algorithm that has been coded
into something that can be run by a machine.

Introduced Code
fill(color)

ellipse(x, y, w, h)

rect(x, y, w, h)

file://docs.code.org/gamelab/rect/
file://docs.code.org/gamelab/ellipse/
file://docs.code.org/gamelab/fill/
file://docs.code.org/gamelab/fill/
file://docs.code.org/gamelab/ellipse/
file://docs.code.org/gamelab/rect/

 Discussion
Goal

Goal From Unit 2, students may remember that a
computer can only understand what to do if you use a
particular language in order to communicate with it. For
Web Development, that language was HTML. Computers
can't "figure out" what you mean in the same way that a
human can, and they are usually much more specific in
how they follow instructions.



 Teaching Tip

If you have had students pair program before, you can
read more about it here.

 Teaching Tip

Students that are new to programming often have some
common misconceptions they run into. In order to prevent
those keep reminding students about the following things

One command per line
Commands run in order from top to bottom
Order of inputs into shape commands matter
Each input into shape commands are separated by
commas
(0,0) is in the upper left corner of the display
All x and y values on the display are positive





Teaching Guide
Warm Up (5 minutes)

Programming Images
 Remarks

In the last lesson we created images on the computer
by organizing squares and circles on a grid. For each
image you wanted to create, you had to lay those
images out manually, and if you wanted to recreate an
image it was a lot of work. Today, we're going to
program the computer to draw those images for us.
Based on what you know about computers, what do
you think will be different between telling a person
about your image and telling a computer about your
image?

Allow students time to think individually and discuss with a partner, then bring the class together and write their ideas on
the board.

 Remarks

In order to give instructions to a computer, we need to use a language that a computer understands. In the last unit, we
used HTML, which is great for making web pages. To make our animations and games, we will use a version of
Javascript that uses blocks. The environment that we'll be programming in is called Game Lab.

Activity (30 minutes)

Simple Drawing in Game Lab
Group: Place students in pairs to program together.

Transition: Send students to Code Studio.

Support: As students work on the levels you can help
them but encourage them to try to spend some time
figuring things out themselves first. If you need help
supporting students, see the exemplars in the teacher
answer viewer. When students hit the challenge levels,
they can choose to pursue one or more of the challenges,
return to improve upon previous levels, or help a
classmate.

 Code Studio levels

Lesson Overview  Student Overview

Introduction to Game Lab  Teacher Overview Student Overview

http://teacherblog.code.org/post/147349807334/try-pair-programmingtrack-the-progress-of

Wrap Up (10 minutes)

Share Drawings
Goal: Students get to see the variety of different things you can create with just simple shape drawings.

Share: Once students have completed their drawings have them share their drawings with the class. One way to do this is
with a gallery walk.

Exit Ticket
Goal : Students share tricks they learned as they went through levels.

Prompt: Today you learned how to draw in Game Lab for the first time. What type of advice would you share with a friend
who was going to learn about drawing in Game Lab to make it easier for them? Write it down on a piece of paper.

View on Code
StudioTour of Game Lab

Depending on the age and comfort level of your students, you may choose to use this level to tour the environment
as a whole class. Make sure that students can find the level instructions, coding area, display area, and block
drawers. This is also a good opportunity to point out some of the useful resources like documentation and the
blocks to text button.

Video: Drawing in Game Lab - Part 1  Student Overview

Using the Grid  Student Overview

Video: Drawing in Game Lab - Part 2  Student Overview

Drawing  6  7  8  9 (click tabs to see student view)

View on Code
StudioSimplified Shapes

The rect and ellipse commands that students were introduced to in this lessons are simplified versions of the full

commands that they will see later. This allows the class to focus solely on the placement of shapes on the
coordinate plane before also worrying about the width and height of those shapes.

Plotting Shapes in Game Lab  Teacher Overview Student Overview

Challenges  11  12  13 (click tabs to see student view)

Levels  14 (click tabs to see student view)

https://studio.code.org/s/csd3-2018/stage/3/puzzle/2
https://studio.code.org/s/csd3-2018/stage/3/puzzle/10
file://docs.code.org/applab/rect/
file://docs.code.org/gamelab/ellipse/

Collect: Collect answers from students and pick out a few that might be helpful for all students to hear. Share those at the
beginning of the next class.

Standards Alignment
CSTA K-12 Computer Science Standards

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13

14 Ch. 2 15 16 17 18 19 20 21 22

Lesson 4: Shapes and Randomization
Game Lab

Overview
In this lesson students continue to develop their familiarity with Game
Lab by manipulating the width and height of the shapes they use to
draw. The lesson kicks off with a discussion that connects expanded
block functionality (e.g. different sized shapes) with the need for more
block inputs, or "parameters". Students learn to draw with versions of
ellipse() and rect() that include width and height parameters. They

also learn to use the background() block. At the end of the

progression students are introduced to the randomNumber() block.

Combining all of these skills students will draw a randomized rainbow
snake at the end of the lesson.

Purpose
This lesson gives students a chance to slightly expand their drawing
skills while continuing to develop general purpose programming skills.
They will need to reason about the x-y coordinate plane, consider the
order of their code, and slightly increase their programs' complexity.
The randomNumber() block is important for the next lesson where

students learn to store values using variables. This lesson should be
focused primarily on skill-building. If students are able to complete the
rainbow snake independently, then they have the skills they'll need for
the coming lessons.

Agenda
Warm Up (5 min)

Shapes of Different Sizes

Activity (40 min)

Programming Images

Wrap Up (5 min)

Journal

Objectives
Students will be able to:

Use and reason about drawing commands
with multiple parameters
Generate and use random numbers in a
program

Preparation
Review the level sequence in Code Studio

Vocabulary
Parameter - An extra piece of information
passed to a function to customize it for a
specific need

Introduced Code
background(color)

ellipse(x, y, w, h)

rect(x, y, w, h)

randomNumber()

file://docs.code.org/gamelab/ellipse/
file://docs.code.org/gamelab/rect/
file://docs.code.org/gamelab/background/
file://docs.code.org/gamelab/randomNumber/
file://docs.code.org/gamelab/randomNumber/
file://docs.code.org/gamelab/background/
file://docs.code.org/gamelab/ellipse/
file://docs.code.org/gamelab/rect/
file://docs.code.org/gamelab/randomNumber/

 Discussion
Goal

Goal: This discussion introduces the vocabulary word
"parameter" and also helps motivate their use. Students
will be seeing versions of the ellipse() and rect() block in
this lesson that have additional parameters, as well as the
randomNumber() block which has two parameters.
Students may say they want inputs for the size of the
shapes, their color, etc. During this conversation tie the
behaviors the students want to the inputs the block would
need. For example, if you want circles to be a different
size the block will need an input that lets the programmer
decide how large to make it.



Teaching Guide
Warm Up (5 min)

1. ellipse()

2. randomNumber(5, 10)

3. rect

Shapes of Different Sizes
Prompt: Our ellipse and rect blocks each have two

inputs that control where they're drawn - the x and y
position. If you wanted these commands to draw a wider
variety of rectangles and ellipses, what additional inputs
might you need to give these blocks? What would each
additional input control?

Discuss: Students should brainstorm ideas silently, then
share with a neighbor, then discuss share out with the
whole class. Record ideas as students share them on the
board.

 Remarks

This was a good list of ideas. If we want our blocks to
draw shapes in different ways they'll need more inputs that let us tell them how to draw. The inputs or openings in our
blocks have a formal name, parameters, and today we're going to be learning more about how to use them.

Activity (40 min)

Programming Images
Transition: Move students onto Code Studio

 Code Studio levels

Lesson Overview  Student Overview

New Shapes  2 (click tabs to see student view)

Shapes and Parameters  Student Overview

More Parameters  4  5  6  7  8  9

(click tabs to see student view)

Random Numbers  Student Overview

file://docs.code.org/gamelab/ellipse/
file://docs.code.org/applab/randomNumber/
file://docs.code.org/applab/rect/
file://docs.code.org/gamelab/ellipse/
file://docs.code.org/gamelab/rect/
file://docs.code.org/gamelab/randomNumber/
file://docs.code.org/gamelab/ellipse/
file://docs.code.org/gamelab/rect/

Share: If some students have taken extra time to work on their projects, give them a chance to share their more complex
rainbow snakes. Focus conversation on which parameters students are manipulating or randomizing to create their
drawings.

Wrap Up (5 min)

Journal
Prompt: Have students reflect on their development of the five practices of CS Discoveries (Problem Solving,
Persistence, Creativity, Collaboration, Communication). Choose one of the following prompts as you deem appropriate.

Choose one of the five practices in which you believe you demonstrated growth in this lesson. Write something you did
that exemplified this practice.

Choose one practice you think you can continue to grow in. What’s one thing you’d like to do better?

Choose one practice you thought was especially important for the activity we completed today. What made it so
important?

Standards Alignment
CSTA K-12 Computer Science Standards

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

Using Random Numbers  11  12 (click tabs to see student view)

Levels  13 (click tabs to see student view)

https://docs.google.com/document/d/1FhHPqlC6dU_z9retuBYb-duUwyKpnjwuEgjF4zfdhvI/edit#heading=h.5u3d4jfozbgc
http://creativecommons.org/
file://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13

14 Ch. 2 15 16 17 18 19 20 21 22

Lesson 5: Variables
Game Lab

Overview
In this lesson students learn how to use variables to label a number in
their program or save a randomly generated value. Students begin
the lesson with a very basic description of the purpose of a variable.
Students then complete a level progression that reinforces the model
of a variable as a way to label or name a number. Students use
variables to save a random number to see that variables actually store
or save their values, allowing them to use the same random number
multiple times in their programs.

Purpose
This lesson is the first time students will see variables in the course,
and they are not expected to fully understand how variables work by
its conclusion. Students should therefore leave this lesson knowing
that variables are a way to label a value in their programs so that they
can be reused or referenced later. In the following lesson students will
be introduced to sprites, which need to be referenced by a variable.

Using variables to manipulate drawings is a surprisingly challenging
skill that requires a great deal of forethought and planning. While
students will use or modify many programs in this lesson, they are not
expected to compose programs that use variables to modify the
features of a drawing. In later lessons, students will expand their
understanding of variables and more advanced ways they can be
used.

Agenda
Warm Up (10 Mins)

Labels and Values

Activity (30 Mins)

Programming with Variables

Wrap Up (5 Mins)

Reflection

Objectives
Students will be able to:

Identify a variable as a way to label and
reference a value in a program
Use variables in a program to store a piece of
information that is used multiple times
Reason about and fix common errors
encountered when programming with
variables

Preparation
Review the level progression in Code

Studio

Links
Heads Up! Please make a copy of
any documents you plan to share
with students.

For the Students

Introduction to Variables - Video
(download)

Vocabulary
Variable - A placeholder for a piece of
information that can change.

Introduced Code
Declare and assign a value to a variable

Declare a variable

https://youtu.be/G41G_PEWFjE
https://videos.code.org/2015/csp/applab/variables_1.mp4
file://docs.code.org/gamelab/declareAssign_x/
file://docs.code.org/gamelab/declareNoAssign_x/


 Teaching Tip

Avoiding Frontloading: While this lesson begins with
two resources that explain how variables work, they'll likely
be more meaningful to students once they have used
variables in the drawing programs. Make sure students
know these resources are available, and then return to
them if you like at the end of the lesson to help in sense-
making.

Teaching Guide
Warm Up (10 Mins)

Labels and Values
Video: As a class watch the video introducing variables.

Review: Students can review the most important points
from the video on the map level in Level 4. Students don't
need to understand all of these ideas right now, but they
can use this level as a reference throughout the lesson.

 Remarks

There's a lot to learn about variables and we'll be
seeing them throughout this unit. Today we're going to
see them used to help us draw pictures. The most
important thing we care about today, though, is just seeing how giving a label to a value helps us write programs.

Activity (30 Mins)

Programming with Variables

 Code Studio levels

Wrap Up (5 Mins)

Lesson Overview  Student Overview

Introduction to Variables - Part 1_2018  Student Overview

Intro to Variables  3 (click tabs to see student view)

Variables  Student Overview

Intro to Variables  5  6  7 (click tabs to see student view)

Naming Variables  Student Overview

Intro to Variables  9  10 (click tabs to see student view)

Levels  11  12  13 (click tabs to see student view)





 Discussion
Goal

Goal: Use this discussion to assess students' mental
models of a variable. You may wish to have students write
their responses so you can collect them to review later.
You should be looking to see primarily that they
understand that variables can label or name a number so
that it can be used later in their programs. While there are
other properties of a variable students may have learned,
this is the most important before moving on to the next
lesson.

 Teaching Tip

Input-Output-Store-Process: The model students
learned in Unit 1 might be nice to reference here. Students
are storing information in a variable which means they are
saving that information in memory.

CSS Classes: If students studied CSS classes in Unit 2
then they may be familiar with the act of creating a name
for something in their programs in order to be able to
reference it. While the context here is different, the idea of
naming remains the same.

Reflection
Prompt: Give students the following prompts

What is your own definition of a variable?
Why are variables useful in programs?

Discuss: Have students silently write their ideas before
sharing in pairs and then as a whole group.

Journal: What connections do you see between
variables and what you learned about the Input-Output-
Store-Process model of a computer?

Standards Alignment
CSTA K-12 Computer Science Standards

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13

14 Ch. 2 15 16 17 18 19 20 21 22

Lesson 6: Sprites
Game Lab

Overview
In order to create more interesting and detailed images, students are
introduced to the sprite object. Every sprite can be assigned an image
to show, and sprites also keep track of multiple values about
themselves, which will prove useful down the road when making
animations.

Purpose
Keeping track of many shapes and the different variables that control
aspects of those shapes can get very complex. There will be lots of
variables with different variable names. Instead computer scientists
created something called an object which allows for one variable
name to control both the shape and all its aspects. In Game Lab we
use a certain type of object called a sprite. A sprite is just a rectangle
with properties for controlling its look. Properties are the variables
that are attached to a sprite. You can access them through dot
notation.

Using the Animation Tab, students can create or import images to be
used with their sprites. Later on, these sprites will become a useful
tool for creating animations, as their properties can be changed and
updated throughout the course of a program.

Agenda
Warm Up (5 minutes)

How Much Information?

Activity

Introduction to Sprites

Wrap Up (5-10 min)

Share Out

Assessment

Assessing Sprite Scenes

Objectives
Students will be able to:

Assign a sprite to a variable
Use dot notation to update a sprite's
properties
Create a static scene combining sprites,
shapes, and text

Preparation
(Optional) Print a copy of Sprite Scene

Planning - Activity Guide for each student

Links
Heads Up! Please make a copy of
any documents you plan to share
with students.

For the Teacher

Sprite Scene Planning - Exemplar

For the Students

Sprite Scene Planning - Activity Guide

Vocabulary
Property - Attributes that describe an
object's characteristics
Sprite - A graphic character on the screen
with properties that describe its location,
movement, and look.

Introduced Code
drawSprites(group)

var sprite = createSprite(x, y, width, height)

sprite.scale

Make a Copy

https://docs.google.com/document/d/1I5w4VKBu4qPmoSSve_AwyaVQ47FWkJ-fSq4zfmQCsG8/edit
https://studio.code.org/s/csd3-2018/stage/6/puzzle/1
https://docs.google.com/document/d/1I5w4VKBu4qPmoSSve_AwyaVQ47FWkJ-fSq4zfmQCsG8/edit
file://docs.code.org/gamelab/drawSprites/
file://docs.code.org/gamelab/createSprite/
file://docs.code.org/gamelab/scale/

 Discussion
Goal

The goal here is to get students thinking about all of the
different values that go into drawing a single shape on the
screen, and how many more values they may need to
control a more detailed character in a program. If students
are struggling to come up with ideas, you might use some
of the following prompts: How do you tell a shape
where to go on the screen? How do you tell a shape
what size it needs to be? How do you tell a shape
what color it should be? What about its outline?
What if you wanted to change any of those values during
your program, or control other things like rotation?





 Content Corner

The sprite is a type of data called an object. While we
aren't yet explicitly introducing the concept of objects,
students do need to understand that a sprite is a different
type of value from the ones we've seen before, one that
can hold references to many more values. For students
who are curious about whether there are other objects in
our programs, ask them to see if there are more blocks in
the toolbox that follow the same dot notation (such as
World.width and World.height)

Teaching Guide
Warm Up (5 minutes)

How Much Information?
Think, Pair, Share: So far we've only written programs
that put simple shapes on the screen. Come up with a list
of all of the different pieces of information that you have
used to control how these shapes are drawn.

Prompt: What if we wanted to create programs with
more detailed images, maybe even characters that you
could interact with? What other pieces of information
might you need in your code?

 Remarks

Today we'll learn how to create characters in our
animations called sprites. These sprites will be stored
in variables, just like you've stored numbers in the past,
but sprites can hold lots of pieces of data, which will
allow you to create much more interesting (and
eventually animated!) programs.

Activity

Introduction to Sprites
Distribute: (Optional) pass out copies of Sprite Scene
Planning - Activity Guide. Students can use this
sheet to plan out the Sprite Scene they create at the end of this lesson, but the planning can also be completed on scratch
paper.

Transition: Send students to Code Studio

 Code Studio levels

View on Code
Studio

Sprite Scene Planning - Activity Guide Exemplar (PDF | DOCX)

Lesson Overview  Teacher Overview Student Overview

Video: Introduction to Sprites  Student Overview

Creating Sprites  Student Overview

Intro to Sprites  4  5  6 (click tabs to see student view)

Video: The Animation Tab  Student Overview

https://docs.google.com/document/d/1I5w4VKBu4qPmoSSve_AwyaVQ47FWkJ-fSq4zfmQCsG8/edit
https://studio.code.org/s/csd3-2018/stage/6/puzzle/1
https://docs.google.com/document/d/1LCO-0sTzYBEAglx65F2fFVI5OtF6IbTeycIGqa1H4_Q/edit
https://docs.google.com/document/d/1LCO-0sTzYBEAglx65F2fFVI5OtF6IbTeycIGqa1H4_Q/export?format=pdf
https://docs.google.com/document/d/1LCO-0sTzYBEAglx65F2fFVI5OtF6IbTeycIGqa1H4_Q/export?format=doc

Wrap Up (5-10 min)

Share Out
Share: Allow students to share their Sprite Scenes. Encourage students to reflect on their scenes and identify ways in
which they'd like to improve.

Assessment

Assessing Sprite Scenes
To assess Sprite Scenes, ask students to do a "talk through" of their code with you. Check to ensure that students know
why they sequenced their code the way they did, and in particular look for "dead code", or code that doesn't impact the
final scene. At this point it's likely that students are still drawing shapes before they draw the background (which then won't
be seen) or that they are calling drawSprites() multiple times (it only needs to be called once).

Standards Alignment
CSTA K-12 Computer Science Standards

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

The Animation Tab  Student Overview

Adding Images  9  10  11  12 (click tabs to see student view)

Making Scenes  13  14 (click tabs to see student view)

Sprite Scenes  Student Overview

Making Scenes  16  17  18 (click tabs to see student view)

Levels  19  20 (click tabs to see student view)

file://docs.code.org/gamelab/drawSprites/
http://creativecommons.org/
file://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13

14 Ch. 2 15 16 17 18 19 20 21 22

Lesson 7: The Draw Loop
Game Lab

Overview
In this lesson students are introduced to the draw loop, one of the
core programming paradigms in Game Lab. To begin the lesson
students look at some physical flipbooks to see that having many
frames with different images creates the impression of motion.
Students then watch a video explaining how the draw loop in Game
Lab helps to create this same impression in their programs. Students
combine the draw loop with random numbers to manipulate some
simple animations with dots and then with sprites. At the end of the
lesson students use what they learned to update their sprite scene
from the previous lesson.

Purpose
The draw loop is a core component of Game Lab. The fact that the
Game Lab environment repeatedly calls this function many times a
second (by default 30) is what allows the tool to create animations.
This lesson has two goals therefore. The first is for students to see
how animation in general depends on showing many slightly different
images in a sequence. To help students have physical flipbooks they
can use, a video, and a map level. The second goal is for students to
understand how the draw loop allows them to create this behavior in
Game Lab. Students should leave the lesson understanding that the
commands in the draw loop are called after all other code but are
then called repeatedly at a frame rate. Students will have a chance to
continue to develop an understanding of this behavior in the next two
lessons, but laying a strong conceptual foundation in this lesson will
serve them well for the rest of the unit.

Agenda
Warm Up (5 mins)
Activity (60 min)
Wrap Up (10 mins)

Objectives
Students will be able to:

Explain what an animation is and how it
creates the illusion of smooth motion
Explain how the draw loop allows for the
creation of animations in Game Lab
Use the draw loop in combination with the
randomNumber() command, shapes, and
sprites to make simple animations

Preparation
Print and assemble the Random Dot

Flipbook - Manipulative and Random
Sprite Flipbook - Manipulative

Prepare Flipbook Example - Video

Links
Heads Up! Please make a copy of
any documents you plan to share
with students.

For the Teacher

Random Dot Flipbook - Manipulative
Random Sprite Flipbook - Manipulative
Flipbook Example - Video

Vocabulary
Animation - a series of images that create
the illusion of motion by being shown rapidly
one after the other
Frame - a single image within an animation
Frame Rate - the rate at which frames in an
animation are shown, typically measured in
frames per second

Introduced Code
function draw() { }

World.frameRate

https://docs.google.com/drawings/d/1KO4s3j9Zbc6rBxLijxxKIYlN24wej906HHJZ7GQDi9U/edit?usp=sharing
https://docs.google.com/drawings/d/1mVt8SE1N5KYy2TfOlqtvkL_2MmYk6wFpiouMZ-P-kQY/edit?usp=sharing
https://www.youtube.com/watch?v=jQoNiU2ChoM
https://docs.google.com/drawings/d/1KO4s3j9Zbc6rBxLijxxKIYlN24wej906HHJZ7GQDi9U/edit?usp=sharing
https://docs.google.com/drawings/d/1mVt8SE1N5KYy2TfOlqtvkL_2MmYk6wFpiouMZ-P-kQY/edit?usp=sharing
https://www.youtube.com/watch?v=jQoNiU2ChoM
file://docs.code.org/gamelab/draw/
file://docs.code.org/gamelab/World.frameRate/


 Discussion
Goal

Goal: This discussion should introduce some key
understandings about animation. Students should
understand that the key is seeing many pictures in a row
that are slightly different. Introduce the vocabulary word
"frame" as one of those pictures. Then transition to the fact
that soon students will be creating animations of their own.


 Teaching Tip

Pair Programming: This lesson introduces a challenging
new paradigm. Until students are working to improve their
projects consider having them pair program. Remember to
give students clear instructions on when to switch driver
and navigator.

Teaching Guide
Warm Up (5 mins)

Video: Show Flipbook Example - Video

Prompt: This video shows a flipbook to make animation. In your own words how is it working? Why does it "trick our eyes"
into thinking something is moving?

Discuss: Have students write their ideas independently,
then share with partners, then as a whole group.

Vocabulary:

Frame: a single image within an animation

 Remarks

We're going to start learning how to make animations,
not just still images. In order to do this we need a way
to make our programs draw many pictures a second.
Our eyes will blur them together to make it look like smooth motion. To do this, though, we're going to need to learn an
important new tool

Activity (60 min)

Video: Watch the video introducing the draw loop

Map Level: Briefly point students to the map level
following the video. Ask students to use it as a reference
as they complete the challenges in today's activity.

Demo: If you choose, use the provided Random Dot
Flipbook - Manipulative and Random Sprite
Flipbook - Manipulative to provide a hands-on
manipulative for exploring how the draw loop and animations are connected.

 Code Studio levels

Lesson Overview  Student Overview

Video: Introduction to the Draw Loop  Student Overview

Shapes and the Draw Loop  3 (click tabs to see student view)

The Draw Loop  Student Overview

Shapes and the Draw Loop  5  6 (click tabs to see student view)

Sprites and the Draw Loop  7 (click tabs to see student view)

https://www.youtube.com/watch?v=jQoNiU2ChoM
https://docs.google.com/drawings/d/1KO4s3j9Zbc6rBxLijxxKIYlN24wej906HHJZ7GQDi9U/edit?usp=sharing
https://docs.google.com/drawings/d/1mVt8SE1N5KYy2TfOlqtvkL_2MmYk6wFpiouMZ-P-kQY/edit?usp=sharing


 Discussion
Goal

Goal: Use these prompts to assess whether students
have understood the main learning objectives of the
lesson.

Key Understandings: There are many common
misconceptions with the draw loop. Make sure students
understand the following

The draw loop is run after all other code in your
program. It does not actually matter where it is located
in your program
The draw loop is run by Game Lab at a constant frame
rate of 30 frames per second. You do not actually need
to call the function yourself.
The "frames" in Game Lab can be thought of as
transparency sheets. Unless you draw a background
then all your new shapes or sprites will simply appear
on top of your old ones
You should only have one draw loop in your program

Wrap Up (10 mins)

Share: Students only need to make small changes to their projects (e.g. shaking a single sprite) but ask them to share with
a neighbor or as a full class

Prompt: Have students respond to the following prompts

What is an animation?
Why does the draw loop help us make animations?
What are some common errors or mistakes we should
look out for as we keep programming with the draw
loop?

Review: Return to the resources students saw at the
beginning of the lesson (Map Level, Video, physical flip
books) and address misconceptions that have arisen in
the lesson.

Standards Alignment
CSTA K-12 Computer Science Standards

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

Sprite Properties  Student Overview

Sprites and the Draw Loop  9  10  11 (click tabs to see student view)

Animate Your Scene  12 (click tabs to see student view)

Levels  13 (click tabs to see student view)

http://creativecommons.org/
file://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13

14 Ch. 2 15 16 17 18 19 20 21 22

Lesson 8: Counter Pattern Unplugged
Unplugged

Overview
Students explore the underlying behavior of variables through an
unplugged activity. Using notecards and string to simulate variables
within a program, students implement a few short programs. Once
comfortable with this syntax, students use the same process with
sprite properties, tracking a sprite's progress across the screen.

Purpose
Reasoning about variables can be tricky, especially for new
programmers. In this lesson students complete an unplugged activity
using physical manipulatives (cards and string) to build a mental
model of how information can be stored in a variable and manipulated
by a program. This model is then extended to sprite properties, which
hold values in a similar way. This lesson introduces syntax and
concepts that students will be able to “plug-in” in the following lesson.
The mental model presented in this lesson will continue to be useful
throughout the unit, even as students begin to write larger and
increasingly complex programs.

Agenda
Warm Up (15 mins)
Activity (20 mins)

Variables Unplugged Activity

Activity 2 (30 mins)

Sprite Properties

Wrap Up (10 mins)

Discussion

Objectives
Students will be able to:

Describe the connection between updating a
sprite's location properties and sprite
movement on the screen.
Read and follow the steps of a short program
written in pseudocode that manipulates
variable values.

Preparation
Prepare materials for Labels and Values:

index cards, post-its, or scraps of paper (2 in.
by 2 in.) etc. (~ 50 per pair)

Prepare materials for Connectors: pieces of
string, pens, or pipe-cleaners, etc. (~ 4 per
pair)

Print copies of Variables Unplugged
Board - Manipulative for each group or
gather paper for students to use to make
their boards.

Review the rules of the Variables
Unplugged Activity to ensure you understand
them and are prepared to answer questions,
especially if you will be demonstrating them
yourself.

Printed a copy of Variables Unplugged -
Activity Guide for each student.

Links
Heads Up! Please make a copy of
any documents you plan to share
with students.

For the Teacher

Variables Uplugged - Key

For the Students

Variables Unplugged - Activity Guide

Variables Unplugged Board -
Manipulative

Make a Copy

Make a Copy

https://docs.google.com/document/d/1hxwkz9ed4Qd3KvKJ7MLQdgKGOtItXQ_qaYRQfZcfRn8/edit
https://docs.google.com/document/d/12-tfreuhFfNnxzBSl4dsLavDptTIruVcRiC3AzGKq1Y
https://studio.code.org/s/csd3-2018/stage/8/puzzle/1
https://docs.google.com/document/d/12-tfreuhFfNnxzBSl4dsLavDptTIruVcRiC3AzGKq1Y
https://docs.google.com/document/d/1hxwkz9ed4Qd3KvKJ7MLQdgKGOtItXQ_qaYRQfZcfRn8/edit

Vocabulary
Expression - Any valid unit of code that
resolves to a value.
Variable - A placeholder for a piece of
information that can change.

Teaching Guide
Warm Up (15 mins)

Prompt: In the last lesson, we used the draw loop to make our sprites move around on the screen. What are some other
ways we might want to make our sprites move?

Put student ideas up on the board.

 Remarks

In the next few lessons, we're going to look at lots of ways to have our sprites move around. In order to do that, we need
to learn a little bit more about variables and how they work. Today, we're going to do an activity with variables and sprite
properties that will help us to make these types of movement. As we go through the activity, think about how what you're
learning might help you to make your sprites move in the way you want.

Activity (20 mins)

Variables Unplugged Activity
Group: Put students in pairs.

Distribute: Give each pair:

1) A set of labels/values and connectors
2) A single sheet of paper to create their board
3) 2 copies of the Variables Unplugged - Activity Guide (One for each student.)

Display: Display the rules from the front page of the activity guide and write the first two programs from the second page.

 Remarks

Today we are going to be working in a world of labels, values, and the connectors between them. To simulate this world
you'll be using the scraps of paper and string that I've given you. To begin with we'll need to set up our boards, and
afterwards we'll go over how the commands for this world work.

Demonstrate: Show the class how to divide their boards into 3 sections and label them accordingly, as shown on the first
page of the activity guide.

Support: Students should work through the first two programs as a group, as you reference the steps in the activity guide.
As groups feel increasingly comfortable with completing commands themselves encourage groups to independently run
each command before comparing their boards with a neighboring pair. The goal is just to make sure everyone has an
opportunity to understand the steps of the activity.

 Remarks

Now it's your turn to try running some of these programs on your own. On the bottom of the page there are two more
programs that you can run. For each one you should run the program to find out the ending state of the program. In
other words, you want to know what labels are connected to what values. Once you reach the end of each program you
can compare your results with a neighboring group. If you don't agree, then go back though and see if you can find where
you lost track.

Support: Students should work in pairs through the two programs on the activity guide. Have a check-in to make sure
everyone agrees on the ending state of the program (what labels are connected to what values). If students disagree,
reinforce the need to debug when reading code by going back and tracing each step.

Activity 2 (30 mins)

Sprite Properties

https://docs.google.com/document/d/12-tfreuhFfNnxzBSl4dsLavDptTIruVcRiC3AzGKq1Y

 Discussion
Goal

The goal of the discussion is not to have students think of
solutions to all the problems, but for them to identify them,
priming them for the counter pattern lesson. Some
problems students may see are that the smiley faces
remained on the screen, rather than moving, that they
could only move left and right or up or down, or that the
images stopped after a certain amount of time.



 Content Corner

This activity is designed to address many common
misconceptions with variables and memory.

Common Misconceptions

Variables can have multiple values (They cannot,
variables hold at most one value)
Variables “remember” old values (They do not, hence
old values being removed to the Trash)
Variables are connected after a command like “x = y”
(This may arise later in the course when students use
sprites and will be addressed in great detail. For now
students are being forced to create new value cards
every time because even for a statement like x = y there
is no “connection” between those variables formed)
Variables hold expressions (e.g. 1 + 5) (Variables only
hold values, expressions are computed beforehand.
This is why value cards are only created once students
have a single value. Enforce this rule closely)



 Discussion
Goal

Goal: Students should see that commands such as x = x
+ 1 will move a sprite in a deliberate way across the
screen, as opposed to the random movement they saw in
the previous lesson.



Distribute: Sprite Properties in Variables Unplugged
- Activity Guide if you have not included it on the
original activity guide.

Demonstrate: Show students the rules of activity on the
activity guide. Work through program 5 as a group, and
demonstrate how to make a new sprite card and connect
it to both its variable label card and the sprite property
cards. Make sure students understand that they should
be creating a new sprite card every time they see the
createSprite command and should draw their sprites on

the grid every time they see the drawSprites command.

Support: Students should work through the last two
programs using their manipulatives.

Prompt: How did the sprite move across the grid in
Program 3? How did the sprite move across the grid in
Program 4?

After students have filled out the reflection questions,
they should compare with another pair, then discuss as a
class.

Wrap Up (10 mins)

Discussion
Prompt: We saw some clues today of how we might
program the types of movement that we want for our
sprites. What are some problems that we still need to
solve to make the sprite look like it's moving in the way
that you want?

Allow students to brainstorm problems and list them on
the board.

Prompt: Choose one or two of these problems and start
to think of some ways you could solve this problem.

Allow students time to brainstorm individually before
sharing out their solutions.

 Remarks

These are great ideas. In the next lesson, we're going to look at how we can use some of the things we've learned today
to make our sprites move in lots of different ways.

Standards Alignment
CSTA K-12 Computer Science Standards

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://docs.google.com/document/d/12-tfreuhFfNnxzBSl4dsLavDptTIruVcRiC3AzGKq1Y
file://docs.code.org/gamelab/createSprite/
file://docs.code.org/gamelab/drawSprites/
http://creativecommons.org/
file://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13

14 Ch. 2 15 16 17 18 19 20 21 22

Lesson 9: Sprite Movement
Game Lab

Overview
By combining the Draw Loop and the Counter Pattern, students write
programs that move sprites across the screen, as well as animate
other sprite properties.

Purpose
This lesson combines the Draw Loop that students first saw in Lesson
7 and the Counter Pattern that they learned in Lesson 8 to create
programs with purposeful motion. By either incrementing or
decrementing sprite properties, such as sprite.x , you can write

programs that move sprites in expected patterns, instead of the
randomization that we used in the past. The animations that students
learn to create in this lesson lay the foundation for all of the
animations and games that they will make throughout the rest of the
unit.

Agenda
Warm Up (5 minutes)

Reviewing Sprite Properties

Activity (40 minutes)

Levels: Sprites and Images

Wrap Up (5 minutes)

Journal

Objectives
Students will be able to:

Use the counter pattern to increment or
decrement sprite properties
Identify which sprite properties need to be
changed, and in what way, to achieve a
specific movement

file://docs.code.org/gamelab/x/



 Discussion
Goal

The purpose of this discussion is to start students thinking
about how they might use the various sprite properties
they've seen so far to make animations with purposeful
motion. If students struggle to come up with ideas, you
can narrow down the question to specific properties. For
example:

What would happen to a sprite if you constantly
increased its x property?

What would happen to a sprite if you constantly
increased its y property?

What about other properties, or combining multiple
properties?

Teaching Guide
Warm Up (5 minutes)

Reviewing Sprite Properties
Prompt: On a piece of scratch paper, list out all of the
sprite properties you can think of and what aspect of a
sprite they affect.

Discuss: What kinds of animations could you make by
combining sprite properties with the counter pattern?
Consider both adding and subtracting from properties, or
even updating multiple properties at the same time.
Record ideas as students share them on the board.

Activity (40 minutes)

Levels: Sprites and Images
Transition: Send students to Code Studio.

Support: Students should be progressing through the levels without stopping in this class. When they have finished the
skill building levels they are given the option of which project they wish to extend.

 Code Studio levels

Lesson Overview  Student Overview

Video: Sprite Movement  Student Overview

The Counter Pattern  Student Overview

Movement with the Counter Pattern  4  5  6  7  8

(click tabs to see student view)

Debugging with Watchers  Student Overview

Animating Sprites  10  11  12  13 (click tabs to see student view)

Create Your Own Animation  14  15 (click tabs to see student view)

Levels  16  17 (click tabs to see student view)

file://docs.code.org/gamelab/x/
file://docs.code.org/gamelab/y/

Wrap Up (5 minutes)

Journal
Prompt: Have students reflect on their development of the five practices of CS Discoveries (Problem Solving,
Persistence, Creativity, Collaboration, Communication). Choose one of the following prompts as you deem appropriate.

Choose one of the five practices in which you believe you demonstrated growth in this lesson. Write something you did
that exemplified this practice.

Choose one practice you think you can continue to grow in. What’s one thing you’d like to do better?

Choose one practice you thought was especially important for the activity we completed today. What made it so
important?

Standards Alignment
CSTA K-12 Computer Science Standards

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://docs.google.com/document/d/1FhHPqlC6dU_z9retuBYb-duUwyKpnjwuEgjF4zfdhvI/edit#heading=h.5u3d4jfozbgc
http://creativecommons.org/
file://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13

14 Ch. 2 15 16 17 18 19 20 21 22

Lesson 10: Booleans Unplugged
Unplugged

Overview
In this lesson, students are introduced to boolean values and logic, as
well as conditional statements. The class starts by playing a simple
game of Stand Up, Sit Down in which the boolean (true/false)
statements describe personal properties (hair or eye color, clothing
type, age, etc). This gets students thinking about how they can frame
a property with multiple potential values (such as age) with a binary
question.

From there students are provided a group of objects with similar, yet
varying, physical properties. With a partner they group those objects
based on increasingly complex boolean statements, including
compound booleans with AND and OR.

Finally we reveal Conditionals as a tool to make decisions or impact
the flow of a program using boolean statements as input.

Agenda
Warm Up (10 min)

Stand Up, Sit Down
Example Translation

Activity (30 min)

Asking the Right Questions
Sorting with Booleans
Conditionals

Wrap Up (5 min)

Explicit Conditionals

Objectives
Students will be able to:

Organize objects based on simple and
compound boolean statements
Describe the properties of an object using
boolean statements

Preparation
Read the Forum
Print a copy of the Boolean Properties -

Activity Guide for each student
(Optional) Gather objects with similar but

varying features to use instead of the
worksheet (LEGO bricks work well, a mixed
bag of candy can be fun as well)

Links
Heads Up! Please make a copy of
any documents you plan to share
with students.

For the Students

Boolean Properties - Activity Guide

Vocabulary
Boolean - A single value of either TRUE or
FALSE
Conditionals - Statements that only run
under certain conditions.
Expression - Any valid unit of code that
resolves to a value.

Make a Copy

https://docs.google.com/document/d/1kRNIUD5Z3r7HK9twMPMnenyEFPh9ouMsJKIb4T0-6so/
https://docs.google.com/document/d/1kRNIUD5Z3r7HK9twMPMnenyEFPh9ouMsJKIb4T0-6so/

Teaching Guide
Warm Up (10 min)

Stand Up, Sit Down
Distribute: Give each student a card and have them answer the following questions on it (feel free to add some of your
own)

1. What is your hair color?
2. Do you wear glasses or contacts?
3. What is your favorite number?
4. What is your favorite color?
5. What month were you born?
6. Do you have any siblings?
7. What is the last digit of your phone number?
8. What is something about you that people here don't know and can't tell by looking at you?

Then collect the cards and shuffle them. To play the game, follow these steps:

For Each Card:

1. Select a card
2. Say: I’m going to read the answer to #8 but if it is you, don’t say anything.
3. Read the answer to #8
4. Say: Now everyone stand up and we are going to ask some questions with Boolean answers to help determine who this

person is. I'm going to say a bunch of statements. If they are true about you stay standing. If they are false sit down.
5. Translate the answers from #1 to #7 into statements that can either be true or false (See below). The person whose card

it is should always answer true.
6. Because of how numbers 3, 4, 5, and 7 were asked it is likely that some people will still be standing. You will need to

revisit these and ask them again in a more narrow fashion such as “My favorite color is purple”.

Example Translation

Question Answer True/False Statement

1) What is your hair color? brown "My hair color is brown."

2) Do you wear glasses or contacts? yes "I wear glasses or contacts."

3) What is your favorite number? 12 "My favorite number is greater than 10 and
less than 20."

4) What is your favorite color? purple "My favorite color appears in a sunset."

5) What month were you born May "I was born in the spring."

6) Do you have any siblings? yes "I have siblings."

7) What is the last digit of your
phone number? 5 "The last digit of my phone number is

prime."

 Content Corner

In English, an “or” is often an “exclusive or” such as “You
can have chicken or fish.” In English, you only get to pick
one, but with Boolean logic you could have chicken, fish,
or both!! For the example person, “I was born in May OR
my favorite number is 12” is true. Note that “I was born in
May OR my favorite number is 13” is also true.



 Teaching Tip

Students often struggle with the idea of greater-than or
equals to ever being FALSE - they tend to think of those
as statements of truth rather than questions of relation.

In this activity we use the language something is equal to
something else in order to mirror the code they'll see
later (eg something == something_else), but for students
who are struggling with seeing this as a question rather
than a statement, you can encourage them to reword the
statement by moving the 'is' to the beginning, so:

something is equal to something else

becomes

is something equal to something else?

Play this several times changing the true/false statements
you use. Be creative with using or and and. Remind
students that the OR means that either part of the
statement being true will result in the entire statement
being true.

Discuss: the Stand up Sit Down game with students:

What kinds of questions did the teacher ask?
Were you ever confused about whether you should be
standing or sitting? Why?
At any point in the game, how many different states could you be in?

Introduce the vocabulary boolean as a description for the kinds of questions we were asking. The defining feature of a
Boolean is that it can have only two states - in our game those states were True and False, or Standing and Sitting

Activity (30 min)

Asking the Right Questions
Brainstorm

Prompt: Brainstorm places where they've seen Boolean values before, either in the class or in the world.

Discuss: Have students share out their answers. Potential answers could include:

Binary
Flow charts
Light switches (and other devices that can be on or off)

Sorting with Booleans
 Remarks

In the game we played, the boolean questions I asked were all based on your properties. Your properties didn't have to
exist in only two states (how many different hair colors are in the room?), but the questions I asked had to split them into
two states (how many people in the room have red hair?). We're going to do similar sorting using the properties of various
images.

Group: Organize students into pairs

Set Up: Assign each member of the pair as either True or
False.

Distribute: Hand out the cut out the images from the
worksheet, or provide students with some objects to sort
(such as LEGO bricks or candies).

 Remarks

I'm going to read a bunch of binary statements in the
form of shape is equal to square or sides is greater than
4 , and you are going to sort through their objects to
organize them into TRUE and FALSE piles. If students
disagree about which pile an object should go into they
should first discuss what the property is, what the two
outcomes of the binary question are, and then if they
still cannot agree they should bring it to the class for a
vote.

If you are using the provided cutouts, you can
start with the following questions:

sides is equal to 3

 Content Corner

When combining booleans with OR we are using what is
called a logical or - meaning that we are asking if either
(or both) or the booleans is TRUE. Students often default
to thinking of OR as an exclusive or - meaning that we
are asking if only one (but not the other) is TRUE.

Make sure you ask students questions or questions where
both of the booleans are TRUE to ensure you can get at
this misconception early





fill is equal to black
corners is less than 1
width is equal to height
fill is equal to grey AND sides is greater than 4
sides is greater than 4 AND less than 7
sides is greater than 4 OR less than 7
sides is NOT less than 5

Conditionals
Goal: After getting used to sorting objects into TRUE and
FALSE, we need to introduce students to the concept that
Booleans can also be used to control the flow of a program.

 Remarks

A conditional allows us to make a decision based on the outcome of a boolean question (or condition). We actually were
implicitly using conditionals in the Stand Up, Sit Down activity because there was an action related to each potential
outcome of the boolean. We could have rephrased the instructions as

if statement is true: remain standing else: sit down

Prompt: Select one object from your pile and hold it up.

 Remarks

I'm going to ask you a boolean question about your object and give you an action related to the potentail outcome of the
boolean. Figure out what your response should be for your shape and do the correct response.

Prompt: Ask students some boolean questions about that single object AND give students something to do if that question
is true. For example:

If sides is equal to 4, do a dance
If pattern is equal to striped, sit down
If width is equal to height, hop on one foot

Wrap Up (5 min)

Explicit Conditionals
Goal: Booleans and conditionals are actually something that we use in our everyday lives - we just aren't usually explicit
about it.

Model: As a way to practice thinking explicitly about conditionals, consider dismissing your students using compound
booleans and conditionals. For example.

If you sit at table four and your hair is brown, you may leave.
If your first name starts with A OR B, you may leave.
If your shoes are black, you may leave.

Standards Alignment
CSTA K-12 Computer Science Standards

AP - Algorithms & Programming

http://creativecommons.org/

If you are interested in licensing Code.org materials for commercial purposes, contact us.

file://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13

14 Ch. 2 15 16 17 18 19 20 21 22

Lesson 11: Booleans and Conditionals
Game Lab

Overview
Students start by using booleans to compare the current value of a
sprite property with a target value, using that comparison to determine
when a sprite has reached a point on the screen, grown to a given
size, or otherwise reached a value using the counter pattern. After
using booleans directly to investigate the values or sprite properties,
students add conditional if statements to write code that responds to
those boolean comparisons.

Purpose
This lesson follows closely the booleans model that students first
experienced in the Booleans Unplugged lesson. As before, we start
with using booleans directly before using booleans to trigger if
statements. In the following lesson we will introduce some boolean
producing blocks, such as keyDown() , which can be used in place of

simple boolean comparisons to write programs that respond to user
input.

Agenda
Warm Up (5 min)

Answering Boolean Questions

Activity (40 min)

Booleans Plugged

Wrap Up (5 min)

Adding Conditionals

Objectives
Students will be able to:

Predict the output of simple boolean
statements
Use conditionals to react to changes in
variables and sprite properties

Vocabulary
Boolean Expression - in programming, an
expression that evaluates to True or False.
If-Statement - The common programming
structure that implements "conditional
statements".

Introduced Code
If statement

Equality operator

Inequality operator

Greater than operator

Greater than or equal operator

Less than operator

Less than or equal operator

file://docs.code.org/gamelab/keyDown/
file://docs.code.org/gamelab/ifBlock/
file://docs.code.org/gamelab/equalityOperator/
file://docs.code.org/gamelab/inequalityOperator/
file://docs.code.org/gamelab/greaterThanOperator/
file://docs.code.org/gamelab/greaterThanOrEqualOperator/
file://docs.code.org/gamelab/lessThanOperator/
file://docs.code.org/gamelab/lessThanOrEqualOperator/

 Content Corner

Though seemingly simple, understanding how a boolean
statement will evaluate can be difficult given that different
programming languages have differing opinions on
'truthiness' and 'falsiness'. In fact, JavaScript (the
language used in this course) has two different operators
to test boolean equality == and === .

The double equals operator (==) is pretty generous in
determining truthiness, for example each of the following is
considered true in JavaScript when using the ==
operator, but would be false using the === operator:

1 == true;
"1" == true;
5 == "5";
null == undefined;
"" == false;

We use the == operator in this course because it's more
forgiving, but it's important to be aware that it can
sometimes report back truth when you really didn't intend
it to (in which case you might want to use the more strict
=== operator)

Teaching Guide
Warm Up (5 min)

Answering Boolean Questions
Goal: At the end of the Boolean Question game from the previous lesson, students began adding conditions to their
boolean questions - meaning that if the answer to the question is true, something should happen. Before programming with
conditionals, we want to make sure that students have a solid understanding of what booleans really are.

Prompt:

How many different numbers are there in the world?
How many different words or combination of letters and other characters are there?
How many different boolean values are there?

Discuss: Students should realize that the first two questions (numbers and strings), are essentially infinite, but that
booleans are limited to two states.

 Remarks

As you begin programming today, you'll be using booleans to make programs that change their behavior depending on
the answer to those boolean questions.

Activity (40 min)

Booleans Plugged
Transition: Send students to Code Studio.

 Code Studio levels

Lesson Overview  Student Overview

Wrap Up (5 min)

Adding Conditionals
Journal: Think back to all of the programs you've written so far; how might you use conditionals to improve one of your
programs from past lessons? What condition would you check, and how would you respond to it?

Standards Alignment
CSTA K-12 Computer Science Standards

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

Make a Prediction  2 (click tabs to see student view)

Video: Booleans  Student Overview

Booleans and Comparison Operators  Student Overview

Boolean Comparison  5  6  7  8 (click tabs to see student view)

If Statements  Student Overview

Basic Conditionals  10  11  12 (click tabs to see student view)

Levels  13 (click tabs to see student view)

http://creativecommons.org/
file://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13

14 Ch. 2 15 16 17 18 19 20 21 22

Lesson 12: Conditionals and User Input
Game Lab

Overview
Following the introduction to booleans and if statements in the
previous lesson, students are introduced to a new block called
keyDown() which returns a boolean and can be used in conditionals

statements to move sprites around the screen. By the end of this
lesson students will have written programs that take keyboard input
from the user to control sprites on the screen.

Purpose
One common way conditionals are used is to check for different types
of user input especially key presses. Having a way for a user to
interact with a program makes it more interesting and dynamic.
Without interaction from the user it is very difficult to create a game.
Therefore the introduction of conditionals and user inputs for decision
making is the first big step toward creating games.

Agenda
Warm Up (5 min)

Taking Input

Activity (40 min)

Keyboard Input

Wrap Up (5 min)

Considering Conditions

Objectives
Students will be able to:

Use conditionals to react to keyboard input
Move sprites in response to keyboard input

Links
Heads Up! Please make a copy of
any documents you plan to share
with students.

For the Students

Boolean Expressions - Video (download)

Introduced Code
keyDown(code)

file://docs.code.org/gamelab/keyDown/
https://youtu.be/y3rCKJNOwpA
https://videos.code.org/2015/csp/applab/conditionals_1.mp4
file://docs.code.org/gamelab/keyDown/



 Discussion
Goal

The goal here isn't to get into the technical specifics of how
programs can take input (students will get to that in the
online portion of the lesson), but rather to get students
thinking about how allow user input could change the
programs they've made. Encourage students to think back
to Unit 1 and the various computer inputs and outputs they
explored then. Which inputs would be most useful for the
types of programs they've been making?

Teaching Guide
Warm Up (5 min)

Taking Input
Discuss: So far all of the programs you've written run
without any input from the user. How might adding user
interaction make your programs more useful, effective, or
entertaining? How might a user provide input into your
program?

Activity (40 min)

Keyboard Input
Transition: Send students to Code Studio

 Code Studio levels

Wrap Up (5 min)

Considering Conditions
Prompt: To get students to continue thinking about how conditionals can be used in programming, prompt them to come
up with scenarios in games or programs they use regularly that might be triggered by conditionals.

Discuss: Have students share responses. Student responses might include:

If my username and password are correct, log me into Facebook
If Pacman has collected all the balls, start the next level
If my keyboard or mouse hasn't moved in 10 minutes, turn on the screensaver

Standards Alignment
CSTA K-12 Computer Science Standards

Lesson Overview  Student Overview

Keyboard Input  2  3  4  5  6  7 (click tabs to see student view)

Editing Images  Student Overview

Keyboard Input  9 (click tabs to see student view)

Levels  10  11 (click tabs to see student view)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13

14 Ch. 2 15 16 17 18 19 20 21 22

Lesson 13: Other Forms of Input
Game Lab

Overview
In this lesson students continue to explore ways to use conditional
statements to take user input. In addition to the simple keyDown()

command learned yesterday, students will learn about several other
keyboard input commands as well as ways to take mouse input.

Purpose
Students have learned how to make simple decisions with
conditionals. Sometimes however we want to make decision based
on if the condition we asked about originally was false or we want to
make a decision based on multiple conditions being true. Thats where
else statements and more complex conditionals come in. Else
statements are a second statement which is attached to a if
statement. Else statements execute when the if statement it is
attached to is false. You can think of it as "if something is true do
thing 1 else do thing 2.

This concept is introduced alongside several new key and mouse
input commands, allowing students to gradually build up programs
that input in different ways.

Agenda
Warm Up (5 minutes)

Check for Understanding

Activity (40 minutes)

If/Else and More Input

Wrap Up (5 minutes)

Share Out

Objectives
Students will be able to:

Use an else statement as the fallback case to
an if statement
Differentiate between conditions that are true
once per interaction, and those that remain
true through the duration of an interaction.

Vocabulary
Conditionals - Statements that only run
under certain conditions.

Introduced Code
keyWentDown(code)

keyWentUp(code)

mouseDidMove()

mouseDown(button)

mouseWentDown(button)

mouseWentUp(button)

sprite.visible

If/else statement

file://docs.code.org/gamelab/keyDown/
file://docs.code.org/gamelab/keyWentDown/
file://docs.code.org/gamelab/keyWentUp/
file://docs.code.org/gamelab/mouseDidMove/
file://docs.code.org/gamelab/mouseDown/
file://docs.code.org/gamelab/mouseWentDown/
file://docs.code.org/gamelab/mouseWentUp/
file://docs.code.org/gamelab/visible/
file://docs.code.org/gamelab/ifElseBlock/

Teaching Guide
Warm Up (5 minutes)

Check for Understanding
 Remarks

Today we'll be picking up today where we left off yesterday - using conditionals to write programs that respond to user
input. Let's refresh what we learned yesterday.

Prompt:

What is a Boolean? (eg. a true/false value)
What is the relationship between a Boolean and a Conditional? (eg. a conditional asks a Boolean question and runs
code if the answer is true)
What are some examples of comparison operators that result in a Boolean? (eg. >, <, ==)
What is the difference between = and == ? (eg. = is used to assign a value, == is used to check if two values are

equal)

Activity (40 minutes)

If/Else and More Input
Video: Watch the Conditionals Video together as a class. It will be a review of if statements and introduce some new
concepts too.

Transition: Send students to Code Studio

 Code Studio levels

Wrap Up (5 minutes)

Lesson Overview  Student Overview

Follow the Mouse  2  3 (click tabs to see student view)

Video: Conditionals  Student Overview

If-Else Statements  Student Overview

Input with If-Else  6  7  8  9  10  11  12

(click tabs to see student view)

Levels  13  14 (click tabs to see student view)

Share Out
Share: The final program in this lesson is asks students to expand a program to uses conditionals for user input in new and
interesting ways. Have your students share their projects with the class, prompting them to explain how they used
conditionals in their programs.

Standards Alignment
CSTA K-12 Computer Science Standards

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13

14 Ch. 2 15 16 17 18 19 20 21 22

Lesson 14: Project - Interactive Card
Game Lab | Project

Overview
In this cumulative project for Chapter 1, students plan for and develop
an interactive greeting card using all of the programming techniques
they've learned to this point.

Purpose
This end of chapter assessment is a good place for students to bring
together all the pieces they have learned (drawing, variables, sprites,
images, conditionals, user input) in one place. Students should still be
working with code that is easily readable and doesn't involve a whole
lot of magic. Giving students the opportunity to really be creative after
learning all these new concepts will help to engage them further as we
head into chapter 2.

Agenda
Warm Up (10 min)

Demo Project Exemplars (Level 2)

Activity (2 days)

Unplugged: Interactive Card Planning
Levels: Implementing Interactive Card (Level 3 - 7)
Peer Review
Iterate - Update Code
Reflect

Wrap Up (10 minutes)

Sharing Cards

Assessment

Objectives
Students will be able to:

Use conditionals to react to keyboard input or
changes in variables / properties
Sequence commands to draw in the proper
order
Apply an iterator pattern to variables or
properties in a loop

Preparation
Read the Forum
Print out a copy of the Interactive Card -

Project Guide Activity Guide for each
student

Links
Heads Up! Please make a copy of
any documents you plan to share
with students.

For the Teacher

Interactive Card - Project Guide Exemplar
Interactive Card - Peer Review Exemplar

For the Students

Interactive Card - Project Guide

Interactive Card - Rubric

Interactive Card - Peer Review

Make a Copy

Make a Copy

Make a Copy

https://docs.google.com/document/d/1PtGpvAAyCYa_glecPhytGPrZau9ElJfJRhnVogFEqv4/
https://studio.code.org/s/csd3-2018/stage/14/puzzle/1
https://studio.code.org/s/csd3-2018/stage/14/puzzle/1
https://docs.google.com/document/d/1PtGpvAAyCYa_glecPhytGPrZau9ElJfJRhnVogFEqv4/
https://docs.google.com/document/d/1EdEpsowofT8WGQSFvzYVF53HEKipLYdWULtjLgpOEBw/
https://docs.google.com/document/d/1aVP_8YU-JWkxVvRiituCOf66w7refwDaecNBLMZkKgs

View on Code
Studio

Teaching Guide
Warm Up (10 min)

Demo Project Exemplars (Level 2)
Goal: Students see an example of a final project and discuss the different elements that went into making it.

Display: On the projector, run the exemplar for students. Since this is on level 2 of the progression, if its easier for students
to do it on their own computers you could do that as well.

 Code Studio levels
Interactive Card 
Student Overview

Example Project
Run the program a few times and answer the following questions:

1) Which elements appear to use drawing commands?

2) Which elements appear to be Sprites?

3) For each Sprite, which properties are being updated?

4) Where do you see conditionals being used?

5) Are there elements that you don’t understand?

Discuss: Have students share their observations and analyses of the exemplar.

Encourage the class to consider that there are multiple approaches to programming anything, but that there may be clues
as to how something was created. In particular, when they are sharing their thoughts ask them to specify the following :

Clues that suggest a Sprite was used
Clues that suggest a conditional was used
Clues that suggest an iterator pattern was used

Display: Show students the Interactive Card - Rubric rubric. Review the different components of the rubric with them to
make sure they understand the components of the project.

Activity (2 days)

Unplugged: Interactive Card Planning
Goal: Students should plan out what they want to create before they head to the computer so that once they get to the
computer they are just executing the plan.

Distribute: Hand out the Interactive Card - Project Guide to students. This is the tool students will use to scope out
their projects before getting onto the computers. Give students some time to brainstorm the type of card they want to create
and who the recipient will be.

Steps

1) The first layer of the interactive card is a background drawn with just the commands in the Drawing drawer. The front of
the Activity Guide provides a grid for students to lay out their background, a reference table of drawing commands, and an
area for students to take notes and write pseudocode.

2) Next students think through the Sprites they'll need, filling out a table of each Sprite's label, images, and properties

https://studio.code.org/s/csd3-2018/stage/14/puzzle/2
https://docs.google.com/document/d/1EdEpsowofT8WGQSFvzYVF53HEKipLYdWULtjLgpOEBw/
https://docs.google.com/document/d/1PtGpvAAyCYa_glecPhytGPrZau9ElJfJRhnVogFEqv4/

View on Code
Studio

View on Code
Studio

3) Finally students consider the conditionals they'll need in order to make their card interactive.

Levels: Implementing Interactive Card (Level 3 - 7)
 Transition: Once students have completed their planning sheet, it's time to head to the Code.org website for Lesson
10. The short level sequence asks students to complete each element of their project.

 Code Studio levels
Making an Interactive Card 
Student Overview

Your Interactive Card
In the next few levels, you'll be completing your own interactive card. Here are some examples to give you some ideas.
Don't forget to look at the code to see how they work.

Examples

Levels
 4
 5
 6
 7

Student Instructions

Laying Out Your Background
Before beginning this project, you should have already completed the Interactive Card Planning activity, and you'll want to
have that paper with you as you develop your program. Preparation is one of the most important elements of successfully
creating a program!

Do This
Refer to your planning activity sheet to help you lay out the shapes that will become the background to your card.

First, figure out what the lowest layer in your image is (this should use the background() block) and add it to the very top

of the draw loop.
Next, layer each additional drawing block in the order you want them to appear in the stack.
Finally, add a comment to the top of this section of code to describe what it does, and if you have any particularly
complicated chunks of code within (such as code to draw a tree or a house), add a descriptive comment to that as well.

Challenge: Can you use variables or randomNumber() to add some subtle animation to your background layer?

https://studio.code.org/s/csd3-2018/stage/14/puzzle/3
https://studio.code.org/projects/gamelab/OzdFqrZ4oHPYsTddaRWaZxtTvdj9NzZVwCq6NkyONXM/edit
https://images.code.org/7bbdbbb01c354a7c09bb4b9b5182a951-image-1522780803299.png
https://studio.code.org/projects/gamelab/fmFrWsocELzP19CfbGI5P_hsgxN5ewVaB5f0Bw5S1_E/edit
https://images.code.org/ed307e22854e4958a006d8023636cfd5-image-1522780803295.png
https://studio.code.org/projects/gamelab/z4XDrC0lsqoRY0xzYaXdJfChmyCl5O6YM-EOByecscc/edit
https://images.code.org/ae0eca1dab46f13fcb21d4d0e264d637-image-1522780803298.png
https://studio.code.org/s/csd3-2018/stage/14/puzzle/4
file://docs.code.org/gamelab/background/
file://docs.code.org/gamelab/randomNumber/

View on Code
Studio

View on Code
Studio

View on Code
Studio

Student Instructions

Adding Sprites
Now that you have the more static elements of your card layed out, it's time to add the Sprites. Your Sprites should provide
the primary animations and interactions for your card - so feel free to get creative here and have fun.

Do This
Check out the Sprites table on the back of your planning sheet. For each Sprite in your table:

Initialize the Sprite at the top of your program with createSprite() .

Find or create the image(s) for the Sprite and set it with setAnimation() .

Inside the draw() loop update any Sprite properties that we will be constantly animating (we'll deal with conditionals in a

minute).

Student Instructions

User Input
You've got a background, you've got Sprites, now it's time to give your user something to do!

Do This
On the interactions table from your planning sheet, find all of the interactions that rely on user input (key presses and
mouse movements). For each of those interactions:

Add an if block (or if-else block if you need a fallback action) inside the draw() loop.

Add the appropriate input block for your condition (such as keyDown() or mouseDown()).

Add the necessary actions inside the if block.

Challenge: Can you create more sophisticated conditionals by nesting them or using compound booleans?

Student Instructions

Other Conditionals
The surprise in your card comes from conditionals that don't directly respond to user input, but to some other element of
your card. This could be triggered by a variable that gets updated as the user interacts with your card, or a Sprite moving
into a certain part of the screen.

Do This
For each of the remaining items on your interactions table:

Add an if block (or if-else block if you need a fallback action) inside the draw loop.

Add the appropriate Boolean comparison block to the condition (eg. < , > , or ==).

Add the necessary actions inside the if block.

Challenge: Can you create more sophisticated conditionals by nesting them or using compound booleans?

Peer Review
Distribute: Give each student a copy of Interactive Card - Peer Review .

https://studio.code.org/s/csd3-2018/stage/14/puzzle/5
file://docs.code.org/gamelab/createSprite/
file://docs.code.org/gamelab/setAnimation/
file://docs.code.org/gamelab/draw/
https://studio.code.org/s/csd3-2018/stage/14/puzzle/6
file://docs.code.org/gamelab/draw/
file://docs.code.org/gamelab/keyDown/
file://docs.code.org/gamelab/mouseDown/
https://studio.code.org/s/csd3-2018/stage/14/puzzle/7
https://docs.google.com/document/d/1aVP_8YU-JWkxVvRiituCOf66w7refwDaecNBLMZkKgs

View on Code
Studio

Students should spend 15 minutes reviewing the other student's card and filling out the peer review guide.

Iterate - Update Code
Circulate: Students should complete the peer review guide's back side and decide how to respond to the feedback they
were given. They should then use that feedback to improve their cards.

Reflect
Using the Interactive Card - Rubric , students should assess their own project before submitting it.

 Send students to Code Studio to complete their reflection on their attitudes toward computer science. Although their
answers are anonymous, the aggregated data will be available to you once at least five students have completed the
survey.

 Code Studio levels
Levels
 8

Student Instructions

Finishing Touches
Now's your chance to put some finishing touches on your card. We've included some new blocks that you haven't seen
before, so take some time to look around and try out some new blocks.

Do This
Consider adding any of the following to finish up your card:

Text
Additional images for your sprites
Subtle animation in the background
Sound effects (Can you figure out now to do this?)
More ways for a user to interact with your card

Wrap Up (10 minutes)

Sharing Cards
Goal: Students share their creations with the class.

Share: Find a way for students to share their cards with each other, and with the intended recipient. It will likely be helpful
to use the share link for the project so that students can share the project with other students.

Assessment

A rubric for assessing student projects is provided in the resources.

Standards Alignment
CSTA K-12 Computer Science Standards

https://docs.google.com/document/d/1EdEpsowofT8WGQSFvzYVF53HEKipLYdWULtjLgpOEBw/
https://studio.code.org/s/csd3-2018/stage/14/puzzle/8

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13

14 Ch. 2 15 16 17 18 19 20 21 22

Lesson 15: Velocity
Game Lab

Overview
After a brief review of how they used the counter pattern to move
sprites in previous lessons, students are introduced to the properties
that set velocity and rotation speed directly. As they use these new
properties in different ways, they build up the skills they need to
create a basic side scroller game.

Purpose
This lesson launches a major theme of the chapter: that complex
behavior can be represented in simpler ways to make it easier to write
and reason about code.

In this lesson they are taught to use the velocity blocks to simplify the
code for moving a sprite across the screen. This marks a shift in how
new blocks are introduced. Whereas previously blocks were
presented as enabling completely new behaviors, they are now
presented as simplifying code students could have written with the
blocks previously available. Over the next several lessons, students
will see how this method of managing complexity allows them to
produce more interesting sprite behaviors.

Agenda
Warm Up (15 min)
Activity (75 minutes)

Learning to Use the Velocity Blocks

Wrap Up (5 min)

Journal

Objectives
Students will be able to:

Use the velocity and rotationSpeed blocks to
create and change sprite movements
Describe the advantages of simplifying code
by using higher level blocks

Introduced Code
sprite.rotationSpeed

sprite.velocityX

sprite.velocityY

file://docs.code.org/gamelab/rotationSpeed/
file://docs.code.org/gamelab/velocityX/
file://docs.code.org/gamelab/velocityY/


 Discussion
Goal

Goal: The earlier demonstration should have reinforced
the fact that repeatedly giving the same instruction is
something you would never do in real life. You would
instead come up with a way to capture that the instruction
should be repeated, like "keep moving forward by 1."


 Teaching Tip

Check for Understanding: This is just a quick check for
understanding after the video. Students are quickly
prompted to see if they understood the main point of the
video and if not you have an opportunity to reinforce it
before moving into the Code Studio levels. Leave the
translation from the velocity blocks to their associated
counter pattern on the board to reference throughout the
lesson.

Teaching Guide
Warm Up (15 min)

Demonstrate: Ask for a volunteer to come to the front of the class and act as your "sprite". Say that you will be giving
directions to the sprite as though you're a Game Lab program.

When your student is ready, face them so that they have some space in front of them and ask them to "Move forward by 1".
They should take one step forward. Then repeat the command several times, each time waiting for the student to move
forward by 1 step. You should aim for the repetitiveness of these instructions to be clear. After your student has completed
this activity, have them come back to where they started. This time repeat the demonstration but asking the student to
"Move forward by 2" and have the student take 2 steps each time. Once the student has done this multiple times ask the
class to give them a round of applause and invite them back to their seat.

Prompt: I was just giving instructions to my "sprite", but they seemed to get pretty repetitive. How could I have simplified or
streamlined my instructions?

Discuss: Give students a minute to write down thoughts
before inviting them to share with a neighbor. Then have
the class share their thoughts. You may wish to write
their ideas on the board.

 Remarks

One way to simplify these instructions is just tell our
sprite to keep moving by 1 or 2, or however many steps
we want. This would make instructions as humans
easier to understand, and as we're about to see there's a similar way to make our code simpler as well.

Show: Sprite Velocity Video

 Code Studio levels
Video: Velocity 

Student Overview

Display: On the board, write the following pieces of code.

sprite.velocityX = 4;

sprite.velocityY = -1;

sprite.rotationSpeed = 2;

Prompt: We just saw how these new blocks help us
simplify the counter pattern we used to move sprites. On
a sheet of paper write down the counter pattern each of
these lines of code is replacing.

Discuss: Have students write their ideas on a sheet of
paper before discussing their responses as a class.
Eventually write the correct answers on the board next to
each, as shown below.

sprite.x = sprite.x + 4;

sprite.y = sprite.y - 1;

sprite.rotation = sprite.rotation + 2;

 Remarks


 Teaching Tip

Inside or Outisde the Draw Loop?: For the first few
puzzles, check to make sure that students are setting the
velocities and rotation speeds outside the draw loop,
immediately after they create their sprites. The code will
work for the first few puzzles, even if they set the velocities
inside the draw loop, but it will cause problems later.

These new "higher level" blocks are helping us to write code that we actually already knew how to write. They're
simplifying our code for us by hiding some of the unnecessary details. As we're about to see, however, these new blocks
will change the kind of programs and games we're able to write.

Activity (75 minutes)

Learning to Use the Velocity Blocks


Transition: Move students to Code Studio

Circulate: These levels introduce the velocityX, velocityY, and rotationSpeed properties that you just discussed with
students. Check in with students to see how they are doing and keep track of when everyone has made it to the end of level
10.

 Code Studio levels

If students are finished early, encourage them to experiment with different aspects of the scroller game they created. They
can change the animations, create a background, etc.

Wrap Up (5 min)

Journal
Prompt: You learned a few new blocks today. As first glance, these blocks did the same sorts of things we'd already done
with the counter pattern, but made it simpler for us to do them. As you went through the puzzles, though, you started doing
some interesting movements that we hadn't been able to do before.

Describe one of those movements, and how you made it.
Describe another movement you'd like to make but don't know how yet.

Lesson Overview  Student Overview

Sprite Velocity  Student Overview

Velocity  4  5  6  7  8  9  10 (click tabs to see student view)

Side Scroller  11  12  13 (click tabs to see student view)

Levels  14 (click tabs to see student view)

Describe another block that you'd like to have.
Would it take any arguments?
What would it do?
What code would it hide inside?

 Remarks

All of the movements that we did today are possible without the new blocks, but it would be very complicated to code
them. One of the benefits of blocks like velocity is that when we don't have to worry about the details of simple movements
and actions, we can use that extra brain power to solve more complicated problems. As you build up your side scroller
game, we'll keep looking at new blocks that make things simpler, so we can build more and more complicated games.

Standards Alignment
CSTA K-12 Computer Science Standards

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13

14 Ch. 2 15 16 17 18 19 20 21 22

Lesson 16: Collision Detection
Game Lab

Overview
Students learn about collision detection on the computer. Working in
pairs, they explore how a computer could use sprite location and size
properties and math to detect whether two sprites are touching. They
then use the isTouching() block to create different effects when

sprites collide, including playing sounds. Last, they use their new skills
to improve the sidescroller game that they started in the last lesson.

Purpose
This lesson formally introduces the use of abstractions, simple ways
of representing underlying complexity.

In the last lesson, students were exposed to the idea of using one
block to represent complex code. Students further explore this idea in
the context of the intentionally complex mathematical challenge of
determining whether two sprites are touching. By using a single block
to represent this complexity, in this case the isTouching block, it
becomes much easier to write and reason about code, and students
can appreciate the value of using abstractions. In later lessons,
students will continue to build on the isTouching() abstraction to

create more complex sprite interactions.

Agenda
Warm Up (10 min)
Activity

Collisions Unplugged
isTouching()

Wrap Up (5 min)

Objectives
Students will be able to:

Use the isTouching block to determine when
two sprites are touching
Describe how abstractions help to manage
the complexity of code

Preparation
Print copies of Collision Detection -

Activity Guide such that each pair of
students has a part A and a part B

Links
Heads Up! Please make a copy of
any documents you plan to share
with students.

For the Teacher

Collision Detection - Exemplar

For the Students

Collision Detection - Activity Guide

Vocabulary
Abstraction - a simplified representation of
something more complex. Abstractions allow
you to hide details to help you manage
complexity, focus on relevant concepts, and
reason about problems at a higher level.
Debugging - Finding and fixing problems in
an algorithm or program.
If-Statement - The common programming
structure that implements "conditional
statements".

Introduced Code
sprite.isTouching(target)

sprite.debug

Make a Copy

file://docs.code.org/gamelab/isTouching/
file://docs.code.org/gamelab/isTouching/
https://docs.google.com/document/d/16uOeOnjKEIQfWgHFjMyVkmurSVM1oDXjQPooSL7UlHs
https://studio.code.org/s/csd3-2018/stage/16/puzzle/1
https://docs.google.com/document/d/16uOeOnjKEIQfWgHFjMyVkmurSVM1oDXjQPooSL7UlHs
file://docs.code.org/gamelab/isTouching/
file://docs.code.org/gamelab/debug/


 Teaching Tip

Showing the Game: Avoid signing students into Code
Studio at this point to play the game themselves. They
have a fairly significant unplugged activity immediately
afterwards and it will likely lead to difficulties in
transitioning.

 Discussion
Goal

Goal: This purpose of this discussion is just to get some
ideas on the board for students to use in the next activity.
There's no need to actually evaluate or try them, because
students will be working together to do so immediately
after the discussion.



Teaching Guide
Warm Up (10 min)

Review: Briefly remind students of the side scroller game they made in the last lesson, and ask them to share out any
ideas they had for improving their game in the future.

Display: On a projector or just a computer screen
demonstrate the game that appears in the first level in
Code Studio for this lesson. The teacher or a student can
control the frog to jump over a mushroom. Make sure at
least some jumps are successful and some are not to see
that the collision detection is working.

Prompt: An interesting improvement in this game is that
the mushroom moves when the frog touches it. Can you
think of any way that the computer could use the sprites’
properties to figure out whether they are touching each
other?

Discuss: Allow the students to brainstorm ideas for how
the computer could determine whether the two sprites
are touching. List their ideas on the board and tell them
that they’ll have a chance to try out their theories in a
moment.

Activity

Collisions Unplugged
Group: Group students into pairs.

 Remarks

Now you’re going to have a chance to try out the strategies that you came up with as a group. Each activity guide has four
sheets of paper. One partner should take the papers with the “A” on the top, and the other should take the papers with the
“B” on the top. You’re each going to draw two secret sprites on the chart, and your partner will try to figure out whether or
not they are touching based on the same information that the computer will have about each sprite’s properties, so don’t
let your partner see what you are drawing.

Distribute: The Collision Detection - Activity Guide to each set of partners. Ensure that one partner has taken the
pages with "A" on the top and the other has taken the pages with "B" on the top.

Each student will have a line on which to draw two squares. The student chooses the location and the size of each of the
squares, and then records the information about the squares in a table. They then switch tables (not drawings) and try to
determine whether or not the two sprites are touching based on the width of each sprite and the distance between them.

The math to determine whether the sprites are touching is as follows:

1. Subtract the x (or y) positions of the sprites to find the distance between their centers.
2. Divide the width (or height) of each square by 2 to get the distance from the center to the edge.
3. If the distance between the centers of the sprites is greater than the sum of the distances from their centers to their

edges, the sprites are not touching.
4. If the distance between the centers of the sprites is equal to the sum of the distances from their centers to their edges,

the sprites are barely touching.
5. If the distance between the centers of the sprites is greater than the sum of the distances from their centers to their

edges, the sprites are overlapping.

https://docs.google.com/document/d/16uOeOnjKEIQfWgHFjMyVkmurSVM1oDXjQPooSL7UlHs

View on Code
Studio

View on Code
Studio

 Discussion
Goal

Goal: The goal of this discussion is for students to see
that the math in the code is the same math described in
the unplugged activity. The code combines the tests for x
and y in nested "if" statements.



Circulate: Support students as they complete the worksheet. If students are not sure how to determine whether the sprites
are touching, encourage them to use one of the ideas on the board. Remind them that they are not being graded on
whether they are right or wrong, but on their ability to use the problem solving process. If any students are finished early,
challenge them to find a method that will work for sprites anywhere on the grid, not just on the same line.

Share: After students have all had a chance to test their solutions, ask them to share what they discovered.

 Remarks

People can use a lot of different strategies to solve a problem like this. Because computers can’t “see” the drawings in the
same way that people can, they need to use math to figure out whether two things are touching. We looked at how this
can work along a line, but we can combine these methods to work anywhere on the game screen.

isTouching()
Transition: Have the class log onto Unit 3 - Code Studio Levels for Lesson 16.

Display: Show bubble 2, and allow students to look in and discuss in pairs how they might code the behavior that they see
in the program.

 Code Studio levels
Sample Game 
Student Overview

Frog Jump
Look at the frog jumping game to the left. It looks like the game from the last lesson, but the frog moves the mushroom if it
hits it. What code do you think would help the computer to know whether two sprites are touching?

The purpose of this level is for students to see that they can test whether two sprites are touching with the blocks that are
already available to them. The code is complicated, but it only uses blocks students have already learned to detect when
two sprites are touching.

Discuss: Ask the students how the code below relates to what they did in the unplugged activity.

 Remarks

Even though this code works, it can be hard to read, and it would be easy to make a careless error when you’re writing it.
It would also take some time to write out every single time, so a programmer saved the code into one block that we can
use to figure out whether two sprites are touching, and we don’t need to write all of this code. Because this is something a
programmer wants to do over and over again, someone has created a block called isTouching() that already has all of the
math inside of it. Hiding the details of how something is done to make it easier to program is called abstraction.

 Code Studio levels
Collision Detection 
Teacher Overview
Student Overview

The code in this level is overwhelming. The point is not that students understand every line, but that
they see that it's possible to check whether sprites are touching just by using their positions. They
should understand that the isTouching block used in the next level automatically runs the complicated code that they see

here, but that it's hidden inside the block to make programming easier.

https://studio.code.org/s/csd3-2018/stage/16/puzzle/2
file://docs.code.org/gamelab/isTouching/
https://studio.code.org/s/csd3-2018/stage/16/puzzle/3
file://docs.code.org/gamelab/isTouching/

View on Code
Studio

View on Code
Studio

View on Code
Studio

View on Code
Studio

Balloon
The code below uses the sprites' x and y positions to check whether they are touching. It will change the balloon sprite's
animation when the tack touches it. Use the arrow keys to move the tack until it touches the balloon.

Do This
You do not need to change any code on this level.
Read the if statements inside the draw loop and find the different sprite properties and how they are compared.
Discuss the code with your partner. Would you want to write this code every time you checked whether sprites were
touching?

Levels
 4
 5
 6
 7
 8

Student Instructions

isTouching()
Writing out the math each time you want to check whether two sprites are touching can take a while, so a programmer
created the isTouching block, which can check whether one sprite is touching another sprite (the target). The computer is

still doing the same math as in the previous program, but you don't have to worry about it because another programmer
already did that work.

Do This
Inside the draw loop, drag the isTouching block into the if block. (Show me where)

Hint: Don't forget to change the "sprite" to "balloon" and the "target" to "tack".

Student Instructions

Applesauce
When the apple hits the blender, the blender should turn on.

Do This
Use the isTouching block to make the blender shake back and forth when the apple sprite touches the blender sprite. The

shaking motion is already coded using the random block, so you just have to check when the two sprites are touching.

Challenge: Can you make the apple disappear when it touches the blender?

Student Instructions

Making Sounds
You can also use code to play a blender sound.

https://studio.code.org/s/csd3-2018/stage/16/puzzle/3
https://studio.code.org/s/csd3-2018/stage/16/puzzle/4
file://docs.code.org/gamelab/isTouching/
file://docs.code.org/gamelab/isTouching/
https://studio.code.org/s/csd3-2018/stage/16/puzzle/5
file://docs.code.org/gamelab/isTouching/
https://studio.code.org/s/csd3-2018/stage/16/puzzle/6

View on Code
Studio

View on Code
Studio

Do This
Use the playSound block from the "World" drawer to play the "https://docs.code.org/sounds/blender.mp3" sound when the

apple touches the blender. You will need to paste the address of the sound into the block, so it looks like this:

Student Instructions

Rainbow Horse
When the rainbow touches the horse, it should turn into a unicorn.

Do This
Use the if , isTouching , and setAnimation blocks to change the horse sprite's image when the rainbow touches it. The

unicorn image is already loaded in the animations tab for you.

Student Instructions

Debugging Collisions
The balloon is popping before the tack touches it. When sprites aren't doing what you expect, you can use the debug block

to get more information about why the sprites are behaving that way. Can you find out what's wrong in the code below?

Do This
Run the code and use the arrow keys to move the tack to pop the balloon.
In the code below, change balloon.debug = false to balloon.debug = true .

Add a new debug block to the code and set the tack sprite's debug property to true .

Run the code again, then discuss with your partner why the balloon is popping early.

Challenge: Can you use the animations tab to resize the balloon picture so it pops at the correct time?

Circulate: Support students as they work through levels 3-8. Level 8 allows students to work on the side scroller that they
created in the last lesson. It is very open, so encourage students to be creative and try to code sprite interactions that they
haven’t seen before. Students who complete the level early can continue to add new interactions or improve their games in
other ways.

Wrap Up (5 min)

Prompt: What were some different things that your sprites did when they interacted? What is one type of interaction you’d
like, but you haven’t seen yet? Do you have any ideas for how you might write the code for that type of interaction?

Share: Once students have finished journaling, allow them to share out the different type of interactions they’d like to see.
Let them know that you will be learning more ways for sprites to interact later in the unit.

Standards Alignment
CSTA K-12 Computer Science Standards

AP - Algorithms & Programming

file://docs.code.org/gamelab/playSound/
https://images.code.org/8376df7a92ff8e6ba0a2d6e51c24547e-image-1484091385498.34.57 PM.png
https://studio.code.org/s/csd3-2018/stage/16/puzzle/7
file://docs.code.org/gamelab/isTouching/
file://docs.code.org/gamelab/setAnimation/
https://studio.code.org/s/csd3-2018/stage/16/puzzle/8
file://docs.code.org/gamelab/debug/
file://docs.code.org/gamelab/debug/

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13

14 Ch. 2 15 16 17 18 19 20 21 22

Lesson 17: Complex Sprite Movement
Game Lab

Overview
Students learn to combine the velocity properties of sprites with the
counter pattern to create more complex sprite movement. In particular
students will learn how to simulate gravity, make a sprite jump, and
allow a sprite to float left or right. In the final levels of the Code Studio
progression students combine these movements to animate and
control a single sprite and build a simple game in which a character
flies around and collects a coin. Students are encouraged to make
their own additions to the game in the final level.

Purpose
This lesson does not introduce any new blocks and in fact only uses
patterns students have seen in Chapter 1. Instead it demonstrates
how combining these tools, in particular the abstractions students
learned in the previous two lessons, allows them to build new
behaviors for their sprites. This highlights the broader point that
abstractions not only simplify code, but also can themselves be used
as building blocks of even more complex behavior.

The lesson features some of the most challenging programming in the
unit. Students will be combining multiple programming constructs,
including the velocity properties, the counter pattern, user interaction,
and collision detection. The patterns students use in this lesson are
generally useful for building games and students can and will reuse
them later in the unit. In particular students will return to their flyer
game from this lesson in the following one, and many of the
mechanics students learn in this game reappear in lesson 17.

Agenda
Warm Up (10 mins)
Activity (60 mins)
Wrap Up (10 mins)

Objectives
Students will be able to:

Use sprite velocity with the counter pattern to
create different types of sprite movement
Explain how individual programming
constructs can be combined to create more
complex behavior

Preparation

View on Code
Studio

View on Code
Studio

 Teaching Tip

This level introduces the primary new programming
pattern of this lesson, combing the counter pattern with
sprites' velocity properties. Encourage students to take
seriously their predictions before actually running the code.

View on Code
Studio

Teaching Guide
Warm Up (10 mins)

Review: On the board write up the four major concepts that students will be combining in today's lesson, isTouching() ,

keyDown() , sprite.velocityX / sprite.velocityY , and the "counter pattern". Ask students to discuss with a neighbor and remind

one another what each of these four constructs is used for and how they work. As a class define each based on these
discussions.

 Remarks

In the last several lessons we've learned a lot of powerful programming constructs that have let us make much more
interesting games. Today we're going to explore how combining these together will give us even more control over the
types of games we can make.

Activity (60 mins)

Transition: Move students to Code Studio. With the exception of the discussion after the first level students will be working
in Game Lab until the end of the lesson.

 Code Studio levels
Lesson Overview 
Student Overview

Discuss: After students have made their predictions about how the code in the first level has run
quickly discuss why they saw the car start to move more quickly. Note that whereas before they used
the counter pattern to increase a car's position, now it is being used to increase the car's velocity.

Levels 2 - 4: These levels give students practice using velocity inside of the counter pattern.

 Code Studio levels
Velocity and the Counter Pattern 
Teacher Overview
Student Overview

Velocity
and the
Counter
Pattern
Using the counter pattern with a sprite's x and y property makes a sprite move smoothly across the screen. In this program
the counter pattern is being used with the sprite.velocityX property instead.

Predict
What do you think will happen when the code is run? Why? Once you're ready you can run the code to find out.

file://docs.code.org/gamelab/isTouching/
file://docs.code.org/gamelab/keyDown/
file://docs.code.org/gamelab/velocityX/
file://docs.code.org/gamelab/velocityY/
https://studio.code.org/s/csd3-2018/stage/17/puzzle/1
https://studio.code.org/s/csd3-2018/stage/17/puzzle/2
https://studio.code.org/s/csd3-2018/stage/17/puzzle/2
file://docs.code.org/gamelab/velocityX/

View on Code
Studio

View on Code
Studio

View on Code
Studio

View on Code
Studio

Levels
 3
 4

Student Instructions

Velocity and the Counter Pattern
As you just saw, using a sprite.velocityX property with the counter pattern will change a sprite's velocity during the program.

This makes the sprite speed up. Do a little practice using this pattern yourself.

Do This
This program already makes a car move across the screen, but it's going very slowly.

Use the counter pattern with the sprite's velocityX property to make the car speed up. (Show me where)

Student Instructions

Falling Rock
The rock should speed up as it falls down the screen. Can you use the same counter pattern with velocityY inside the draw

loop to make the rock go faster and faster as it falls?

Do This
Use the counter pattern with the sprite's y velocity to make the rock speed up as it falls. (Show me where)

Challenge: Can you make the rock spin as it falls?

Levels 5 - 6: These levels introduce using velocity and the counter pattern to slow down a sprite, eventually moving it in
the opposite direction. This leads to introducing how this pattern could be used to simulate gravity.

 Code Studio levels
Levels
 5
 6

Student Instructions

Rising Bubble
This program makes a bubble rise up the water. Can you make it get faster as it rises?

Do This
Use the counter pattern and the sprite's y velocity to make the bubble move up more quickly.

Student Instructions

Slowing Things Down

https://studio.code.org/s/csd3-2018/stage/17/puzzle/3
file://docs.code.org/gamelab/velocityX/
https://studio.code.org/s/csd3-2018/stage/17/puzzle/4
file://docs.code.org/gamelab/velocityY/
https://studio.code.org/s/csd3-2018/stage/17/puzzle/5
https://studio.code.org/s/csd3-2018/stage/17/puzzle/6

View on Code
Studio

View on Code
Studio

Now that you've had some practice speeding things up, can you use the counter pattern to slow sprites down?

Do This
The car is going to run into the water! You'll need to use the counter pattern to slow it down.

Use the sprite.velocityX block with a counter pattern to slow the car down by 0.25 as it moves across the screen.

Discuss with your Partner: What do you think will happen when the car finally stops?

Challenge: Add code that makes the car slow down only if his velocityX is greater than 0.

Levels 7 - 9: Students begin working on a flyer game. In these levels they use the programming constructs they've
learned to make their main character move. The character responds to simulated gravity, jumps, and floats left and right.

 Code Studio levels
Levels
 7
 8
 9

Student Instructions

Simulating Gravity
In the last level you slowed down the car with the sprite.velocityX block and the counter pattern. It almost looked like the car

was getting pulled to the left.

If you use this same pattern with the sprite.velocityY block it will look like your sprite is always being pulled down, which is

exactly what gravity does!

Do This
The rock is thrown in the air but it never falls back down.

Use the sprite.velocityY block with the counter pattern to make the rock slow down and then fall in the other direction.

Experiment with different values in your counter pattern. Do you want the rock to slow down quickly or gradually? What
looks most realistic to you?
Discuss with your partner: Why are you setting the rock's initial velocity outside the draw loop? Why are you changing
the sprite's velocity inside the draw loop?

Student Instructions

Jumping
Increasing a sprite's y velocity inside the counter pattern can simulate gravity. By adding user interactions you can make
your sprite appear to jump as well. For starters you'll make a simple jump, and then make it more realistic looking in the
next level.

Do This
A sprite has already been created for you that falls because its y velocity is increased inside the draw loop. You'll need to
make this sprite appear to jump.

Inside the if block that checks whether the up arrow has been pressed, set the sprite's y velocity to -5. (Show me

file://docs.code.org/gamelab/velocityX/
https://studio.code.org/s/csd3-2018/stage/17/puzzle/7
file://docs.code.org/gamelab/velocityX/
file://docs.code.org/gamelab/velocityY/
file://docs.code.org/gamelab/velocityY/
https://studio.code.org/s/csd3-2018/stage/17/puzzle/8

View on Code
Studio

View on Code
Studio

View on Code
Studio

where)
Discuss with a neighbor: Why does this code run the way it does? How would using a number besides -5 affect the way
the code works? How could you jump higher or lower?

Student Instructions

Floating Right
You're now using the counter pattern with the sprite's Y velocity to simulate gravity and jumping. If you use the sprite's X
velocity in the counter pattern then you can make your sprite float from side to side as well.

Do This
In this level you'll make your sprite start floating to the right when the right arrow is pressed.

Add an if statement inside your draw loop below the one you created for the "up" arrow.

Use the keyDown block to make the if statement respond to when the "right" arrow is pressed.

Inside the if block use the counter pattern with the sprite.velocityX block to add 0.1 to the sprite's X velocity.

Run your code to see how it works. The sprite should start floating to the right when you press the right arrow and jump
when you press "up". You'll make the left arrow work in the next level.

Levels 10 - 12: Students add a coin to the game for their character to collect. In the last level they are encouraged to
update the game themselves. Use this opportunity in particular to encourage students to use other programming patterns
they've learned in this unit, e.g. creating a scoreboard.

 Code Studio levels
Levels
 10
 11
 12

Student Instructions

Floating Left
In the last level you got detailed instructions on how to make your sprite start floating to the right. This time you'll need to
make your sprite float to the left on your own. You should be pretty comfortable with using velocity and the counter pattern
together at this point. If you're having trouble, talk to a neighbor or review some of the past levels.

Do This
Add code to your draw loop that will make the sprite start moving to the left when the "left" arrow is down.
Make sure you're using velocity and the counter pattern together.

Once your code is working share what you wrote with a partner. Is your sprite easy to control? Does changing the amount
you add or subtract in the counter patterns you wrote affect the way the game feels? What kind of game might be fun to
make with a player that moves like this?

Student Instructions

Add a Coin

https://studio.code.org/s/csd3-2018/stage/17/puzzle/9
file://docs.code.org/gamelab/keyDown/
file://docs.code.org/gamelab/velocityX/
https://studio.code.org/s/csd3-2018/stage/17/puzzle/10
https://studio.code.org/s/csd3-2018/stage/17/puzzle/11

View on Code
Studio


 Discussion
Goal

Goal: This conversation should highlight that students did
not learn any new blocks in today's lesson, they just
learned new ways to combine blocks and patterns they
had learned previously. The broader point here is that
programming is not always about learning new blocks, but
being creative about combining the tools you already know
how to use in the language.



In the next few levels you'll add to your program to make a simple game. In this game the player will collect points to
increase the score. This is a good chance to see how different kinds of movement can affect the way a game feels, and it
will also just help you practice programming skills.

Do This
In this level you'll just be adding a new coin sprite to the game. You should be working at the top of your program, outside
the draw loop.

Use the createSprite() block to create a new sprite. Make sure to give it a descriptive name such as coin.

Use the sprite.x and sprite.y properties of the sprite to give it a random X and Y position between 0 and 400.

In the Animation Tab there is already a coin animation. Use the sprite.setAnimation() block to give your sprite this

animation.

Test your code before moving on. When you run the game, you should see a coin sprite appear somewhere randomly on
the screen.

Student Instructions

Reset Coin
When your character touches the coin you should reset it somewhere on the screen.

Do This
Place an if block inside of your draw loop.

Use the sprite.isTouching() block as the condition to detect when the character touches the coin.

Inside the if block write code that sets the coin's X and Y position to random numbers between 0 and 400.

Hint: You've already written this code elsewhere in your program.

Test your code before moving on. When your player touches the coin, it should move somewhere else on the screen.

Wrap Up (10 mins)

Share: Have students share with their classmates what additions they made to their final flyer game. Have students focus
not just on how the game works, but what the code to create that kind of functionality looks like.

Prompt: On your paper make two lists. First make a list of new things you can program to do after today's lesson. On the
second list write down all the new blocks you learned today.

Discuss: Have students share their lists with classmates.
Afterwards share lists as a class. They should hopefully
have listed many new sprite movements but students
haven't actually learned any new blocks in this lesson.

After you call out that all the new movements they created
today were made by combining blocks and patterns they
already learned, ask students what they think this might
tell them about how programmers develop code.

Prompt: Today we built lots of new sprite movements
like gravity and jumping, but none of this required us to learn new blocks. Do you think learning to program always means
learning new commands?

Discuss: Lead a quick follow-up to your initial discussion about this point.

file://docs.code.org/gamelab/createSprite/
file://docs.code.org/gamelab/x/
file://docs.code.org/gamelab/y/
file://docs.code.org/gamelab/setAnimation/
https://studio.code.org/s/csd3-2018/stage/17/puzzle/12
file://docs.code.org/gamelab/isTouching/

 Discussion
Goal

Goal: Reinforce the fact that learning to program is
actually not always just about memorizing blocks. Being
creative with programming often means coming up with
clever ways to combine the commands and patterns you
already know how to use.

 Remarks

We're going to keep learning a few more tools in Game Lab, but as we do remember what we saw today. To create new
kinds of programs you don't always need to learn new blocks. Most of the time the creativity of programming comes from
learning to combine things you already know in new
and creative ways.

Standards Alignment
CSTA K-12 Computer Science Standards

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13

14 Ch. 2 15 16 17 18 19 20 21 22

Lesson 18: Collisions
Game Lab

Overview
Students program their sprites to interact in new ways. After a brief
review of how they used the isTouching block, students brainstorm

other ways that two sprites could interact. They then use isTouching

to make one sprite push another across the screen before practicing
with the four collision blocks (collide , displace , bounce , and

bounceOff).

Purpose
This lesson introduces collisions, another useful abstraction that will
allow students to manipulate their sprites in entirely new ways. While
students could theoretically have written their own displace, collide, or
bounce commands, the ability to ignore the details of this code allows
them to focus their attention on the high level structure of the games
they want to build.

This lesson is also intended to give students more practice using the
new commands they have learned in the second chapter. It is actually
the last time they will learn a new sprite behavior, and following this
lesson students will transition to focusing more on how they organize
their increasingly complex code.

Agenda
Warm Up
Activity
Code Studio Levels
Wrap Up (10 mins)

Share Out and Journal 3-2-1

Objectives
Students will be able to:

Use the `displace`, `collide`, `bounce`, and
`bounceOff` blocks to produce sprite
interactions
Describe how abstractions can be built upon
to develop even further abstractions

Vocabulary
Abstraction - a simplified representation of
something more complex. Abstractions allow
you to hide details to help you manage
complexity, focus on relevant concepts, and
reason about problems at a higher level.

Introduced Code
sprite.bounce(target)

sprite.bounceOff(target)

sprite.collide(target)

sprite.displace(target)

setCollider(type, xOffset, yOffset, width/radius,

height, rotationOffset)

sprite.bounciness

file://docs.code.org/gamelab/isTouching/
file://docs.code.org/gamelab/isTouching/
file://docs.code.org/gamelab/collide/
file://docs.code.org/gamelab/displace/
file://docs.code.org/gamelab/bounce/
file://docs.code.org/gamelab/bounceOff/
file://docs.code.org/gamelab/bounce/
file://docs.code.org/gamelab/bounceOff/
file://docs.code.org/gamelab/collide/
file://docs.code.org/gamelab/displace/
file://docs.code.org/gamelab/setCollider/
file://docs.code.org/gamelab/bounciness/

 Discussion
Goal

Goal: The goal of this discussion is for students to
brainstorm ways to solve the problem of having one sprite
push another across the screen. There's no need for
students to come to a consensus, because they will each
have a chance to try out a solution in the next level in
Code Studio. Students should understand that it is
possible to use blocks to produce the desired movement
just with the blocks that they have already learned.

View on Code
Studio



View on Code
Studio

Teaching Guide
Warm Up

Display: If you have the ability, project the animation on
the first level in Code Studio for this lesson. Otherwise
ask pairs of students to look at it together. It shows two
sprites, one moving across the screen towards the other
and eventually pushing the one when they collide.

 Code Studio levels
Lesson Overview 
Student Overview

Prompt: Using the blocks we already know how to use, how could we create the sprite interaction
we can see in this program?

 Remarks

We have a lot of great ideas for how we might make one sprite push another across the screen. Now that you've
prepared, you can try out your ideas in Code Studio. One big part of the problem is figuring out when the two sprites are
touching, but because we already figured out how to do that and can now use the isTouching block, we don’t need to
think about it anymore. We can focus on the new part of the problem.

Activity

Code Studio Levels

Levels 2-4: In these levels students are shown a sprite interaction. They then implement their ideas for creating the sprite
interaction they observed. The first time they can implement the ideas from the group. The second time challenge them to
implement that behavior independently.

 Code Studio levels
Sprite Interactions 
Student Overview

Sprite Interactions
So far you've been able to create simple sprite interactions by using the sprite.isTouching() block. For example, you've reset

a coin to a different location on the screen when a character touches it. Now it's time to start making sprites have more
complex interactions.

Do This
Run the program and observe the interaction between the two sprites.

https://studio.code.org/s/csd3-2018/stage/18/puzzle/1
file://docs.code.org/gamelab/isTouching/
https://studio.code.org/s/csd3-2018/stage/18/puzzle/2
file://docs.code.org/gamelab/isTouching/

View on Code
Studio

View on Code
Studio

Discuss with a neighbor: Using only the commands you already know how could you create this kind of interaction?
There are many ways to do it, but here are some blocks to consider:

sprite.isTouching()

sprite.velocityX

sprite.velocityY

sprite.x

sprite.y

Be ready to share your ideas with your classmates.

Levels
 3
 4

Student Instructions

Program a Sprite Interaction
You should have discussed with your classmates how you could create the sprite interaction you saw in the last level. Now
it's your turn to program it yourself. How can you make the giraffe move the monkey off the screen?

Do This
The giraffe is already moving across the screen toward the monkey but the sprite interaction itself hasn't been
programmed.

Use the plan you developed with your classmates on the last level to program the sprite interaction yourself.

Student Instructions

Write Your Own Sprite Interaction
In the last level you should have written code for a sprite interaction that you developed with your classmates. This time try
to write the program on your own, but you can use the patterns you saw in the last level.

Do This
The elephant should push the hippo off the screen . Notice that the elephant moves at a random Y velocity each time
the program runs.

Using the patterns from the last level, write code that makes the elephant push the hippo off the screen.

Prompt: This was a challenging problem, but we were able to solve it. What helped us to solve this problem?

 Remarks

All of these things are very important, and they come up in Computer Science a lot. One thing that was particularly helpful
was the isTouching block, which hid the complicated code that tells us whether the two sprites are touching. There's also
a displace block that hides the code we just wrote, and some other blocks that hide the code for some other types of
sprite interactions. You'll have a chance to try out these blocks in the next few levels, and use them to improve your flying
game.

Levels 5-10: These levels introduce how to use the 4 new collision blocks students will learn in this lesson.

file://docs.code.org/gamelab/isTouching/
file://docs.code.org/gamelab/velocityX/
file://docs.code.org/gamelab/velocityY/
file://docs.code.org/gamelab/x/
file://docs.code.org/gamelab/y/
https://studio.code.org/s/csd3-2018/stage/18/puzzle/3
https://studio.code.org/s/csd3-2018/stage/18/puzzle/4
file://docs.code.org/gamelab/isTouching/
file://docs.code.org/gamelab/displace/

View on Code
Studio

View on Code
Studio

 Discussion
Goal

This is a good time to call out how far the students have
progressed in their skills since the beginning of the unit.
This problem would have seemed almost impossible at the
beginning of the year. Some things that made the problem
easier to solve were:

Preparation: The students brainstormed and thought
about solutions before trying out their code.
Cooperation: Students worked as a group to come up
with a solution
Abstraction: Students were able to use the isTouching

and velocityY blocks to hide part of the solution's

complexity.



 Code Studio levels
Levels
 5
 6
 7
 8
 9
 10

Student Instructions

Displace
The interaction you've been programming is so common that there's a block designed to do the interaction for you.
sprite.displace() that will make one sprite push the other when they touch. The code underlying this block might look a lot

like what you just wrote, but now you no longer need to worry about writing those details yourself.

Do This
Someone tried to use the sprite.displace() block to make the elephant push the hippo, but there is a bug. Can you

change the code so that the elephant pushes the hippo off the screen?

Find the line of code where the sprite.displace() block is used and fix the error.

Student Instructions

More Collision Blocks
Three new types of sprite interactions have been added to the toolbox, sprite.collide() , sprite.bounce() , and

sprite.bounceOff() . How do you think they'll affect the sprites?

Do This
Switch out the displace block for the sprite.collide() , sprite.bounce() , and sprite.bounceOff() blocks. (Show me where)

Hint: If you're having trouble doing this with blocks then switch over to text mode.
Discuss with a neighbor: What is the difference between the four different sprite interactions? What do you think the

file://docs.code.org/gamelab/isTouching/
file://docs.code.org/gamelab/velocityY/
https://studio.code.org/s/csd3-2018/stage/18/puzzle/5
file://docs.code.org/gamelab/displace/
file://docs.code.org/gamelab/displace/
file://docs.code.org/gamelab/displace/
https://studio.code.org/s/csd3-2018/stage/18/puzzle/6
file://docs.code.org/gamelab/collide/
file://docs.code.org/gamelab/bounce/
file://docs.code.org/gamelab/bounceOff/
file://docs.code.org/gamelab/collide/
file://docs.code.org/gamelab/bounce/
file://docs.code.org/gamelab/bounceOff/

View on Code
Studio

View on Code
Studio

purpose of each block is?

Student Instructions

Collision Types
There are four types of collisions that we use in Game Lab. These blocks will cause a certain type of interaction between
the sprite and its target.

displace

The displace block causes the sprite to push the target as long as they are touching each other. The sprite keeps moving

normally.

collide

The collide block makes the sprite stop when it runs into the target. If the target is moving, it will push the sprite with it. The

target keeps moving normally.

bounce

The bounce block makes the sprite and the target bounce when they touch each other. Both the sprite and the target

change how they are moving.

bounceOff

The bounceOff block makes the sprite bounce off the target. The target keeps moving normally.

Do This
Choose the best block to model the basketball bouncing off the floor. (Show me where)

Student Instructions

Debugging Sprite Interactions
Sprite interactions just run some code when they're called. The interactions are not "remembered" by the game. If you want
one sprite to bounce or collide with another then it needs to be a part of the draw loop. If you forget then this can lead to
unexpected behavior.

Do This
The turtle can be moved with the arrow keys. It's not supposed to be able to walk through the tree, but something is wrong
in the code. Can you find and correct the bug in the code?

Run the code and try to make the turtle collide with the tree.
Look through the code and discuss with your partner what the problem is.
Correct the code, then run it again to make sure it works.

https://studio.code.org/s/csd3-2018/stage/18/puzzle/7
file://docs.code.org/gamelab/displace/
file://docs.code.org/gamelab/collide/
file://docs.code.org/gamelab/bounce/
file://docs.code.org/gamelab/bounceOff/
https://studio.code.org/s/csd3-2018/stage/18/puzzle/8

View on Code
Studio

View on Code
Studio

View on Code
Studio

Student Instructions

Debug
Sometimes sprites will behave in ways that are unexpected. There is a special sprite.debug property you can use to better

understand why the sprites interact the way that they do.

Do This
These two coins are round, so you would expect them to bounce in a certain way. Something weird is happening though!

Run the code and watch the way that the coins interact.
Use the sprite.debug block to make debug 'true' for both the sprites and run the code again.

Change the gold coin's starting x position to 51 and run the code again.
Discuss with a partner: Why do you think the coins are bouncing strangely?

Student Instructions

setCollider
Sprites interact based on the size and shape of their collider, not the images that are assigned to them. You can only see
the collider when debug mode is turned on. You can change the shape of the collider using the sprite.setCollider() block,

which lets you pick between a "rectangle" or a "circle". By default all colliders are "rectangle".

Do This
Find the sprite.setCollider() block for the gold coin, and change it from "rectangle" to "circle".

Add a new sprite.setCollider() block for the silver coin, and choose "circle" for the shape of the collider.

Run the code again to see how the sprites bounce.

Levels 11-15: These levels guide students through adding collisions to the flyer game they started in the previous lesson,
eventually inviting students to add their own modifications to the game.

 Code Studio levels
Levels
 11
 12
 13
 14
 15

Student Instructions

Bounciness
So far, bounceOff has made sprites bounce away from other objects as fast as they bounced into them. In the real world,

almost everything slows down just a little bit when it bounces off something else. You can use the bounciness block to tell

your sprite how much to slow down or speed up when it bounces off something else.

Do This

https://studio.code.org/s/csd3-2018/stage/18/puzzle/9
file://docs.code.org/gamelab/debug/
file://docs.code.org/gamelab/debug/
https://studio.code.org/s/csd3-2018/stage/18/puzzle/10
file://docs.code.org/gamelab/setCollider/
file://docs.code.org/gamelab/setCollider/
file://docs.code.org/gamelab/setCollider/
https://studio.code.org/s/csd3-2018/stage/18/puzzle/11
file://docs.code.org/gamelab/bounceOff/
file://docs.code.org/gamelab/bounciness/

View on Code
Studio

View on Code
Studio

View on Code
Studio

Read the code below and press "Run" to see the behavior of the basketball and pool ball.
Use a bounciness block to set the bounciness of your soccer ball.

Run the code again to see how the sprites bounce off the floor.

Student Instructions

Flyer Game - Add Obstacle
This is the flyer game you built in the last lesson. For the next several levels, you'll be adding an obstacle sprite to the
game, using some of the sprite interactions you just learned. At the end you'll have a chance to keep adding on ideas of
your own.

Do This
Add an obstacle sprite to the game. You can use whatever image you like from the animation
tab but the example shown here uses a sun. Right now you just need to add the sprite to your
game and give it an animation.

Add a new sprite to your game called "obstacle".
In the animation tab create a new animation for your obstacle. In the example a sun image
was chosen.
Use the sprite.setAnimation() block to give your sprite the image you chose.

Run the code and make sure the sprite appears where you want it on the screen. You may need to set its X, Y, and
scale properties to get it to look the way you want.

Student Instructions

Flyer Game - Interacting with the
Obstacle
You don't want your player to be able to move through the obstacle, so you'll need to use one of the sprite interactions.

Do This
Add code to your game that prevents your player from moving through the obstacle.
If you use one of the bounce interactions, decide whether you want to reset the bounciness of your character.
Discuss with a neighbor: Which sprite interaction did you decide to use? Is there more than one sprite interaction that
works the way you'd expect?

Student Instructions

Flyer Game - Coin Behind the
Obstacle
Right now your coin is moving to random locations. That means sometimes it even will appear behind your obstacle, so your
character can't get to it. Using sprite interactions you can fix this problem.

Do This
Add code to your game that prevents the coin from moving behind the obstacle. Don't be afraid to try out ideas just to see

file://docs.code.org/gamelab/bounciness/
https://studio.code.org/s/csd3-2018/stage/18/puzzle/12
file://docs.code.org/gamelab/setAnimation/
https://studio.code.org/s/csd3-2018/stage/18/puzzle/13
https://studio.code.org/s/csd3-2018/stage/18/puzzle/14

View on Code
Studio

how they work.
Discuss with a neighbor: Which sprite interaction did you decide to use? Is there more than one sprite interaction that
works the way you'd expect?

Student Instructions

Flyer Game - Change Colliders
Right now your colliders are all rectangular. Switch them over to circles to get more interesting and realistic bounces and
collisions.

Do This
Use the sprite.setCollider() block to change the colliders of your sprites to circles.

Set your sprites' debug properties to true to make sure your game is working the way you want.

Play your game to make sure it's working the way you want.

Wrap Up (10 mins)

Share Out and Journal 3-2-1
Share: Allow students time to play each other's flying games. Ask them to focus not just on the new behavior that they
added but also the code they used to create it.

Journal: Have students write and reflect about the following prompts.

What are three things you saw in someone else's game that you really liked?
What are two improvements you'd make to your game if you had more time?
What's one block you'd like to have in Game Lab, and how would it work?

Standards Alignment
CSTA K-12 Computer Science Standards

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://studio.code.org/s/csd3-2018/stage/18/puzzle/15
file://docs.code.org/gamelab/setCollider/
http://creativecommons.org/
file://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13

14 Ch. 2 15 16 17 18 19 20 21 22

Lesson 19: Functions
Game Lab

Overview
Students learn how to create functions to organize their code, make it
more readable, and remove repeated blocks of code. An unplugged
warmup explores how directions at different levels of detail can be
useful depending on context. Students learn that higher level or more
abstract steps make it easier to understand and reason about steps.
Afterwards students learn to create functions in Game Lab. They will
use functions to remove long blocks of code from their draw loop and
to replace repeated pieces of code with a single function. At the end
of the lesson students use these skills to organize and add
functionality to the final version of their side scroller game.

Purpose
In the first four lessons of this chapter students have learned to use a
number of abstractions in their programs, including the velocity
properties, isTouching, and collisions. These abstractions have
allowed them to build much more complex programs while ignoring
the details of how that behavior is created. In this lesson students
learn to build abstractions of their own by creating functions.

Students will primarily use functions to break code into logical chunks
that are easier to reason about. This foreshadows the chapter's
transition from building technical skill to the organizational processes
used to develop software.

Agenda
Warm Up (10 mins)

High Level vs. Low Level Instructions

Activity (60 mins)
Wrap Up (10 mins)

Objectives
Students will be able to:

Create and use functions for blocks of code
that perform a single high-level task within a
program
Create and use functions to remove repeated
blocks of code from their programs
Create and use functions to improve the
readability of their programs
Explain how abstractions allow programmers
to reason about a program at a higher level

Vocabulary
Function - A named group of programming
instructions. Functions are reusable
abstractions that reduce the complexity of
writing and maintaining programs.

Introduced Code
Define a function

Call a function

file://docs.code.org/gamelab/functionParams_none/
file://docs.code.org/gamelab/callMyFunction/


 Discussion
Goal

Goal: This conversations demonstrates to students that
they often use a high level name or description for much
more complex behavior. It is motivating the value of
grouping or combining lots of smaller steps under a larger
name and provides some of the justifications for creating
functions within programs. Namely, high level steps make
it easier to understand and reason about a process.



 Content Corner

Breaking Down Processes: The order in which they are
breaking down a larger task here also mirrors how they'll
be asked to write code with functions. Often programmers
first write the name of the function they intend to write
based on what it should do before actually going in and
writing the details.

Teaching Guide
Warm Up (10 mins)

High Level vs. Low Level Instructions
Prompt: Imagine you needed to write a 5-step set of instructions for going through your morning. What would they be?
Write down your steps and be ready to share.

Discuss: Student should write 5-step instructions for
their morning and share with a neighbor. Ask a couple of
students to share with the class.

Prompt: This set of instructions is pretty easy to follow
and understand. They're at the level you might think
about when describing your day to a friend. Now let's go
a level deeper. Pick one of your 5 steps and split it into 5
smaller steps you need to complete that larger task. Be
ready to share your ideas again.

Discuss: Students should share their smaller steps.
Again ask some volunteers to subsequently share their
original step and how they split it up.

Discuss: This is getting interesting. It seems like the first
time we gave our steps we were "hiding" some of the
details necessary to complete the task. Let's try this once
more. Take one of your 5 smaller steps and split it up
again into 5 even smaller steps.

Discuss: Ask students to share their steps one more time. Again ask some volunteers to share how they broke up one of
their steps into even smaller steps.

Prompt: Imagine we had split every one of your first 5 steps into 5, and then split all of those steps again. This would
mean we would have a high level set of instructions, and at the bottom a really low-level or detailed set of instructions. Be
ready to respond to the following questions.

When would the high level set of steps you just wrote be most appropriate?
When would the lowest level set of steps be most appropriate?
Which one is easiest to reason about or understand?

Discuss: Ask students to share their thoughts and opinions. After a couple of minutes move the conversational to the
transitional comment below.

 Remarks

Sometimes details are important, but often high level steps are much easier to reason about and make it clear what's
happening. In programs the same thing is true. We've learned that blocks like velocityX or isTouching actually just contain
code that we could've written ourselves. Using these commands, or abstractions, is really helpful since we can think
about code at a high level. Today we're going to learn how to group lots of commands to create a single new block our
own. In programming when we create a new block like this we call it a function.

Activity (60 mins)

Transition: Move students into Code Studio where they will learn to create an call functions.

 Code Studio levels

View on Code
Studio

 Teaching
Tip

Introducing Functions

In these first several lessons students are just being
shown the syntax of functions and are not asked to write or
create their own. It can be useful to explain creating a
function as basically “creating a new block” just like
another programmer created the “isTouching” or “velocity”
blocks that they’ve seen actually contain other more
complex code.

View on Code
Studio

View on Code
Studio

Lesson Overview 
Student Overview

Levels
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11

Student Instructions

Calling Functions
Functions let you build your own blocks and decide what
code goes inside of them. This is the command that lets
you create a new function.

You use or "call" your function like any other block by
using the name you gave it.

The blocks to create and call functions can be found in the "Functions" tab of the palette.

Do This
This program has already created 2 functions. Only one of them is being called.

Call the second function to reveal the full image. Use the function that is being called as a guide.
Tip: Just as with all other blocks, spelling and capitalization are important here.

Student Instructions

Reordering Code
Placing code inside functions makes it easy to read and make changes to. Good names for functions indicate what your
program is doing to a reader. You can call your functions in a different order to quickly make significant changes to how
your program runs.

Do This
This program has already created 4 functions that draw parts of a scene. Unfortunately it's not coming out right.

https://studio.code.org/s/csd3-2018/stage/19/puzzle/1
https://studio.code.org/s/csd3-2018/stage/19/puzzle/2
https://images.code.org/2493f74065d4e642ca51429b8832e431-image-1474913839061.17.09 PM.png
https://images.code.org/61a6eb716e263b580ecd63fab0de7547-image-1474913770359.16.00 PM.png
https://images.code.org/a570a05be61297ee9f0d79a02df8db6e-image-1474922721897.44.36 PM.png
https://studio.code.org/s/csd3-2018/stage/19/puzzle/3

View on Code
Studio

View on Code
Studio

View on Code
Studio

 Teaching
Tip

Why Use Functions

This and the next two levels introduce three uses of
functions, namely removing repetition in programs,
allowing code to quickly be changed at multiple points, and
providing organization in code. Students will need to write
more of their own functions in these levels.

View on Code

Read the 4 functions to know what they do
Call the functions in an order that draws the scene in the way that looks best to you

Student Instructions

The red square will be drawn but the green one will not. You cannot call functions after they are
created.

The green square will be drawn but the red one will not You cannot call functions before they are
created.

Both squares will be drawn. You can create functions anywhere you like in your
code.

Neither square will be drawn. There is an error in the
code.

Student Instructions

Calling Functions in the Draw Loop
You can call a function inside the draw loop, just as you would anywhere else in your code.

Do This
A function that will draw a background has been created for you. A sprite has been created to move across the background.

Call the function inside the draw loop so that the sprite appears on top of the background.
Note: Don't create functions inside the draw loop. Make them at the bottom of your code.

Student Instructions

Calling Functions Multiple Times
You'll often want to use the same code at many places in
your program. Once you've created a function you can
call it as many times as you like.

Do This
This code creates a sprite that moves across the screen
once. How can you make it go back across the screen?

Note: The function is already called once at the beginning of your program
Read the condition of the if-statement inside the draw loop. Why do you think it's there?
Use this if-statement and the function written for you to make the sprite move across the screen multiple times.

Student Instructions

https://studio.code.org/s/csd3-2018/stage/19/puzzle/4
https://studio.code.org/s/csd3-2018/stage/19/puzzle/5
https://studio.code.org/s/csd3-2018/stage/19/puzzle/6
https://studio.code.org/s/csd3-2018/stage/19/puzzle/7

Studio

View on Code
Studio

View on Code
Studio

 Teaching
Tip

Functions in Context

In this and the next two lessons, students will use
functions to organize code within a simple game. While it is
not identical to the side scroller, many of the skills and
uses of functions in these levels can and should be used
when they complete their side scroller.

View on Code
Studio

Making Changes to Functions
A nice benefit of using functions to remove repeated code is that you can now easily make changes to multiple places in
your code. Just change how you create the functions, and your program will now use the new code everywhere your
function is called.

Do This
Make changes to the setFlyer function so that the flyer starts at a random Y location between 0 and 400, and moves at a

random velocity every time he is reset.

Student Instructions

Creating Functions to Organize
Code
In Game Lab all the action is happening in the draw loop, but too much complex code makes it really confusing to read. To
keep your draw loop easy to read, use functions for larger chunks of code. You can call them inside the draw loop and
define them below. This is a really good example of using abstraction to think about problems at a high level and worry
about details later.

Do This
This program should draw a daytime scene or a nighttime scene, depending on the location of the
mouse. The draw loop describes what needs to happen but one of the functions hasn't been written
yet.

Write the drawNight function which has been created but is empty.

Hint: Look at the picture to the right for how your night image should look. Can you use the drawDay function to help you

at all?

Student Instructions

Write Your Own Function
Time to practice writing functions of your own. This is a
very simple game in which coins fall from the sky and the
bunny tries to catch them. All you need to do is write the
function that sets up the coin.

Do This
Read and run the code that already exists to make sure you know how it works.
Write the code for the setCoin function to make the coin fall from the sky.

You can go look at some of the previous levels if you need help.

Student Instructions

Catch the Coin, Increase the Score

https://studio.code.org/s/csd3-2018/stage/19/puzzle/8
https://studio.code.org/s/csd3-2018/stage/19/puzzle/9
https://studio.code.org/s/csd3-2018/stage/19/puzzle/10

View on Code
Studio


 Discussion
Goal

Goal: Use this first prompt to review what students
learned today. When they create a function they are
creating their own block that they can call or use whenever
they like. They saw at least two primary motivations for
creating functions today including.

Simplifying code by breaking it into logically named
chunks
Avoiding repeated code by making one block you can
use multiple times.



 Discussion
Goal

Goal: Students should review the definition of abstraction
as "a simple way of representing something complex".
Note that a function is an abstraction because it allows you
to create one simple name for a more complex block of
code.

Let's make that score change now, too, to complete the game. You'll need to be able to tell when the bunny is touching the
coin and then reset it.

Do This
Use an if-statement and the isTouching block to increase the score when the bunny catches the coin.
Make sure you're calling your function to reset the coin once it's been caught.
Play the game and randomize the velocity of the coin to a range that you think is fun.

Student Instructions

Change the Background with the
Score
Once you've caught 10 coins it's time to celebrate. You should change the background to be something fun.

Do This
Use an if-statement and two separate functions to draw your backgrounds.
Then go write your functions outside your draw loop. You get to decide what a "simple" or
"crazy" background are. Have fun with it!

Wrap Up (10 mins)

Prompt: Why would we say that functions allow us to
"create our own blocks?" Why is this something we'd
want to do?

Discuss: Have students discuss at their table before
talking as a class.

Prompt: Write down your own definition of an
abstraction? Why would a function count as an
abstraction?

Discuss: Have students discuss at their table before
talking as a class.

 Remarks

Functions are a useful tool for helping us write and
organize more complex pieces of code. As we start
looking to end of the unit and your final project, being
able to keep your code organized will be an important
skills.

Standards Alignment
CSTA K-12 Computer Science Standards

AP - Algorithms & Programming

https://studio.code.org/s/csd3-2018/stage/19/puzzle/11

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13

14 Ch. 2 15 16 17 18 19 20 21 22

Lesson 20: The Game Design Process
Game Lab

Overview
This lesson introduces students to the process they will use to design
games for the remainder of the unit. This process is centered around
a project guide which asks students to define their sprites, variables,
and functions before they begin programming their game. In this
lesson students begin by playing a game on Game Lab where the
code is hidden. They discuss what they think the sprites, variables,
and functions would need to be to make the game. They are then
given a completed project guide which shows one way to implement
the game. Students are then walked through this process through a
series of levels. As part of this lesson students also briefly learn to use
multi-frame animations in Game Lab. At the end of the lesson
students have an opportunity to make improvements to the game to
make it their own.

Purpose
This lesson introduces multi-frame animations, and is the first in a
sequence centered around the process of building software.

While previous lessons focused on using abstractions to manage the
complexity of the code, this lesson focuses on managing the
complexity of the software development process. The lesson heavily
scaffolds the software development process by providing students a
completed project guide, providing starter code, and walking students
through its implementation. In the subsequent lessons students will
need to complete a greater portion of this guide independently, and for
the final project they will follow this process largely independently.

Agenda
Warm Up (15 mins)

Play Cake Defender
Stop: Review Project Guide

Activity (60 mins)

Multiframe Animations
Implement Project Guide

Wrap Up (20 mins)

Make It Your Own

Objectives
Students will be able to:

Identify core programming constructs
necessary to build different components of a
game
Create and use multiframe animations in a
program
Implement different features of a program by
following a structured project guide

Preparation
Print copies of the Defender Game -

Project Guide if you will be giving students
physical copies (see notes in Lesson Plan)

Links
Heads Up! Please make a copy of
any documents you plan to share
with students.

For the Students

Defender Game - Project Guide

Make a Copy

https://docs.google.com/document/d/10tgS4d9feduPveRZSMzWV0TdyL6AL5VHHGFy_-m2XNQ/edit?usp=sharing
https://docs.google.com/document/d/10tgS4d9feduPveRZSMzWV0TdyL6AL5VHHGFy_-m2XNQ/edit?usp=sharing

View on Code
Studio


 Teaching Tip

Keeping Focus: Students can easily get distracted by
the fun of playing the game. Let them play for a while but
eventually encourage them to follow the on-screen
instructions and make a list of the variables, sprites, and
functions that would be necessary to play the game.


 Discussion
Goal

Running the Conversation: You can write "Variables",
"Sprites", and "Functions" on the board and record their
ideas below each. Ask students to justify their decisions
but don't feel the need to settle on one right answer.



Teaching Guide
Warm Up (15 mins)

Play Cake Defender
 Transition: This lesson begins immediately in Code Studio. On the first level they will be find a game but will not be
able to see the code. They should play the game and follow the instructions which ask them to list the variables, sprites,
and functions they think are necessary to create this game.

 Code Studio levels
Sample Game 
Student Overview

Defend Your Cake!
This is an example of a defender game that you'll build by the end of this lesson. To defend your cake, move the alien with
arrow keys to block the lady bugs and push them into the water.

Do This
Turn to a classmate and make a list of the following information.

How many sprites are there in this game. Which are they?
What variables are needed to make this game? What do they store?
If you were to split the code of this game into functions what do you think they would be? What are the major pieces of
behavior you'd need to create in your code?

Stop: Review Project Guide
Discuss: Students should have individually created a list
of variables, sprites, and functions they would create to
make the defender game they played. Ask students to
share their lists with a neighbor before discussing as a
class.

Distribute: Give each student or pair of students a copy
of the Defender Game - Project Guide

Prompt: Compare the components of the game you thought would be included to the ones on this project guide. Do you
notice any differences?

Discuss: As a class compare the list you had on the board to the list of variables, sprites, and functions on the project
guide. Note the similarities. Where there are differences try to understand why. Don't approach one set as "right" vs.
"wrong" but just confirm both would be able to make the game students played.

 Remarks

https://studio.code.org/s/csd3-2018/stage/20/puzzle/2
https://docs.google.com/document/d/10tgS4d9feduPveRZSMzWV0TdyL6AL5VHHGFy_-m2XNQ/edit?usp=sharing

View on Code
Studio

View on Code
Studio

View on Code
Studio

 Teaching Tip

Project Guide: The project guide is intentially filled out
for students so that they can experience using it as a
reference when programming. This should give them more
context when filling out their own project guide in the next
two lessons.

You can give each student their own copy for reference,
but you might also choose to print one copy per pair,
share digital copies, or just display the guide on the
projector. So long as it is available for reference, any
approach will work fine.

There's usually lots of ways you can structure a program to get it to work the way you want. The important thing when
writing complex or large programs is that you start with
a plan. Today we're going to look at how we could
implement this plan to build our own defender game. By
the end of the lesson you'll not only have built your
game, but you'll know how to change it and make it your
own. Let's get going!

Activity (60 mins)

Multiframe Animations
Transition: Students should move back to Code Studio.
Before actually implementing the plan students will need to quickly review one new skill, how to use multiframe animations.
Students will quickly learn how to create, modify, and rename animations as well as pick them from the library.

 Code Studio levels
Plan Your Project 
Student Overview

Stop
Before you move on you'll need to look at the Project Guide for this project. Wait for instructions from your teacher as well.

Levels
 4
 5

Student Instructions

Using Multiframe Animations
In the sample defender game the sprites themselves were animated. Before getting started on programming this game,
take a minute to get familiar with this new way of animating sprites.

Do This
This program already includes several sprites but they don't yet have any animations.

Go to the Animation Tab and check out the multi-frame animations already added to your project. Choose one for each
of your characters.
Remember you can use setAnimation to give your sprites animations you've created in the Animation Tab.

Student Instructions

Slow Down
Nice work! Time to start learning how to control these multiframe animations.

Do This
Your sprites should be animated but they're moving really quickly.

https://studio.code.org/s/csd3-2018/stage/20/puzzle/3
https://studio.code.org/s/csd3-2018/stage/20/puzzle/4
file://docs.code.org/gamelab/setAnimation/
https://studio.code.org/s/csd3-2018/stage/20/puzzle/5

View on Code
Studio

View on Code
Studio

Head back to the Animation Tab. Underneath each animation you should see a slider.

Use these sliders to slow down your animations so they look more realistic.

Implement Project Guide
Students are given a large amount of starter code in this project. The sprites, variables, and functions have all already been
given to them. The work of this project is writing the code for the individual functions. These levels guide students through
how to implement those functions. As students move through the levels point out how the project guide is being used.

The most challenging skill students use in these levels is recognizing the need to create new functions to replace repeated
code. Students need to build this skill on their own but these levels demonstrate an instance where this might happen.

 Code Studio levels
Levels
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16

Student Instructions

Editing Multiframe Animations
Your sprites will look a lot more realistic if they turn around when they're moving. You can switch back and forth between
multiframe animations when the user presses different keys.

Do This
Read this code and run the program. Make sure you know how the sprite responds to the arrow keys.

In the Animation Tab, create a copy of the alien animation by clicking the following button:

Use the tool to flip your animation. Make sure you flip both frames using this button:

Rename your new animation.
Use your new animation and old animation so that the alien faces the correct direction when moving. Where do you think
you'll need to set the sprite's animation in your code?

Student Instructions

Getting Started: Set Animations
You should have already reviewed the planning guide for this project. A lot of the work to turn this project guide into a
working game has already been started. Based on the project guide you're going to do the rest of this work.

Do This

https://images.code.org/169e11c1f6f55b607937fe9cb7e5e390-image-1476209267457.07.26 AM.png
https://studio.code.org/s/csd3-2018/stage/20/puzzle/6
https://images.code.org/aee81f9cd3f63bb8a9c91ac3ab250a87-image-1475699896387.38.09 PM.png
https://images.code.org/3b10b4a612f9a7c640dc7bb18f4c2b91-image-1475699599617.33.03 PM.png
https://studio.code.org/s/csd3-2018/stage/20/puzzle/7

View on Code
Studio

View on Code
Studio

View on Code
Studio

Before we get started you'll want some better animations for each of your sprites.

In the Animation Tab are animations for each of your sprites. Go look at what they are.
In your code give each sprite its appropriate animation. Use the ones provided for now but later you'll be able to go
change them.
Head to Level 4 if you need help remembering how to do this.

Student Instructions

Moving The Enemies
It's time to start writing the code that will move your sprites. To begin you'll need to get your enemy sprites to a random
position and moving across the screen.

Do This
At the top of your program, after you create each enemy sprite, write code that will move it to the correct position and give it
the correct velocity.

Use sprite.x to set the x position to 0.

Use sprite.y to set the y position should be a random number between 150 and 250.

Use sprite.velocityX to set the x velocity to 2.

Test your program. Your enemy sprites should now be moving across the bridge.

Student Instructions

Touching the Cake
If the enemies get all the way across to the cake you should place them back at the left side of the screen and decrease the
score. To start you'll write code for only one of your enemies .

Do This
Inside the enemiesTouchCake function you'll need to write code that checks when a ladybug is touching the cake, resets its

position, and changes the score.

Use an if and isTouching to detect whether enemy1 has touched the cake.

Inside your if block place code that:

sets enemy1's x position back to 0.
sets enemy1's y position to a random number between 150 and 250.
uses the counter pattern to decrease the score by 2.

(Hint: You can reuse some code you already wrote)

Test your code. One of your ladybugs should now reset when it gets across to the cake, and the score should go down by
2.

Student Instructions

Touching the Cake: Second
Ladybug
Your first enemy sprite should now be resetting when it gets to the cake. Now you'll want the other ladybug to reset as well.

file://studio.code.org/s/csd3/stage/20/puzzle/4
https://studio.code.org/s/csd3-2018/stage/20/puzzle/8
file://docs.code.org/gamelab/x/
file://docs.code.org/gamelab/y/
file://docs.code.org/gamelab/velocityX/
https://studio.code.org/s/csd3-2018/stage/20/puzzle/9
file://docs.code.org/gamelab/isTouching/
https://studio.code.org/s/csd3-2018/stage/20/puzzle/10

View on Code
Studio

View on Code
Studio

View on Code
Studio

Do This
Inside the enemiesTouchCake function you should have written code that resets enemy1 .

Copy the entire if-statement you wrote in the last level (Ctrl-C).
Paste the code inside of the enemiesTouchCake function, just below the last one (Ctrl-V).

Change the name of the sprite in that code from enemy1 to enemy2 .

Test your code. Now both bugs should reset when they touch the cake.

Student Instructions

Creating Functions
Your program now includes code in two places to set the enemies on the left side of
the screen at a random y location. You can create functions to reset each of your two
enemies to remove repetitions from your program. This will make your program easier
to read, allow you to change it more easily, and allow you to quickly reset your sprites
at other points in your program if you need to.

Do This
At the bottom of your program create two new functions, setEnemy1 and setEnemy2 .

Inside each of these functions place the code that sets the enemies on the left side of the screen
and gives them a random y position.
Wherever the code for setEnemy1 and setEnemy2 appears in your program replace them with a call to the functions you

just created.

Student Instructions

Moving Left and Right
Now that your enemy sprites are moving correctly, it's time to write the code to move your player. For now you'll just need to
get your character moving left and right and changing its animations.

Do This
For this level you'll be writing code inside the movePlayer function.

Use an if block along with keyDown to detect when the "right" arrow is pressed.

Use sprite.x and the counter pattern increase the player's x position by 3.

Use another if block to move the player to the left when the "left" arrow is pressed. This time you'll need to decrease the

player's x position.

Test your game. Your character sprite should now move left and right when you press the left and right arrows.

Student Instructions

Moving Up and Down
You'll want your player sprite to move up and down as well.

https://studio.code.org/s/csd3-2018/stage/20/puzzle/11
https://studio.code.org/s/csd3-2018/stage/20/puzzle/12
file://docs.code.org/gamelab/keyDown/
file://docs.code.org/gamelab/x/
https://studio.code.org/s/csd3-2018/stage/20/puzzle/13

View on Code
Studio

View on Code
Studio

View on Code
Studio

Do This
For this level you'll still be writing code inside the movePlayer function.

Use an if block along with keyDown to detect when the "up" arrow is pressed.

Use sprite.y to increase the player's y position by 3 using the counter pattern.

Use another if block to move the player down when the "down" arrow is pressed.

Test your code. Your character should now move in all 4 directions.

Student Instructions

Change Player Animations
Right now your player is always facing the same direction. You can make things look a lot more realistic by switching
between animations. Your player should switch between a left-facing and right-facing animation depending on which key
was last pressed. Remember, you can quickly copy and edit animations inside the Animation Tab.

Do This
Inside the Animation Tab copy the animation of your player sprite.
Flip each frame of the new animation so that the sprite is facing in the opposite direction.
Rename your new animation.
Use the setAnimation command inside the movePlayer function so that the player changes the direction it is facing when

the "left" and "right" arrows are pressed.

Student Instructions

Displace Enemies
It's time to write code for some more sprite interactions. Your player sprite should displace the enemy sprites.

Do This
For this level you'll be writing code inside the displaceEnemies function.

Write code that makes player displace both enemy sprites.
Test your program to make sure your player is displacing enemies but they keep moving right after the player moves
away.

Hint: You can use sprite.debug to see your sprites' colliders if you need to debug your program.

Student Instructions

Touching the Water
The last part of the game that you'll need to write is the code to reset the sprites when they touch the water. Luckily you
should have already written functions that reset each sprite, so you'll just need a good way to know when either sprite
leaves the bridge. Start by writing the code for a single enemy and then copy-paste and make small changes to create code
for your second enemy.

Do This

file://docs.code.org/gamelab/keyDown/
file://docs.code.org/gamelab/y/
https://studio.code.org/s/csd3-2018/stage/20/puzzle/14
file://docs.code.org/gamelab/setAnimation/
https://studio.code.org/s/csd3-2018/stage/20/puzzle/15
file://docs.code.org/gamelab/debug/
https://studio.code.org/s/csd3-2018/stage/20/puzzle/16

View on Code
Studio

For this level you'll be writing code inside the enemiesTouchWater function.

Use an if statement to check whether enemy1 is off the top of the bridge by checking whether its y value is below 140.

Within your if statement:
use your setEnemy1 function to reset the sprite.

add 1 to the score.
Use an if statement to check whether enemy1 is off the bottom of the bridge by checking whether its y value is above
260. Within your if statement:

use your setEnemy1 function to reset the sprite.

add 1 to the score.
Test your program for the first enemy sprite. Make sure the sprite is resetting and the score goes up.
Once it is working copy and paste the code you wrote to create the same behavior for enemy2 . You'll need to change

the name of the sprite and the name of the functions you use.

Wrap Up (20 mins)

Make It Your Own
This last level encourages students to make the game their own. If students have made their way to this point they have all
the skills they need to progress through the curriculum, so there is no pressure to complete any of the modifications
suggested in this level. If you have time, however, getting practice planning and implementing new features will be a useful
skill. Even just modifying the animations of the game is an easy way students can make the game their own.

 Code Studio levels
Levels
 17

Student Instructions

Make It Your Own
You just walked through someone else's plan for creating a game, so now it's time to make it your own. What additional
features or challenges do you want to create?

Do This
Select one of the challenges below to add to the game or come up with a challenge of your own.

Change the visuals of the game so that your player, enemies, or cake look different.
End the game when the enemies get to the cake and print the score. For an extra challenge end the game only after 3
enemies get through.
Randomize the speed of the enemies.
Create a new background that shows up when players reach a higher score.

Share: Once students have completed the project they can share their work with their classmates. Encourage students to
showcase the additional code they wrote and explain how it has changed the way the game works.

Standards Alignment
CSTA K-12 Computer Science Standards

AP - Algorithms & Programming

https://studio.code.org/s/csd3-2018/stage/20/puzzle/17

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13

14 Ch. 2 15 16 17 18 19 20 21 22

Lesson 21: Using the Game Design Process
Game Lab

Overview
In this multi-day lesson, students use the problem solving process
from Unit 1 to create a platform jumper game. They start by looking at
an example of a platform jumper, then define what their games will
look like. Next, they use a structured process to plan the
backgrounds, variables, sprites, and functions they will need to
implement their game. After writing the code for the game, students
will reflect on how the game could be improved, and implement those
changes.

Purpose
Students have already learned all of the programming constructs that
they need to make a game. This lesson reviews many of those
concepts while introducing them to a structured process that will help
them to manage the work. It builds on the use of the Project Guide in
the previous lesson by having students complete more of this project
guide independently before using it to build a game. This activity
prepares students to write their own game from scratch for the final
project.

Agenda
Warm Up
Activity

Play Alien Jumper
Discuss Project Guide
Share out

Wrap Up

Journal

Objectives
Students will be able to:

Identify core programming constructs
necessary to build different components of a
game
Implement different features of a program by
following a structured project guide

Preparation
Print one copy of Planning Your

Platform Game - Project Guide for each
student or pair of students

Links
Heads Up! Please make a copy of
any documents you plan to share
with students.

For the Teacher

Planning Your Platform Game - Exemplar

For the Students

Planning Your Platform Game - Project
Guide Make a Copy

https://docs.google.com/document/d/1-h8vfW6PfppsDKKqVeVDMU6FxbPP8tA1Up_oc5_p9Dk/edit
https://studio.code.org/s/csd3-2018/stage/21/puzzle/1
https://docs.google.com/document/d/1-h8vfW6PfppsDKKqVeVDMU6FxbPP8tA1Up_oc5_p9Dk/edit


 Discussion
Goal

Goal: Students should share their thoughts but if it doesn't
come up naturally then suggest the examples provided.
This discussion will motivate the use of the project guide
for building a game later in the lesson.

View on Code
Studio

Teaching Guide
Warm Up

Prompt: The Problem Solving Process helps us work through all kinds of problems. Think about the problem of building a
larger piece of software, like the game we built in the last lesson. What did each of the 4 steps look like? Why were they
important?

Discuss: Students should brainstorm quietly and write
down what each step might be. Afterwards, lead a share
out discussion. You can record ideas on the board.
Possible parts of each step include:

Define: Figuring out what you want the game to look
like, how it should work, who will play it.
Prepare: Plan ahead what your code will look like.
Decide on a structure for your game.
Try: Write the code following your plan.
Reflect: Test your code, play the game to make sure it works, get feedback from other people to make the game better.

 Remarks

When you build software, the problem solving process can be a helpful guide. Obviously we need to write the code, but
being careful to define what you want to build, making a good plan to build it, and reflecting afterwards on how to improve
it are all part of making good software. Today we’re going to use this process to make a new game.

Activity

Play Alien Jumper
Distribute: Give each student a copy of Planning Your Platform Game - Project Guide

 Remarks

We're going to be building a jumper game today. You'll have a chance to play a sample game, then plan out how you
would create the game on your Project Guide.

 Move students to Code Studio. On the first level they will be find a game but will not be able to see the code. They
should play the game and follow the instructions which ask them to list the variables, sprites, and functions they think are
necessary to create this game.

 Code Studio levels
Sample Platform Jumper Game 
Student Overview

Platform Jumper
The game on the left is an example of a platform jumper. Press "Run" to play it. You can make the alien jump with the up
arrow, and move it to the left and right with the arrow keys. You score by collecting stars, and if you score high enough, the
background will change.

You already know how to use all the blocks you need to make a game just like this one, and you'll be making your own
platform jumper in this lesson.

Discuss Project Guide

https://docs.google.com/document/d/1-h8vfW6PfppsDKKqVeVDMU6FxbPP8tA1Up_oc5_p9Dk/edit
https://studio.code.org/s/csd3-2018/stage/21/puzzle/2

View on Code
Studio

View on Code
Studio

 Teaching Tip

Making the game will take at least two class periods. If
there's not enough time for all students to finish the lesson,
groups of students can work to to code different aspects,
then share their code with each other. For example, one
group could work on the platforms, one on the stars, and
another on the player. Student who have finished early can
choose more challenges from the later levels.

Circulate: Students should complete the project guide in the style of the one they saw in the previous lesson. They will
likely want to keep the game up as they try to determine the behavior each of the sprites will have.

Share: Students share out their plans for making the game. Reassure them that there are many correct ways to make the
same piece of software, and that they will have a chance to try out theit ideas in code studio.

 Code Studio levels
CSD U3 platform intro_2018 
Student Overview

Build a Platform Jumper
In the next several levels, you'll be building a platform jumper game. Before you move on you'll need to look at the Project
Guide for this project. Wait for instructions from your teacher before clicking to the next level.

Levels
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16

Student Instructions

Background
The first thing that you will create for your game is the background. The sample game had two different backgrounds that
were chosen according to the user's score. The first background has already been created for you. Look at the
background1 function in the code below to see how it works. (Show me where)

In order for the background function to do something, you have to call it inside the draw loop. (Show me where)

There is also an empty function named background2 . (Show me where) You will need to fill that function with new code to

make a different background, then test the code by calling the function inside the draw loop.

Do this

https://studio.code.org/s/csd3-2018/stage/21/puzzle/3
https://studio.code.org/s/csd3-2018/stage/21/puzzle/4

View on Code
Studio

View on Code
Studio

View on Code
Studio

View on Code

Read the code for background1 .

Fill the background2 function with new code for a second background.

Test your background2 function by calling it inside the draw loop.

Hint: It's much easier to copy, paste, and make small changes to your code in text mode.

Student Instructions

Score Variable
Now that you've created your backgrounds, you'll need to choose when each background is drawn. For that, you'll need a
score variable to hold information about your player's score.

You should always give your variables a starting value at the very beginning of the program. That way, they are available for
any code that comes after.

Do This
Create a score variable at the beginning of your game program. (Show me the block)
Set the score equal to 0.

Student Instructions

Choosing your Background
Now that you have your score variable, you can use it to choose the right background for your game. You can see an
example of changing your background according to your score in Lesson 19 Level 11

Do This
Inside the draw loop, use an if statement and your two background functions to draw your background according to your

score level.
Test your code by changing the start score to 100, then running to code to see whether the background changes.

Challenge: If you have a third background, you can click the plus sign at the bottom of the if block.
Another space will appear for your third background function, as well as a place to check the score again.

Student Instructions

Make the Scoreboard
You'll also need a scoreboard so the player can keep track of the score. There's already a showScore

function written, but it only shows the text "Score" and not the actual score. (Show me where) You
can see an example of a working scoreboard in Lesson 16 Level 9 .

Do This
Read the code in the showScore function.

Call the function inside the draw loop, right after you draw the backgrounds.
Use the text block to display the score at the top of the screen.

Student Instructions

https://studio.code.org/s/csd3-2018/stage/21/puzzle/5
https://studio.code.org/s/csd3-2018/stage/21/puzzle/6
file://studio.code.org/s/csd3/stage/19/puzzle/11
https://studio.code.org/s/csd3-2018/stage/21/puzzle/7
file://studio.code.org/s/csd3/stage/16/puzzle/9
file://docs.code.org/gamelab/text/
https://studio.code.org/s/csd3-2018/stage/21/puzzle/8

Studio

View on Code
Studio

View on Code
Studio

Create a Platform Sprite
Now that you have your background and your variables, it's time to create your sprites. Usually, it will
be easiest to start with the sprites that are part of the environment, such as your platforms. The
sample game had two platform sprites, but you'll make just one first, then test it before copying and
pasting the code to make the second.

Do This
Look at your worksheet and choose a platform sprite to create.
In the "Create sprites" area at the top of your code, create your new sprite with the createSprite block, giving it the

correct position and label (name). (Show me the block)
Use the setAnimation and velocityY blocks to give your sprite the correct image and downward velocity.

Test the sprite to make sure that it's moving in the correct way. You might need to adjust its velocity.

Hint: The sprite will go off the screen and not come back. You'll make it loop back around in the next level.

Student Instructions

Loop the Platform Sprite
Right now, your platform sprite moves down, but it doesn't loop back up to the top of the screen. You
can look at Lesson 15 Level 13 to see an example of a sprite looping around a screen.

Do This
Use the function block to create a loopPlatforms function at the bottom of your code.

Use the if block inside the function to check whether the platform has gone off the bottom of screen and, if it has, move

it back to the top of the screen.
Call the function inside the draw loop, in the "update sprites" area.
Run the code to test your sprite.

Hint: What will platform.y be when the sprite moves off the bottom of the screen? What should platform.y
be when you put it back at the top of the screen?

Student Instructions

Make your Second Platform
Making a second platform will be easier than making the first, because you can copy and paste a lot
of the code, then make a few small changes. This is a lot easier in text mode, so be sure to try it out
if you haven't already.

You'll need to copy two parts of your code: the part at the beginning where you made the platform, and
the part in your loopPlatforms function, where you looped the platform back to the top of the screen.

Do This
Copy the code you used to create the first platform sprite (createSprite , setAnimation , and velocityY), and paste it directly

beneath the original code.
Change the names of the sprite in the new lines. For example, if you named your original sprite "platform", you could
name this one "platform2".

file://docs.code.org/gamelab/createSprite/
file://docs.code.org/gamelab/setAnimation/
file://docs.code.org/gamelab/velocityY/
https://studio.code.org/s/csd3-2018/stage/21/puzzle/9
file://studio.code.org/s/csd3/stage/15/puzzle/13
https://studio.code.org/s/csd3-2018/stage/21/puzzle/10
file://docs.code.org/gamelab/createSprite/
file://docs.code.org/gamelab/setAnimation/
file://docs.code.org/gamelab/velocityY/

View on Code
Studio

View on Code
Studio

View on Code
Studio

Change the starting position of your new platform sprite.
Inside your loopPlatforms function, copy the if statement, then paste it directly underneath the original code, inside the

function.
Change the sprite name in the new lines of code.
Run your code to test it.

Challenge: You can make your platforms appear at random x positions when they loop back to the top of
the screen.

Student Instructions

Create an Item
Next, you need to add the items that fall from the top of the screen. These move just like the platforms,
but faster. In order to make the game more interesting, the items start at a random location above the
screen. For the sample game, the item's x position is a random number between 50 and 350, and the
y position is a random number between -30 and -60.

Do This
Use the createSprite block to make an item sprite in the "create sprites" section of your code.

Use the randomNumber block inside your createSprite block to start the item at a random x and y position.

Use setAnimation and velocityY to give your sprite the correct image and make it fall from the top of the screen.

Run the code to test your sprite.

Student Instructions

Loop your Item
Now that your item is falling, you can add code to loop it back to the top. This is similar to what you did
for the platform sprite, but the item sprite will loop back to a random x and y location when it goes to
the top of the screen.

Do This
Create a loopItems function that uses an if block to check whether the item sprite is off the bottom of the screen, then

sends the item back to a random x and y position, just as it did when you first created the sprite.
Call the function inside the draw loop.
Run the code to test your sprite.

Student Instructions

Make your Second Item
Next, you'll copy and paste the code for your first item to create a second item. Remember that this is
a lot easier in text mode, so be sure to try it out if you haven't already.

You'll need to copy two parts of your code: the part at the beginning where you made the item, and the
part in your loopItem function, where you looped the item back to the top of the screen.

Do This

https://studio.code.org/s/csd3-2018/stage/21/puzzle/11
file://docs.code.org/gamelab/createSprite/
file://docs.code.org/applab/randomNumber/
file://docs.code.org/gamelab/createSprite/
file://docs.code.org/gamelab/setAnimation/
file://docs.code.org/gamelab/velocityY/
https://studio.code.org/s/csd3-2018/stage/21/puzzle/12
https://studio.code.org/s/csd3-2018/stage/21/puzzle/13

View on Code
Studio

View on Code
Studio

View on Code
Studio

Copy the code you used to create the first item sprite (createSprite , setAnimation , and velocityY), and paste it directly

beneath the original code.
Change the names of the sprite in the new lines. For example, if you named your original sprite "star", you could name
this one "star2".
Inside your loopItems function, copy the if statement, then paste it directly underneath the original code, inside the

function.
Change the sprite name in the new lines of code.
Run your code to test it.

Student Instructions

Create your Player
Now you can create your player sprite. Just like the item sprites, the player sprite will fall from the top
of the screen. Unlike the items, your player sprite will get faster as it falls, just like real falling objects.
This is what allows it to jump up, and fall back down.

Do This
Use the createSprite block to make a player sprite with the label and starting position that you put on your worksheet.

Use setAnimation to give it the correct image.

Create a playerFall function that makes the sprite fall from the top of the screen. The code inside the function should use

velocityY in a counter pattern, just as when you made the falling rock in Lesson 17 Level 4.

Call the playerFall function inside the draw loop.

Run the code to test your sprite.

Student Instructions

User Controls
Next, you should add user controls so that you can move your player around. Your player needs to move to the left when
the left arrow key is pressed, to the right when the right arrow key is pressed, and jump when the space bar is pressed.

Do This
Create a new controlPlayer function in the "functions" area of your code.

Inside the controlPlayer function, use the if , keyDown , and sprite.x blocks to make your player move to the left and right

according to the arrow keys. Look at Lesson 12 Puzzle 7 for examples.
Inside the controlPlayer function, use the if , keyDown , and velocityY blocks to make your player jump when the up

arrow is pressed. Look at Lesson 15 Puzzle 11 for an example.
Call the controlPlayer function inside the draw loop.

Run the game and test your code.

Student Instructions

Player Interactions
The last part of making your game is programming the player interactions with the other sprites. First, your player needs to
land on the platforms.

file://docs.code.org/gamelab/createSprite/
file://docs.code.org/gamelab/setAnimation/
file://docs.code.org/gamelab/velocityY/
https://studio.code.org/s/csd3-2018/stage/21/puzzle/14
file://docs.code.org/gamelab/createSprite/
file://docs.code.org/gamelab/setAnimation/
file://docs.code.org/gamelab/velocityY/
file://studio.code.org/s/csd3/stage/17/puzzle/4
https://studio.code.org/s/csd3-2018/stage/21/puzzle/15
file://docs.code.org/gamelab/keyDown/
file://docs.code.org/gamelab/x/
file://studio.code.org/s/csd3/stage/12/puzzle/7
file://docs.code.org/gamelab/keyDown/
file://docs.code.org/gamelab/velocityY/
file://studio.code.org/s/csd3/stage/15/puzzle/11
https://studio.code.org/s/csd3-2018/stage/21/puzzle/16

View on Code
Studio

View on Code
Studio

View on Code
Studio



Do This
Create a playerLands function and add it to the "functions" area of your code.

Inside the function, use the collide block so that your player can land on both the platforms.

Call the function inside the draw loop.
Run the code to test your function.

Students work in pairs to create the alien jumper game.

 Code Studio levels
Levels
 17

Student Instructions

Collect Items
Last, you'll want your player to collect the items falling from the top of the screen.

Do This
Create a collectItems function and add it to the "functions" area of your code.

Use the if and isTouching blocks to change the x and y position of the items when the player touches them. You can

look at the loopItem function for clues in how to reset the item position.

Inside your if statement, add a counter pattern that will increase the score every time the player touches an item. Look

at Lesson 16 Puzzle 9 for an example.
Call the function inside the draw loop, in the "update sprites" area of your code.
Run the code to test your function.

Plane Jumper 
Student Overview

Plane Jumper
Here's another example of a platform jumper, but it has a few more features. You can use it to get ideas to improve your
own game. For example, there is a coin sprite that gives the player an extra life.

Choose one or more of the following changes and add them to your game. Choose new animations for your player,
platform, and items. Make it impossible for your player to go off the left or right of the screen. Add a different type of
item for the player to collect or avoid. Add a variable that keeps track of how many lives the player has, and end the
game if the player runs out.

Bunny Jumper 
Student Overview

Bunny Jumper
Here's another example of a jumper. In this one, the items get faster when they fall, and bounce off the platforms.

Choose one or more of the following changes and add them to your game. Make your player's animation change
direction when the player changes direction. Add another background and make it appear when the score gets even
higher. * Make your items interact with the platforms in some way.

file://docs.code.org/gamelab/collide/
https://studio.code.org/s/csd3-2018/stage/21/puzzle/17
file://docs.code.org/gamelab/isTouching/
file://studio.code.org/s/csd3/stage/16/puzzle/9
https://studio.code.org/s/csd3-2018/stage/21/puzzle/18
https://studio.code.org/s/csd3-2018/stage/21/puzzle/19

Students have an opportunity to improve their game after being exposed to two other versions of a platform jumper.

Share out
Share: Students share their games with their classmates.

Wrap Up

Journal
Prompt: Have students reflect on their development of the five practices of CS Discoveries (Problem Solving,
Persistence, Creativity, Collaboration, Communication). Choose one of the following prompts as you deem appropriate.

Choose one of the five practices in which you believe you demonstrated growth in this lesson. Write something you did
that exemplified this practice.

Choose one practice you think you can continue to grow in. What’s one thing you’d like to do better?

Choose one practice you thought was especially important for the activity we completed today. What made it so
important?

Standards Alignment
CSTA K-12 Computer Science Standards

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://docs.google.com/document/d/1FhHPqlC6dU_z9retuBYb-duUwyKpnjwuEgjF4zfdhvI/edit#heading=h.5u3d4jfozbgc
http://creativecommons.org/
file://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13

14 Ch. 2 15 16 17 18 19 20 21 22

Lesson 22: Project - Design a Game
Game Lab | Project

Overview
Students will plan and build their own game using the project guide
from the previous two lessons to guide their project. Working
individually or in pairs, students will first decide on the type of game
they'd like to build, taking as inspiration a set of sample games. They
will then complete a blank project guide where they will describe the
game's behavior and scope out the variables, sprites, and functions
they'll need to build. In Code Studio, a series of levels prompts them
on a general sequence they can use to implement this plan. Partway
through the process, students will share their projects for peer review
and will incorporate feedback as they finish their game. At the end of
the lesson, students will share their completed games with their
classmates. This project will span multiple classes and can easily take
anywhere from 3-5 class periods.

Purpose
This lesson is the culmination of Unit 3 and provides students an
opportunity to build a Game Lab project of their own from the ground
up. The scaffolding provided by the project guide and the practice
they have using it are intended to assist students in scoping their
projects and seeing their ideas through to completion. This project is
an opportunity to showcase technical skills, but they will also need to
collaborate with their partner, provide constructive peer feedback, and
repeatedly use the problem solving process as they encounter
obstacles along the way. This project should be student-directed
whenever possible, and provide an empowering and memorable
conclusion to the first unit of CS Discoveries.

Agenda
Warm Up (10 mins)

Review Project Guide

Activity (80-200 mins)

Define - Scope Game
Prepare - Complete Project Guide
Try - Write Code
Reflect - Peer Review
Iterate - Update Code

Wrap Up (10 mins)

Share
Reflect

Objectives
Students will be able to:

Independently scope the features of a piece of
software
Create a plan for building a piece of software
by describing its major components
Implement a plan for creating a piece of
software

Preparation
Print copies of Make Your Own Game -

Project Guide, one for each student / pair of
students

Print copies of Make Your Own Game -
Rubric, one for each student / pair of
students

Print copies of Make Your Own Game -
Peer Review, one for each student / pair of
students

Review sample games in Code Studio

Links
Heads Up! Please make a copy of
any documents you plan to share
with students.

For the Students

Make Your Own Game - Project Guide

Make Your Own Game - Rubric

Make Your Own Game - Peer Review

Make a Copy

Make a Copy

Make a Copy

https://docs.google.com/document/d/1SBye25XfdnytxCrc6a_OtpcS02YsT99nyJ9Vjwp_zeo/edit?usp=sharing
https://docs.google.com/document/d/1WChOizSb4gZsEbdER5KwYXj9c6Ogpeuv0AzegJ5HD8A/edit
https://docs.google.com/document/d/1ORjDuRep39xwiFaz20_jF74eWB63FVtK2FIQhq7Wecg/edit
https://docs.google.com/document/d/1SBye25XfdnytxCrc6a_OtpcS02YsT99nyJ9Vjwp_zeo/edit?usp=sharing
https://docs.google.com/document/d/1WChOizSb4gZsEbdER5KwYXj9c6Ogpeuv0AzegJ5HD8A/edit
https://docs.google.com/document/d/1ORjDuRep39xwiFaz20_jF74eWB63FVtK2FIQhq7Wecg/edit

View on Code
Studio

View on Code
Studio

View on Code
Studio

Teaching Guide
Warm Up (10 mins)

Review Project Guide
Group: This project can be completed individually or in pairs. At your discretion you may choose to have students form
larger groups as well.

Distribute: Each student or group of students should be given a copy of Make Your Own Game - Project Guide . As a
class review the different steps of the project and where they appear in the project guide. Direct students towards the rubric
so that they know from the beginning what components of the project you will be looking for.

Activity (80-200 mins)

Define - Scope Game
Circulate: Students should spend the first 15-20 minutes playing the sample games, reviewing past work, and discussing
as a group the type of game they'd like to build. If they want they can sketch ideas on scratch paper or in

Prepare - Complete Project Guide
Circulate: Once students have discussed their ideas for the project they should complete the Make Your Own Game -
Project Guide. While this should be a fairly familiar process, encourage students to make each component as clear and
detailed as they can at this point. Planning ahead can help them identify issues in their plan before they'll need to make
more significant changes to their code.

Try - Write Code
 Transition: Students are now ready to program their games on Code Studio. These levels provide some guidance on
how students may go about implementing their Make Your Own Game - Project Guide . None of the steps are
significantly different from what students have seen from the previous two lessons. If they wish, students can work in a
different order than the one suggested in these levels.

 Code Studio levels
Lesson Overview 
Teacher Overview
Student Overview

Make Your Own Game - Project Guide Exemplar (PDF | DOCX)
Make Your Own Game - Peer Review Exemplar (PDF | DOCX)

Design Your Game 
Student Overview

Create your own game
Now that you have all the skills you need, it's time to make your own game!

With a partner, brainstorm some different ideas for your game. You can think about the games you've already seen, or look
at some more sample games to give you ideas.

https://docs.google.com/document/d/1SBye25XfdnytxCrc6a_OtpcS02YsT99nyJ9Vjwp_zeo/edit?usp=sharing
https://docs.google.com/document/d/1SBye25XfdnytxCrc6a_OtpcS02YsT99nyJ9Vjwp_zeo/edit?usp=sharing
https://docs.google.com/document/d/1SBye25XfdnytxCrc6a_OtpcS02YsT99nyJ9Vjwp_zeo/edit?usp=sharing
https://studio.code.org/s/csd3-2018/stage/22/puzzle/1
https://docs.google.com/document/d/1T4Br-iQAhFnuoey6QvhdYRQ7X0uPKwjAhlalAQf8Bxc/edit?usp=sharing
https://docs.google.com/document/d/1T4Br-iQAhFnuoey6QvhdYRQ7X0uPKwjAhlalAQf8Bxc/export?format=pdf
https://docs.google.com/document/d/1T4Br-iQAhFnuoey6QvhdYRQ7X0uPKwjAhlalAQf8Bxc/export?format=doc
https://docs.google.com/document/d/1eCE7xT-YWu1xRyxVLx4xCXggqihxJwtU6XkXcchqk6w/edit
https://docs.google.com/document/d/1eCE7xT-YWu1xRyxVLx4xCXggqihxJwtU6XkXcchqk6w/export?format=pdf
https://docs.google.com/document/d/1eCE7xT-YWu1xRyxVLx4xCXggqihxJwtU6XkXcchqk6w/export?format=doc
https://studio.code.org/s/csd3-2018/stage/22/puzzle/1
https://studio.code.org/s/csd3-2018/stage/22/puzzle/2
https://studio.code.org/projects/gamelab/AwDcX5nehOApfzyywI6BOLT1xbf0MIV1dUj8KjQaNtA

View on Code
Studio

View on Code
Studio

Once you have settled on a type of game with your partner, fill out the Project Guide with the backgrounds, variables,
sprites, and functions that you will need to make the game. You'll spend the next few levels creating your game.

Levels
 3
 4
 5
 6
 7

Student Instructions

Create your Variables
First, you'll need to create all of your variables and put them in the variables area of your code. Show me the block Show
me the area in the code

Don't forget, each variable needs a label (name) and a starting value. You can change the value of the variable later in your
code.

Student Instructions

Create your Backgrounds
Next, you'll create all of the background functions that you need for your game. Some games only have one background,
and others have more than one that's chosen according to user score or another aspect of gameplay. You'll need to create
a function for each separate background in your game. You'll write the code to choose the correct background in the next
level.

Show me the block to create a new function
Show me the area in the code to put my function

After you create your functions, test them by calling them inside the draw loop, one background per test.

Show me the block to call my function

https://studio.code.org/projects/gamelab/r9OYVTSj2od8vaCA-nKikTVpx-2Co8qHhuZiBIu30JA
https://studio.code.org/projects/gamelab/hAz7RSdqc0c_MSQVUpvz1XrLDr8QLsansWDVI0ZberQ
https://studio.code.org/projects/gamelab/DmRPNYR3n7bMO--_KkP7r6mOoGynBVyi3BMVPWDiVeI
https://studio.code.org/s/csd3-2018/stage/22/puzzle/3
https://studio.code.org/s/csd3-2018/stage/22/puzzle/4

View on Code
Studio

View on Code
Studio

View on Code
Studio

Student Instructions

Display Boards
Now that your backgrounds are working, you can add your display boards. Most games have a score board, but you might
also want to display information about player level or lives remaining. Look at Lesson 12 Puzzle 9 for an example of how
to make a scoreboard.

For each display board: Create a function to display the information Call the function in the draw loop

Be sure to test your boards by changing the starting value of your variables and making sure the board also changes when
you run the code.

Student Instructions

Choose your Backgrounds
Now that you have the backgrounds that you need, you'll write the code to choose the correct background. You've seen this
done in Lesson 15 Level 11 .

After you've written the code, test it by changing the starting value of your variables and making sure the correct
background shows up.

Student Instructions

Create your Animations
Next you will create your animations in the animation tab. Don't forget to make multiple animations if you want your sprite to
change appearance according to how it's moving.

Reflect - Peer Review
Distribute: Give each student a copy of Make Your Own Game - Peer Review .

Students should spend 15 minutes reviewing the other group's game and filling out the peer review guide.

Iterate - Update Code
Circulate: Students should complete the peer review guide's back side where they decide how to respond to the feedback
they were given. They should then use that feedback to improve their game.

Wrap Up (10 mins)

Share
Share: Give students a chance to share their games. If you choose to let students do a more formal presentation of their
projects the project guide provides students a set of components to include in their presentations including:

The original game they set out to build
A description of the programming process including at least one challenge they faced and one new feature they decided
to add
A description of the most interesting or complex piece of code they wrote
A live demonstration of the actual game

Reflect

https://studio.code.org/s/csd3-2018/stage/22/puzzle/5
file://studio.code.org/s/csd3/stage/12/puzzle/9
https://studio.code.org/s/csd3-2018/stage/22/puzzle/6
file://studio.code.org/s/csd3/stage/15/puzzle/11
https://studio.code.org/s/csd3-2018/stage/22/puzzle/7
https://docs.google.com/document/d/1ORjDuRep39xwiFaz20_jF74eWB63FVtK2FIQhq7Wecg/edit

View on Code
Studio

 Send students to Code Studio to complete their reflection on their attitudes toward computer science. Although their
answers are anonymous, the aggregated data will be available to you once at least five students have completed the
survey.

 Code Studio levels
Levels
 13

Student Instructions

Standards Alignment
CSTA K-12 Computer Science Standards

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://studio.code.org/s/csd3-2018/stage/22/puzzle/13
http://creativecommons.org/
file://code.org/contact

	Unit 3 - Interactive Games and Animations
	Chapter 1: Images and Animations
	Big Questions
	Week 1
	Lesson 1: Programming for Entertainment
	Unplugged

	Lesson 2: Plotting Shapes
	Unplugged

	Lesson 3: Drawing in Game Lab
	Game Lab

	Lesson 4: Shapes and Randomization
	Game Lab

	Week 2
	Lesson 5: Variables
	Game Lab

	Lesson 6: Sprites
	Game Lab

	Lesson 7: The Draw Loop
	Game Lab

	Lesson 8: Counter Pattern Unplugged
	Unplugged

	Week 3
	Lesson 9: Sprite Movement
	Game Lab

	Lesson 10: Booleans Unplugged
	Unplugged

	Lesson 11: Booleans and Conditionals
	Game Lab

	Lesson 12: Conditionals and User Input
	Game Lab

	Week 4
	Lesson 13: Other Forms of Input
	Game Lab

	Lesson 14: Project - Interactive Card
	Game Lab | Project

	Chapter Commentary
	Chapter 2: Building Games
	Big Questions
	Week 5
	Lesson 15: Velocity
	Game Lab

	Lesson 16: Collision Detection
	Game Lab

	Lesson 17: Complex Sprite Movement
	Game Lab

	Lesson 18: Collisions
	Game Lab

	Week 6
	Lesson 19: Functions
	Game Lab

	Lesson 20: The Game Design Process
	Game Lab

	Lesson 21: Using the Game Design Process
	Game Lab

	Week 7
	Lesson 22: Project - Design a Game
	Game Lab | Project

	Chapter Commentary
	Lesson 1: Programming for Entertainment
	Unplugged
	Overview
	Objectives
	Students will be able to:

	Preparation
	Purpose
	Links
	For the Teacher

	Agenda
	For the Students

	Teaching Guide
	Warm Up (10 min)
	The Entertainment Problem

	Activity (45 min)
	CS in Entertainment
	CS in Entertainment
	Entertainment Exploration

	Code Studio levels

	Inside the Magic - insidethemagic.net
	Overview
	Relevant fields

	Critical Path Videos - criticalpathproject.com/explore/playlists/
	Overview
	Relevant Fields

	Music Think Tank - musicthinktank.com
	Overview
	Relevant Fields

	Creative Coding Podcast - creativecodingpodcast.com
	Overview
	Relevant Fields
	Interesting Information

	Wrap Up (5 min)
	Looking Forward

	Standards Alignment
	CSTA K-12 Computer Science Standards

	Lesson 2: Plotting Shapes
	Unplugged
	Overview
	Objectives
	Students will be able to:

	Links
	Purpose
	For the Teacher
	For the Students

	Agenda

	Teaching Guide
	Warm Up (10 min)
	Communicating Drawing Information

	Activity (35 min)
	Drawing with a Computer
	Code Studio levels
	Drawing Shapes

	Wrap Up (5 min)
	Journaling

	Standards Alignment
	CSTA K-12 Computer Science Standards

	Lesson 3: Drawing in Game Lab
	Game Lab
	Overview
	Objectives
	Students will be able to:

	Preparation
	Purpose
	Vocabulary
	Agenda
	Introduced Code

	Teaching Guide
	Warm Up (5 minutes)
	Programming Images

	Activity (30 minutes)
	Simple Drawing in Game Lab
	Code Studio levels

	Tour of Game Lab
	Simplified Shapes
	Wrap Up (10 minutes)
	Share Drawings
	Exit Ticket

	Standards Alignment
	CSTA K-12 Computer Science Standards

	Lesson 4: Shapes and Randomization
	Game Lab
	Overview
	Objectives
	Students will be able to:

	Preparation
	Vocabulary
	Purpose
	Introduced Code
	Agenda

	Teaching Guide
	Warm Up (5 min)
	Shapes of Different Sizes

	Activity (40 min)
	Programming Images
	Code Studio levels

	Wrap Up (5 min)
	Journal

	Standards Alignment
	CSTA K-12 Computer Science Standards

	Lesson 5: Variables
	Game Lab
	Overview
	Objectives
	Students will be able to:

	Purpose
	Preparation
	Links
	For the Students

	Vocabulary
	Agenda
	Introduced Code

	Teaching Guide
	Warm Up (10 Mins)
	Labels and Values

	Activity (30 Mins)
	Programming with Variables
	Code Studio levels

	Wrap Up (5 Mins)
	Reflection

	Standards Alignment
	CSTA K-12 Computer Science Standards

	Lesson 6: Sprites
	Game Lab
	Overview
	Objectives
	Students will be able to:

	Purpose
	Preparation
	Links
	For the Teacher
	For the Students

	Agenda
	Vocabulary
	Introduced Code

	Teaching Guide
	Warm Up (5 minutes)
	How Much Information?

	Activity
	Introduction to Sprites
	Code Studio levels

	Wrap Up (5-10 min)
	Share Out

	Assessment
	Assessing Sprite Scenes

	Standards Alignment
	CSTA K-12 Computer Science Standards

	Lesson 7: The Draw Loop
	Game Lab
	Overview
	Objectives
	Students will be able to:

	Preparation
	Purpose
	Links
	For the Teacher

	Vocabulary
	Agenda
	Introduced Code

	Teaching Guide
	Warm Up (5 mins)
	Activity (60 min)
	Code Studio levels

	Wrap Up (10 mins)
	Standards Alignment
	CSTA K-12 Computer Science Standards

	Lesson 8: Counter Pattern Unplugged
	Unplugged
	Overview
	Objectives
	Students will be able to:

	Purpose
	Preparation
	Agenda
	Links
	For the Teacher
	For the Students

	Vocabulary

	Teaching Guide
	Warm Up (15 mins)
	Activity (20 mins)
	Variables Unplugged Activity

	Activity 2 (30 mins)
	Sprite Properties

	Wrap Up (10 mins)
	Discussion

	Standards Alignment
	CSTA K-12 Computer Science Standards

	Lesson 9: Sprite Movement
	Game Lab
	Overview
	Objectives
	Students will be able to:

	Purpose
	Agenda

	Teaching Guide
	Warm Up (5 minutes)
	Reviewing Sprite Properties

	Activity (40 minutes)
	Levels: Sprites and Images
	Code Studio levels

	Wrap Up (5 minutes)
	Journal

	Standards Alignment
	CSTA K-12 Computer Science Standards

	Lesson 10: Booleans Unplugged
	Unplugged
	Overview
	Objectives
	Students will be able to:

	Preparation
	Agenda
	Links
	For the Students

	Vocabulary

	Teaching Guide
	Warm Up (10 min)
	Stand Up, Sit Down
	Example Translation

	Activity (30 min)
	Asking the Right Questions
	Brainstorm

	Sorting with Booleans
	Conditionals

	Wrap Up (5 min)
	Explicit Conditionals

	Standards Alignment
	CSTA K-12 Computer Science Standards

	Lesson 11: Booleans and Conditionals
	Game Lab
	Overview
	Objectives
	Students will be able to:

	Vocabulary
	Purpose
	Introduced Code
	Agenda

	Teaching Guide
	Warm Up (5 min)
	Answering Boolean Questions

	Activity (40 min)
	Booleans Plugged
	Code Studio levels

	Wrap Up (5 min)
	Adding Conditionals

	Standards Alignment
	CSTA K-12 Computer Science Standards

	Lesson 12: Conditionals and User Input
	Game Lab
	Overview
	Objectives
	Students will be able to:

	Links
	Purpose
	For the Students

	Introduced Code
	Agenda

	Teaching Guide
	Warm Up (5 min)
	Taking Input

	Activity (40 min)
	Keyboard Input
	Code Studio levels

	Wrap Up (5 min)
	Considering Conditions

	Standards Alignment
	CSTA K-12 Computer Science Standards

	Lesson 13: Other Forms of Input
	Game Lab
	Overview
	Objectives
	Students will be able to:

	Purpose
	Vocabulary
	Introduced Code
	Agenda

	Teaching Guide
	Warm Up (5 minutes)
	Check for Understanding

	Activity (40 minutes)
	If/Else and More Input
	Code Studio levels

	Wrap Up (5 minutes)
	Share Out

	Standards Alignment
	CSTA K-12 Computer Science Standards

	Lesson 14: Project - Interactive Card
	Game Lab | Project
	Overview
	Objectives
	Students will be able to:

	Purpose
	Preparation
	Agenda
	Links
	For the Teacher
	For the Students

	Teaching Guide
	Warm Up (10 min)
	Demo Project Exemplars (Level 2)
	Code Studio levels

	Example Project
	Activity (2 days)
	Unplugged: Interactive Card Planning
	Steps

	Levels: Implementing Interactive Card (Level 3 - 7)
	Code Studio levels

	Your Interactive Card
	Examples
	Student Instructions

	Laying Out Your Background
	Do This
	Student Instructions

	Adding Sprites
	Do This
	Student Instructions

	User Input
	Do This
	Student Instructions

	Other Conditionals
	Do This
	Peer Review
	Iterate - Update Code
	Reflect
	Code Studio levels
	Student Instructions

	Finishing Touches
	Do This
	Wrap Up (10 minutes)
	Sharing Cards

	Assessment
	Standards Alignment
	CSTA K-12 Computer Science Standards

	Lesson 15: Velocity
	Game Lab
	Overview
	Objectives
	Students will be able to:

	Purpose
	Introduced Code
	Agenda

	Teaching Guide
	Warm Up (15 min)
	Code Studio levels

	Activity (75 minutes)
	Learning to Use the Velocity Blocks
	Code Studio levels

	Wrap Up (5 min)
	Journal

	Standards Alignment
	CSTA K-12 Computer Science Standards

	Lesson 16: Collision Detection
	Game Lab
	Overview
	Objectives
	Students will be able to:

	Preparation
	Purpose
	Links
	For the Teacher
	For the Students

	Agenda
	Vocabulary
	Introduced Code

	Teaching Guide
	Warm Up (10 min)
	Activity
	Collisions Unplugged
	isTouching()
	Code Studio levels

	Frog Jump
	Code Studio levels

	Balloon
	Do This
	Student Instructions

	isTouching()
	Do This
	Student Instructions

	Applesauce
	Do This
	Student Instructions

	Making Sounds
	Do This
	Student Instructions

	Rainbow Horse
	Do This
	Student Instructions

	Debugging Collisions
	Do This
	Wrap Up (5 min)
	Standards Alignment
	CSTA K-12 Computer Science Standards

	Lesson 17: Complex Sprite Movement
	Game Lab
	Overview
	Objectives
	Students will be able to:

	Preparation
	Purpose
	Agenda

	Teaching Guide
	Warm Up (10 mins)
	Activity (60 mins)
	Code Studio levels
	Code Studio levels

	Velocity and the Counter Pattern
	Predict
	Student Instructions

	Velocity and the Counter Pattern
	Do This
	Student Instructions

	Falling Rock
	Do This
	Code Studio levels
	Student Instructions

	Rising Bubble
	Do This
	Student Instructions

	Slowing Things Down
	Do This
	Code Studio levels
	Student Instructions

	Simulating Gravity
	Do This
	Student Instructions

	Jumping
	Do This
	Student Instructions

	Floating Right
	Do This
	Code Studio levels
	Student Instructions

	Floating Left
	Do This
	Student Instructions

	Add a Coin
	Do This
	Student Instructions

	Reset Coin
	Do This
	Wrap Up (10 mins)
	Standards Alignment
	CSTA K-12 Computer Science Standards

	Lesson 18: Collisions
	Game Lab
	Overview
	Objectives
	Students will be able to:

	Vocabulary
	Purpose
	Introduced Code
	Agenda

	Teaching Guide
	Warm Up
	Code Studio levels

	Activity
	Code Studio Levels
	Code Studio levels

	Sprite Interactions
	Do This
	Student Instructions

	Program a Sprite Interaction
	Do This
	Student Instructions

	Write Your Own Sprite Interaction
	Do This
	Code Studio levels
	Student Instructions

	Displace
	Do This
	Student Instructions

	More Collision Blocks
	Do This
	Student Instructions

	Collision Types
	displace
	collide
	bounce
	bounceOff

	Do This
	Student Instructions

	Debugging Sprite Interactions
	Do This
	Student Instructions

	Debug
	Do This
	Student Instructions

	setCollider
	Do This
	Code Studio levels
	Student Instructions

	Bounciness
	Do This
	Student Instructions

	Flyer Game - Add Obstacle
	Do This
	Student Instructions

	Flyer Game - Interacting with the Obstacle
	Do This
	Student Instructions

	Flyer Game - Coin Behind the Obstacle
	Do This
	Student Instructions

	Flyer Game - Change Colliders
	Do This
	Wrap Up (10 mins)
	Share Out and Journal 3-2-1

	Standards Alignment
	CSTA K-12 Computer Science Standards

	Lesson 19: Functions
	Game Lab
	Overview
	Objectives
	Students will be able to:

	Purpose
	Vocabulary
	Introduced Code
	Agenda

	Teaching Guide
	Warm Up (10 mins)
	High Level vs. Low Level Instructions

	Activity (60 mins)
	Code Studio levels
	Student Instructions

	Calling Functions
	Do This
	Student Instructions

	Reordering Code
	Do This
	Student Instructions
	Student Instructions

	Calling Functions in the Draw Loop
	Do This
	Student Instructions

	Calling Functions Multiple Times
	Do This
	Student Instructions

	Making Changes to Functions
	Do This
	Student Instructions

	Creating Functions to Organize Code
	Do This
	Student Instructions

	Write Your Own Function
	Do This
	Student Instructions

	Catch the Coin, Increase the Score
	Do This
	Student Instructions

	Change the Background with the Score
	Do This
	Wrap Up (10 mins)
	Standards Alignment
	CSTA K-12 Computer Science Standards

	Lesson 20: The Game Design Process
	Game Lab
	Overview
	Objectives
	Students will be able to:

	Preparation
	Purpose
	Links
	For the Students

	Agenda

	Teaching Guide
	Warm Up (15 mins)
	Play Cake Defender
	Code Studio levels

	Defend Your Cake!
	Do This
	Stop: Review Project Guide
	Activity (60 mins)
	Multiframe Animations
	Code Studio levels

	Stop
	Student Instructions

	Using Multiframe Animations
	Do This
	Student Instructions

	Slow Down
	Do This
	Implement Project Guide
	Code Studio levels
	Student Instructions

	Editing Multiframe Animations
	Do This
	Student Instructions

	Getting Started: Set Animations
	Do This
	Student Instructions

	Moving The Enemies
	Do This
	Student Instructions

	Touching the Cake
	Do This
	Student Instructions

	Touching the Cake: Second Ladybug
	Do This
	Student Instructions

	Creating Functions
	Do This
	Student Instructions

	Moving Left and Right
	Do This
	Student Instructions

	Moving Up and Down
	Do This
	Student Instructions

	Change Player Animations
	Do This
	Student Instructions

	Displace Enemies
	Do This
	Student Instructions

	Touching the Water
	Do This
	Wrap Up (20 mins)
	Make It Your Own
	Code Studio levels
	Student Instructions

	Make It Your Own
	Do This
	Standards Alignment
	CSTA K-12 Computer Science Standards

	Lesson 21: Using the Game Design Process
	Game Lab
	Overview
	Objectives
	Students will be able to:

	Preparation
	Purpose
	Links
	For the Teacher

	Agenda
	For the Students

	Teaching Guide
	Warm Up
	Activity
	Play Alien Jumper
	Code Studio levels

	Platform Jumper
	Discuss Project Guide
	Code Studio levels

	Build a Platform Jumper
	Student Instructions

	Background
	Do this
	Student Instructions

	Score Variable
	Do This
	Student Instructions

	Choosing your Background
	Do This
	Student Instructions

	Make the Scoreboard
	Do This
	Student Instructions

	Create a Platform Sprite
	Do This
	Student Instructions

	Loop the Platform Sprite
	Do This
	Student Instructions

	Make your Second Platform
	Do This
	Student Instructions

	Create an Item
	Do This
	Student Instructions

	Loop your Item
	Do This
	Student Instructions

	Make your Second Item
	Do This
	Student Instructions

	Create your Player
	Do This
	Student Instructions

	User Controls
	Do This
	Student Instructions

	Player Interactions
	Do This
	Code Studio levels
	Student Instructions

	Collect Items
	Do This
	Plane Jumper
	Bunny Jumper
	Share out
	Wrap Up
	Journal

	Standards Alignment
	CSTA K-12 Computer Science Standards

	Lesson 22: Project - Design a Game
	Game Lab | Project
	Overview
	Objectives
	Students will be able to:

	Preparation
	Purpose
	Links
	For the Students

	Agenda

	Teaching Guide
	Warm Up (10 mins)
	Review Project Guide

	Activity (80-200 mins)
	Define - Scope Game
	Prepare - Complete Project Guide
	Try - Write Code
	Code Studio levels

	Create your own game
	Student Instructions

	Create your Variables
	Student Instructions

	Create your Backgrounds
	Student Instructions

	Display Boards
	Student Instructions

	Choose your Backgrounds
	Student Instructions

	Create your Animations
	Reflect - Peer Review
	Iterate - Update Code
	Wrap Up (10 mins)
	Share
	Reflect
	Code Studio levels
	Student Instructions

	Standards Alignment
	CSTA K-12 Computer Science Standards

