

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ch. 2 15 16 17 18 19 20 21 22

Big Questions

What is a computer program?

What are the core features of most

programming languages?

How does programming enable creativity and

individual expression?

What practices and strategies will help me as I

write programs?

Unit 3 - Interactive Games and Animations
In this unit, students build on their coding experience as they create programmatic images, animations, interactive

art, and games. Starting off with simple, primitive shapes and building up to more sophisticated sprite-based

games, students become familiar with the programming concepts and the design process computer scientists use

daily. They then learn how these simpler constructs can be combined to create more complex programs. In the final

project, students develop a personalized, interactive program. Along the way, they practice design, testing, and

iteration, as they come to see that failure and debugging are an expected and valuable part of the programming

process.

Chapter 1: Images and Animations

Week 1

Lesson 1: Programming for Entertainment
Unplugged

The class is asked to consider the "problems" of boredom and self expression, and to

reflect on how they approach those problems in their own lives. From there, they will

explore how Computer Science in general, and programming specifically, plays a role in

either a specific form of entertainment or as a vehicle for self expression.

Lesson 2: Plotting Shapes
Unplugged

This lesson explores the challenges of communicating how to draw with shapes and use

a tool that introduces how this problem is approached in Game Lab.The class uses a

Game Lab tool to interactively place shapes on Game Lab's 400 by 400 grid. Partners

then take turns instructing each other how to draw a hidden image using this tool,

accounting for many of the challenges of programming in Game Lab.

Lesson 3: Drawing in Game Lab
Game Lab

The class is introduced to Game Lab, the programming environment for this unit, and

begins to use it to position shapes on the screen. The lesson covers the basics of

sequencing and debugging, as well as a few simple commands. At the end of the

lesson, the class creates an online version of the image they designed in the previous

lesson.

Lesson 4: Shapes and Randomization
Game Lab

This lesson extends the drawing skills to include width and height and introduces the

concept of random number generation. The class learns to draw with versions of

ellipse() and rect() that include width and height parameters and to use the

background() block to fill the screen with color. At the end of the progression the class is

introduced to the randomNumber() block and uses the new blocks to draw a

randomized rainbow snake.

Week 2

Lesson 5: Variables
Game Lab

This lesson introduces variables as a way to label a number in a program or save a

randomly generated value. The class begins the lesson with a very basic description of

the purpose of a variable and practices using the new blocks. Afterwards, the class uses

variables to save a random number, allowing the programs to use the same random

number multiple times.

Lesson 6: Sprites
Game Lab

In order to create more interesting and detailed images, the class is introduced to the

sprite object. Every sprite can be assigned an image to show, and sprites also keep

track of multiple values about themselves, which will prove useful down the road when

making animations. At the end of the lesson, everyone creates a scene using sprites.

Lesson 7: The Draw Loop
Game Lab

This lesson introduces the draw loop, one of the core programming paradigms in Game

Lab. The class combines the draw loop with random numbers to manipulate some

simple animations with dots and then with sprites. Afterwards, everyone uses what they

learned to update the sprite scene from the previous lesson.

Lesson 8: Counter Pattern Unplugged
Unplugged

This unplugged lesson explores the underlying behavior of variables. Using notecards

and string to simulate variables within a program, the class implements a few short

programs. Once comfortable with this syntax, the class uses the same process with

sprite properties, tracking a sprite's progress across the screen.

Week 3

Lesson 9: Sprite Movement
Game Lab

By combining the Draw Loop and the Counter Pattern, the class writes programs that

move sprites across the screen, as well as animate other sprite properties.

Lesson 10: Booleans Unplugged
Unplugged

This lesson introduces boolean values and logic, as well as conditional statements. The

class starts by playing a simple game of Stand Up, Sit Down in which the boolean

(true/false) statements describe personal properties (hair or eye color, clothing type,

age, etc). The class then groups objects based on increasingly complex boolean

statements, then looks at how conditionals can impact the flow of a program.

Lesson 11: Booleans and Conditionals
Game Lab

The class starts by using booleans to compare the current value of a sprite property

with a target value, using that comparison to determine when a sprite has reached a

point on the screen, grown to a given size, or otherwise reached a value using the

counter pattern. After using booleans directly to investigate the values or sprite

properties, the class adds conditional if statements to write code that responds to those

boolean comparisons.

Lesson 12: Conditionals and User Input
Game Lab

Following the introduction to booleans and if statements in the previous lesson,

students are introduced to a new block called keyDown() which returns a boolean and

can be used in conditionals statements to move sprites around the screen. By the end

of this lesson students will have written programs that take keyboard input from the

user to control sprites on the screen.

Week 4

Lesson 13: Other Forms of Input
Game Lab

The class continues to explore ways to use conditional statements to take user input. In

addition to the simple keyDown() command learned yesterday, the class learns about

several other keyboard input commands as well as ways to take mouse input.

Lesson 14: Project - Interactive Card
Game Lab | Project

In this cumulative project for Chapter 1, the class plans for and develops an interactive

greeting card using all of the programming techniques they've learned to this point.

Chapter Commentary
Students build up toward programming interactive animations in the Game Lab environment. They begin with

simple shapes and sprite objects, then use loops to create flipbook style animations. Next, they learn to use

booleans and conditionals to respond to user input. At the end of the chapter, students design and create an

interactive animation that they can share with the world.

Big Questions

How do software developers manage complexity

and scale?

How can programs be organized so that

common problems only need to be solved once?

How can I build on previous solutions to create

even more complex behavior?

Chapter 2: Building Games

Week 5

Lesson 15: Velocity
Game Lab

After a brief review of how the counter pattern is used to move sprites, the class is

introduced to the properties that set velocity and rotation speed directly. As they use

these new properties in different ways, they build up the skills they need to create a

basic side scroller game.

Lesson 16: Collision Detection
Game Lab

The class learns about collision detection on the computer. Pairs explore how a

computer could use sprite location and size properties and math to detect whether two

sprites are touching. The class then uses the isTouching() block to create different

effects when sprites collide, including playing sounds. Last, they use their new skills to

improve the sidescroller game that they started in the last lesson.

Lesson 17: Complex Sprite Movement
Game Lab

The class learns to combine the velocity properties of sprites with the counter pattern

to create more complex sprite movement, such as simulating gravity, making a sprite

jump, and allowing a sprite to float left or right. In the final levels the class combine

these movements to animate and control a single sprite and build a simple game in

which a character flies around and collects coins.

Lesson 18: Collisions
Game Lab

The class programs their sprites to interact in new ways. After a brief review of how

they used the isTouching block, the class brainstorms other ways that two sprites could

interact. They then use isTouching to make one sprite push another across the screen

before practicing with the four collision blocks (collide, displace, bounce, and

bounceOff).

Week 6

Lesson 19: Functions
Game Lab

This lesson covers functions as a way to organize their code, make it more readable,

and remove repeated blocks of code. The class learns that higher level or more abstract

steps make it easier to understand and reason about steps, then begins to create

functions in Game Lab. At the end of the lesson the class uses these skills to organize

and add functionality to the final version of their side scroller game.

Lesson 20: The Game Design Process
Game Lab

This lesson introduces the process the class will use to design games for the remainder

of the unit. The class walks through through this process in a series of levels. As part of

this lesson the class also briefly learn to use multi-frame animations in Game Lab. At

the end of the lesson they have an opportunity to make improvements to the game to

make it their own.

Lesson 21: Using the Game Design Process
Game Lab

In this multi-day lesson, the class uses the problem solving process from Unit 1 to

create a platform jumper game. After looking at a sample game, the class defines what

their games will look like and uses a structured process to build them. Finally, the class

reflects on how the games could be improved, and implements those changes.

Week 7

Lesson 22: Project - Design a Game
Game Lab | Project

The class plans and builds original games using the project guide from the previous two

lessons. Working individually or in pairs, the class plans, develops, and gives feedback

on the games. After incorporating the peer feedback, the class shares out the

completed games.

Chapter Commentary
In this chapter students combine the constructs that they learned in the first chapter to program more complex

movement and collisions in their sprites. As they create more complex programs, they begin to use functions to

organize their code. In the end, students use a design process to create an original game.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ch. 2 15 16 17 18 19 20 21 22

Lesson 1: Programming for Entertainment

Overview

Students are asked to consider the "problems" of boredom and

self expression, and to reflect on how they approach those

problems in their own lives. From there, students will explore how

Computer Science in general, and programming specifically,

plays a role in either a specific form of entertainment or as a

vehicle for self expression.

Purpose

This lesson is intended to kick off this programming unit in a way

that engages students of all backgrounds and interests. Though

the end point of this unit asks students to develop a game, you

should avoid starting out with a strong emphasis on video games.

Instead, we attempt to broaden students' perspective about how

programming is relevant to a form of entertainment or self

expression that is personally engaging. This will provide an

anchor for students to come back to throughout the unit as they

consider the potential applications of the various programming

skills that they learn.

Agenda
Warm Up (10 min)

The Entertainment Problem

Activity (45 min)

CS in Entertainment

Wrap Up (5 min)

Looking Forward

View on Code Studio

Objectives
Students will be able to:

Identify how Computer Science is used in a

field of entertainment

Preparation

Review the research resources linked in

Code Studio

Print a copy of CS in Entertainment -

Activity Guide for each group of three

students

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

CS in Entertainment - Exemplar

For the Students

CS in Entertainment - Activity Guide

Make a Copy

https://curriculum.code.org/csd-1718/unit3/
https://studio.code.org/s/csd3-2017/stage/1/puzzle/1/
https://docs.google.com/document/d/1RtwJU7Lh2dKdGoj-zfF1pjn-yxhkwP-05G8pgdYi-BY/edit
https://studio.code.org/s/csd3-2017/stage/1/puzzle/1
https://docs.google.com/document/d/1RtwJU7Lh2dKdGoj-zfF1pjn-yxhkwP-05G8pgdYi-BY/edit

 Discussion Goal

The goal here is to get students to reflect more

critically on why people seek out entertainment.

Students are likely to come up with "boredom" as a

common answer, but push them to think more deeply

about what their chosen form of entertainment

actually does for them - what problem does it solve.

Potential answers include:

Escape from difficult reality

Connection with others

Learning or experiencing new things

Sparking creativity

Teaching Guide

Warm Up (10 min)

The Entertainment Problem

 Remarks

Why do we seek out entertainment? Whether it's movies, music, art, games, or any number of other forms of

entertainment, what problem does entertainment solve for us?

Discuss: What is your favorite form of entertainment,

and what problem does it solve for you?

Activity (45 min)

CS in Entertainment

Prompt: Select a few of the forms of entertainment

that students identified in the warm up and ask them

whether (and how) Computer Science plays a role in

that field.

Group: Place students in groups of three. Consider

allowing students to group based on common interest

as each group will be exploring a field of

entertainment together.

Distribute: Give each group a copy of CS in Entertainment - Activity Guide

 CS in Entertainment

During this activity student groups will do some light research into the role that CS and programming play in

various fields of entertainment. The primary goal of this activity is to broaden students' perspective about how

programming can be used to make fun or entertaining things. Some of the fields that students could research

(such as art, animation, and games) can be directly connected to programs they will write later in this unit, while

others may serve more as an inspiration for how the skills that they learn here may be applied in different

domains.

Entertainment Exploration

Introduce the topics: In the activity guide we've listed a number of potential fields for research. These specific

fields were chosen to go along with resources that are provided on Code Studio, but you can allow students to

look into other fields if they wish.

Explain the exploration task: The goal of this exploration is twofold:

First, develop a deeper understanding of how programming is used in your chosen field. How is computer

technology changing this field, what are some of the problems that people are trying to solve with

technology?

Second, identify some interesting applications of CS or facts to share. What are some cool things that people

are doing in this field that make use of CS?

Share selected research links: On Code Studio, inside the blue teacher box, we have compiled a handful of

useful sites to help students kick off their research. Share the links that you feel are most helpful and

appropriate for your class.

https://docs.google.com/document/d/1RtwJU7Lh2dKdGoj-zfF1pjn-yxhkwP-05G8pgdYi-BY/edit

 Teaching Tip

Because many of these sites change their content

daily, we have not shared them directly with

students. We suggest that you check these links the

morning before class to ensure that everything is still

appropriate to be shared in school

 Code Studio levels

View on Code Studio CS in Entertainment - Exemplar (PDF | DOCX)

Lesson Overview Teacher Overview Student Overview

View on Code Studio Here are a few sites to get students started. These sites are generally appropriate

for school, but the content with them changes frequently, so we strongly suggest that you check each site

for inappropriate content before sharing it with students.

Inside the Magic - insidethemagic.net

Overview

This site is focused on news about Disney, but you might be surprised by the large role that CS plays in all

of their different forms of entertainment. Because this isn't a CS focused site, you'll need to use the search

function to find relevant articles.

Relevant fields

Film/TV

Animation

Robotics/Animatronics

Games

Critical Path Videos -
criticalpathproject.com/explore/playlists/

Overview

Videos featuring a range of people working in diverse areas of the game industry, talking about what they

do.

Relevant Fields

Games

Animation

Art

Music Think Tank - musicthinktank.com

Overview

Exploring CS in Entertainment Teacher Overview Student Overview

https://studio.code.org/s/csd3-2017/stage/1/puzzle/1
https://docs.google.com/document/d/1lLsZjStrnX9-U02G7AxwSPIq-BENvw942PS2JIkjZww/edit
https://docs.google.com/document/d/1lLsZjStrnX9-U02G7AxwSPIq-BENvw942PS2JIkjZww/export?format=pdf
https://docs.google.com/document/d/1lLsZjStrnX9-U02G7AxwSPIq-BENvw942PS2JIkjZww/export?format=doc
https://studio.code.org/s/csd3-2017/stage/1/puzzle/2
http://www.insidethemagic.net/
http://www.criticalpathproject.com/explore/playlists/
http://www.musicthinktank.com/

 Teaching Tip

While some of these examples are pulled directly from

lessons that students will complete later in the unit, a

few of them use commands or techniques that aren't

explicitly covered in the course. You can view the

source for all of these programs in order to support

students who may want to incorporate some of these

techniques later on.

Interesting Information

Once groups have learned a bit about how CS is used in their chosen field, they can complete the second page of

this activity guide, which asks them to do the following:

What Problem Does It Solve?: "Problem" in this context can be fairly broad. It might be simplifying an

otherwise laborious or complex task, doing things that wouldn't otherwise be possible, or any number of things

that make this form of entertainment more accessible to end users.

How is it an Improvement?: This could be tightly coupled with the answer to the previous question. Push

students to consider how their form of entertainment was created before programming was prevalent.

An Interesting Fact or Use: Share something fun or interesting about how CS is used in this field.

An Open Question: It's likely that students come away with more questions than answers after just some quick

research. Encourage them to reflect on what they don't yet know, and what questions they'd still like answered.

Share: Give groups a minute each to share their findings.

Wrap Up (5 min)

Looking Forward

Display: Show either as a whole class, or let students

explore independently, the example programs at the

end of this lesson's Code Studio progression. These

programs are designed to show a variety of different

kinds of programs that it's possible to make in Game

Lab.

Journal: Based on what you saw today, both in your

research and the example apps, what kinds of

programs are you most interested in learning to

create?

Standards Alignment

Music Think Tank is a blog targeted at people working in the music industry. It's not a CS specific site, but

searching for "computer science" or "programming" will reveal some interesting articles.

Relevant Fields

Music

Creative Coding Podcast - creativecodingpodcast.com

Overview

While this podcast doesn't feature much in the way of formal professional programming (as in, people who

do this for a living), it is a great resource to see the varied ways in which amateurs are making

entertainment with code.

Relevant Fields

All

Sample Programs 3 4 5 6 (click tabs to see student view)

http://creativecodingpodcast.com/

CSTA K-12 Computer Science Standards (2017)

IC - Impacts of Computing

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ch. 2 15 16 17 18 19 20 21 22

Lesson 2: Plotting Shapes

Overview

Students explore the challenges of communicating how to draw

with shapes and use a tool that introduces how this problem is

approached in Game Lab. The warm up activity quickly

demonstrates the challenges of communicating position without

some shared reference point. In the main activity students

explore a Game Lab tool that allows students to interactively

place shapes on Game Lab's 400 by 400 grid. They then take

turns instructing a partner how to draw a hidden image using this

tool, accounting for many challenges students will encounter

when programming in Game Lab. Students optionally create their

own image to communicate before a debrief discussion.

Purpose

The primary purpose of this lesson is to introduce students to the

coordinate system they will use in Game Lab. Students may have

limited experience with using a coordinate grid or may struggle

with the "flipped" y-axis in Game Lab. The drawing tool also

forces students to think about other features of Game Lab

students will see when they begin programming in the next

lesson. These include the need to consider order while drawing,

the need to specify color, and the fact that circles are positioned

by their center and squares by their top-left corner. By the end of

this activity, students should be ready to transfer what they have

learned about communicating position to the programming they

will do in the next lesson.

Agenda
Warm Up (10 min)

Communicating Drawing Information

Activity (35 min)

Drawing with a Computer

Wrap Up (5 min)

Journaling

View on Code Studio

Objectives
Students will be able to:

Reason about locations on the Game Lab

coordinate grid

Communicate how to draw an image in

Game Lab, accounting for shape position,

color, and order

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Sample Shape Drawing - Exemplar

Drawing Shapes - Exemplar

For the Students

Drawing Shapes - Activity Guide

Make a Copy

https://curriculum.code.org/csd-1718/unit3/
https://studio.code.org/s/csd3-2017/stage/2/puzzle/1/
https://cdo-curriculum.s3.amazonaws.com/media/uploads/Screenshot-2017-05-24-at-1.13.21-PM.png
https://studio.code.org/s/csd3-2017/stage/2/puzzle/1
https://docs.google.com/document/d/1BKFLM2cmov3Lh23vsw1hGfUwTz9bM-diFCGHBf_GH6Y/edit?usp=sharing

 Discussion Goal

Goal This discussion is intended to bring up some

challenges that students will need to address in the

next few lessons, such as how to specify position,

order, and color. The students don't necessarily need

to decide how they would specify such things, but

recognize that they will need a method for doing so.

Students who have just come out of the HTML unit

may make connections to how HTML helped solve

similar problems.

Teaching Guide

Warm Up (10 min)

Communicating Drawing Information

 Remarks

We saw a lot of different programs yesterday, and you started to think about what types you might want to

create. When we create a program, one of the things we need to do is draw everything on the screen. We're going

to try that with a "student" computer today.

Ask one or two volunteers to come to the front of the room and act as "computers" for the

activity. They should sit with their backs to the board so that they cannot see what is being

projected. Give each volunteer a blank sheet of paper.

Display: Project Sample Shape Drawing - Exemplar where it can be seen by the class.

 Remarks

You will need to explain to our "computer" how to draw the picture. In the end, we'll

compare the drawing to the actual picture.

Give the students a minute or two to describe the drawing as the students at the front of the room try to draw it.

After one minute, stop them and allow the students to compare both pictures.

Prompt: What are the different "challenges" or problems we're going to need to solve in order to successfully

communicate these kinds of drawings.

Discuss: Students should silently write their answers

in their journals. Afterwards they should discuss with

a partner and finally with the entire class.

 Remarks

There were several challenges we needed to solve

in this activity. We need to be able to clearly

communicate position, color, and order of the

shapes. We're going to start exploring how to solve

this problem.

Activity (35 min)

Drawing with a Computer

Group: Place students in pairs.

Transition: Have one member of each group open a laptop and go to the contents for this lesson. There is a single

level with a Game Lab tool.

 Code Studio levels

View on Code Studio View on Code Studio to access answer key(s)

Lesson Overview Teacher Overview Student Overview

Drawing Shapes Student Overview

https://cdo-curriculum.s3.amazonaws.com/media/uploads/Screenshot-2017-05-24-at-1.13.21-PM.png
https://studio.code.org/s/csd3-2017/stage/2/puzzle/1

 Discussion Goal

Goal: Rather than doing a live-demo of the tool, use

this strategy to let students explore the tool

themselves. Afterwards use the debrief to ensure all

students are aware of key features of the tool. The

most important components are the grid and the fact

that the mouse coordinates are displayed below the

drawing space.

 Content Corner

Location of the Origin The origin of this grid, as well

as the origin in Game Lab, lies at the top left corner.

This reflects the fact that documents tend to start at

the top left, and ensures that every point on the plane

has positive coordinates.

 Teaching Tip

When to Move On: Determine whether this last

activity is worth the time in your schedule. Giving

students a chance to create and communicate their

own drawing can help reinforce their knowledge, but

if students are obviously achieving the learning

objectives of the lesson without it then you can also

just move to the wrap up to synthesize their learning.

Prompt: Working with your partner take two or three minutes to figure out how this tool works. Afterwards be ready

to share as a class.

Discuss: After pairs have had a chance to work with

the tool run a quick share-out where students discuss

features they notice.

 Drawing Shapes

Distribute the Drawing Shapes - Activity Guide to

each pair, ensuring that one student (Student A)

receives the first two pages and the other student

(Student B) receives the second two pages.

Students should not look at each other's papers.

Set Up: In this activity, students will try to recreate

images based on a partner's directions. The student

who is drawing will use the shape drawing tool on

Game Lab to draw the shapes. Students should

keep their drawings hidden from one another

throughout the activity. While completing a drawing

the instruction giver should also not be able to see the computer screen.

Drawing 1: Each member of the pair should complete their first drawing, taking turns giving instructions and using

the tool. These drawings do not feature any overlapping shapes, but students may need to grapple with the fact

that circles are drawn from the middle and squares from the top left corner. Additionally students may just

struggle with the direction of the Y-axis.

Discuss: Give pairs a couple minutes to discuss any common issues they're noticing in trying to complete their

drawings.

Drawing 2: Each member of the pair should describe their second drawing to their partner. These drawing feature

overlapping shapes and so students will need to consider the order in which shapes are being placed as well as

when they should change the color of the pen.

Draw Your Own: If time allows, give students a

chance to create their own drawing to communicate

to their partner.

 Remarks

When we make images, we need a way to

communicate exactly where each shape goes. The

coordinate plane helps us to do that. Our coordinate

plane has two coordinates, x and y. The x-coordinate

tells us how far our shape is from the left of the grid.

The y-coordinate tells us how far our shape is from

the top of the grid. The black dots on the shapes help you be very specific about how the shape is placed on the

grid.

Wrap Up (5 min)

Journaling

Journal: Have students reflect on each of the following prompts

https://docs.google.com/document/d/1BKFLM2cmov3Lh23vsw1hGfUwTz9bM-diFCGHBf_GH6Y/edit?usp=sharing

 Discussion Goal

Goal This discussion should act as a recap of what

students learned about the grid system in Game Lab.

This wrap up should also make references back to the

problem solving process. Students saw at the

beginning of the lesson that there is a problem of

communicating how to draw shapes. What they have

seen in Game Lab today is the solution to that

problem. This discussion should be used to reinforce

that the grid system students saw today is different

from the one they may have seen in a math class.

They should see, however, that both solve the same

problem. Finally this discussion leads into a teacher

explanation of why the grid in Game Lab is "flipped".

What problem is the grid helping to solve in Game

Lab?

Have you seen different ways of solving this

problem in the past? What are they?

Discuss: Have pairs share their answers with one

another. Then open up the discussion to the whole

class.

 Remarks

At the beginning of class we saw that

communicating how to draw even simple shapes

can be pretty challenging. The grid we learned

about today is one solution to this problem but

there are many others that could've worked. In fact

a lot of you probably noticed that the grid in Game

Lab is "flipped". Computer screens come in all

different shapes and sizes, as does the content we show on them. We need to agree on one point where all the

content can grow from. Since we read starting at the top left corner, the grid on a computer screen starts at the

top left corner as well. There's also the benefit of not having to use any negative numbers to talk about locations

on the screen. Don't worry if this flipped grid is a little tricky still. We'll have plenty more time to work on it in

coming lessons.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ch. 2 15 16 17 18 19 20 21 22

Lesson 3: Drawing in Game Lab

Overview

Students are introduced to Game Lab, the programming

environment for this unit, and begin to use it to position shapes

on the screen. They learn the basics of sequencing and

debugging, as well as a few simple commands. At the end of the

lesson, students will be able to program images like the ones

they made with the drawing tool in the previous lesson.

Purpose

The main purpose of this lesson is to give students a chance to

get used to the programming environment, as well as the basic

sequencing and debugging that they will use throughout the unit.

Students begin with an introduction to the GameLab interactive

development environment (IDE), then learn the three commands

(rect , ellipse , and fill) that they will need to code the same

types of images that they created on paper in the previous

lesson. Challenge levels provide a chance for students who have

more programming experience to further explore Game Lab.

Agenda
Warm Up (5 minutes)

Programming Images

Activity (30 minutes)

Simple Drawing in Game Lab

Wrap Up (10 minutes)

Share Drawings

Exit Ticket

View on Code Studio

Objectives
Students will be able to:

Use the Game Lab IDE to plot different

colored shapes on the screen.

Sequence code correctly to overlay shapes.

Debug code written by others.

Preparation

Read the Forum

Prepare projector or other means of

showing videos if you wish to watch as a

class

Vocabulary

Bug - Part of a program that does not work

correctly.

Debugging - Finding and fixing problems in

an algorithm or program.

Program - An algorithm that has been

coded into something that can be run by a

machine.

Introduced Code

fill(color)

ellipse(x, y, w, h)

rect(x, y, w, h)

https://curriculum.code.org/csd-1718/unit3/
https://studio.code.org/docs/gamelab/rect/
https://studio.code.org/docs/gamelab/ellipse/
https://studio.code.org/docs/gamelab/fill/
https://studio.code.org/s/csd3-2017/stage/3/puzzle/1/
https://studio.code.org/docs/gamelab/fill/
https://studio.code.org/docs/gamelab/ellipse/
https://studio.code.org/docs/gamelab/rect/

 Discussion Goal

Goal From Unit 2, students may remember that a

computer can only understand what to do if you use a

particular language in order to communicate with it.

For Web Development, that language was HTML.

Computers can't "figure out" what you mean in the

same way that a human can, and they are usually

much more specific in how they follow instructions.

 Teaching Tip

If you have had students pair program before, you can

read more about it here.

 Teaching Tip

Students that are new to programming often have

some common misconceptions they run into. In order

to prevent those keep reminding students about the

following things

One command per line

Commands run in order from top to bottom

Order of inputs into shape commands matter

Each input into shape commands are separated by

commas

(0,0) is in the upper left corner of the display

All x and y values on the display are positive

Teaching Guide

Warm Up (5 minutes)

Programming Images

 Remarks

In the last lesson we created images on the

computer by organizing squares and circles on a

grid. For each image you wanted to create, you had

to lay those images out manually, and if you

wanted to recreate an image it was a lot of work.

Today, we're going to program the computer to

draw those images for us. Based on what you know

about computers, what do you think will be different

between telling a person about your image and

telling a computer about your image?

Allow students time to think individually and discuss with a partner, then bring the class together and write their

ideas on the board.

 Remarks

In order to give instructions to a computer, we need to use a language that a computer understands. In the last

unit, we used HTML, which is great for making web pages. To make our animations and games, we will use a

version of Javascript that uses blocks. The environment that we'll be programming in is called Game Lab.

Activity (30 minutes)

Simple Drawing in Game Lab

Group: Place students in pairs to program together.

Transition: Send students to Code Studio.

Support: As students work on the levels you can help

them but encourage them to try to spend some time

figuring things out themselves first. If you need help

supporting students, see the exemplars in the teacher

answer viewer. When students hit the challenge

levels, they can choose to pursue one or more of the

challenges, return to improve upon previous levels, or

help a classmate.

 Code Studio levels

Lesson Overview Student Overview

http://teacherblog.code.org/post/147349807334/try-pair-programmingtrack-the-progress-of

Wrap Up (10 minutes)

Share Drawings

Goal: Students get to see the variety of different things you can create with just simple shape drawings.

Share: Once students have completed their drawings have them share their drawings with the class. One way to do

this is with a gallery walk.

Exit Ticket

Goal : Students share tricks they learned as they went through levels.

View on Code Studio

Tour of Game Lab
Depending on the age and comfort level of your students, you may choose to use this level to tour the

environment as a whole class. Make sure that students can find the level instructions, coding area, display

area, and block drawers. This is also a good opportunity to point out some of the useful resources like

documentation and the blocks to text button.

Introduction to Game Lab Teacher Overview Student Overview

Video: Drawing in Game Lab - Part 1 Student Overview

Using the Grid Student Overview

Video: Drawing in Game Lab - Part 2 Student Overview

Drawing 6 7 8 9 (click tabs to see student view)

View on Code Studio

Simplified Shapes
The rect and ellipse commands that students were introduced to in this lessons are simplified versions of

the full commands that they will see later. This allows the class to focus solely on the placement of shapes

on the coordinate plane before also worrying about the width and height of those shapes.

Plotting Shapes in Game Lab Teacher Overview Student Overview

Challenges 11 12 13 (click tabs to see student view)

Free Play Student Overview

https://studio.code.org/s/csd3-2017/stage/3/puzzle/2
https://studio.code.org/s/csd3-2017/stage/3/puzzle/10
https://studio.code.org/docs/applab/rect/
https://studio.code.org/docs/gamelab/ellipse/

Prompt: Today you learned how to draw in Game Lab for the first time. What type of advice would you share with a

friend who was going to learn about drawing in Game Lab to make it easier for them? Write it down on a piece of

paper.

Collect: Collect answers from students and pick out a few that might be helpful for all students to hear. Share those

at the beginning of the next class.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ch. 2 15 16 17 18 19 20 21 22

Lesson 4: Shapes and Randomization

Overview

In this lesson students continue to develop their familiarity with

Game Lab by manipulating the width and height of the shapes

they use to draw. The lesson kicks off with a discussion that

connects expanded block functionality (e.g. different sized

shapes) with the need for more block inputs, or "parameters".

Students learn to draw with versions of ellipse() and rect()

that include width and height parameters. They also learn to use

the background() block. At the end of the progression students

are introduced to the randomNumber() block. Combining all of

these skills students will draw a randomized rainbow snake at the

end of the lesson.

Purpose

This lesson gives students a chance to slightly expand their

drawing skills while continuing to develop general purpose

programming skills. They will need to reason about the x-y

coordinate plane, consider the order of their code, and slightly

increase their programs' complexity. The randomNumber() block is

important for the next lesson where students learn to store

values using variables. This lesson should be focused primarily on

skill-building. If students are able to complete the rainbow snake

independently, then they have the skills they'll need for the

coming lessons.

Agenda
Warm Up (5 min)

Shapes of Different Sizes

Activity (40 min)

Programming Images

Wrap Up (5 min)

Journal

View on Code Studio

Objectives
Students will be able to:

Use and reason about drawing commands

with multiple parameters

Generate and use random numbers in a

program

Preparation

Review the level sequence in Code

Studio

Vocabulary

Parameter - An extra piece of information

passed to a function to customize it for a

specific need

Introduced Code

background(color)

ellipse(x, y, w, h)

rect(x, y, w, h)

randomNumber()

https://curriculum.code.org/csd-1718/unit3/
https://studio.code.org/docs/gamelab/ellipse/
https://studio.code.org/docs/gamelab/rect/
https://studio.code.org/docs/gamelab/background/
https://studio.code.org/docs/gamelab/randomNumber/
https://studio.code.org/docs/gamelab/randomNumber/
https://studio.code.org/s/csd3-2017/stage/4/puzzle/1/
https://studio.code.org/docs/gamelab/background/
https://studio.code.org/docs/gamelab/ellipse/
https://studio.code.org/docs/gamelab/rect/
https://studio.code.org/docs/gamelab/randomNumber/

 Discussion Goal

Goal: This discussion introduces the vocabulary word

"parameter" and also helps motivate their use.

Students will be seeing versions of the ellipse() and

rect() block in this lesson that have additional

parameters, as well as the randomNumber() block

which has two parameters. Students may say they

want inputs for the size of the shapes, their color, etc.

During this conversation tie the behaviors the

students want to the inputs the block would need. For

example, if you want circles to be a different size the

block will need an input that lets the programmer

decide how large to make it.

Teaching Guide

Warm Up (5 min)

1. ellipse()

2. randomNumber(5, 10)

3. rect

Shapes of Different Sizes

Prompt: Our ellipse and rect blocks each have two

inputs that control where they're drawn - the x and y

position. If you wanted these commands to draw a

wider variety of rectangles and ellipses, what

additional inputs might you need to give these

blocks? What would each additional input control?

Discuss: Students should brainstorm ideas silently,

then share with a neighbor, then discuss share out

with the whole class. Record ideas as students share

them on the board.

 Remarks

This was a good list of ideas. If we want our blocks to draw shapes in different ways they'll need more inputs that

let us tell them how to draw. The inputs or openings in our blocks have a formal name, parameters, and today

we're going to be learning more about how to use them.

Activity (40 min)

Programming Images

Transition: Move students onto Code Studio

 Code Studio levels

Lesson Overview Student Overview

New Shapes 2 (click tabs to see student view)

Shapes and Parameters Student Overview

More Parameters 4 5 6 7 8 9

(click tabs to see student view)

Random Numbers Student Overview

Using Random Numbers 11 12 (click tabs to see student view)

https://studio.code.org/docs/gamelab/ellipse/
https://studio.code.org/docs/gamelab/rect/
https://studio.code.org/docs/gamelab/randomNumber/
https://studio.code.org/docs/gamelab/ellipse/
https://studio.code.org/docs/applab/randomNumber/
https://studio.code.org/docs/applab/rect/
https://studio.code.org/docs/gamelab/ellipse/
https://studio.code.org/docs/gamelab/rect/

Share: If some students have taken extra time to work on their projects, give them a chance to share their more

complex rainbow snakes. Focus conversation on which parameters students are manipulating or randomizing to

create their drawings.

Wrap Up (5 min)

Journal

Prompt: Have students reflect on their development of the five practices of CS Discoveries (Problem Solving,

Persistence, Creativity, Collaboration, Communication). Choose one of the following prompts as you deem

appropriate.

Choose one of the five practices in which you believe you demonstrated growth in this lesson. Write something

you did that exemplified this practice.

Choose one practice you think you can continue to grow in. What’s one thing you’d like to do better?

Choose one practice you thought was especially important for the activity we completed today. What made it so

important?

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

Free Play Student Overview

https://docs.google.com/document/d/1FhHPqlC6dU_z9retuBYb-duUwyKpnjwuEgjF4zfdhvI/edit#heading=h.5u3d4jfozbgc
https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ch. 2 15 16 17 18 19 20 21 22

Lesson 5: Variables

Overview

In this lesson students learn how to use variables to label a

number in their program or save a randomly generated value.

Students begin the lesson with a very basic description of the

purpose of a variable. Students then complete a level progression

that reinforces the model of a variable as a way to label or name

a number. Students use variables to save a random number to

see that variables actually store or save their values, allowing

them to use the same random number multiple times in their

programs.

Purpose

This lesson is the first time students will see variables in the

course, and they are not expected to fully understand how

variables work by its conclusion. Students should therefore leave

this lesson knowing that variables are a way to label a value in

their programs so that they can be reused or referenced later. In

the following lesson students will be introduced to sprites, which

need to be referenced by a variable.

Using variables to manipulate drawings is a surprisingly

challenging skill that requires a great deal of forethought and

planning. While students will use or modify many programs in this

lesson, they are not expected to compose programs that use

variables to modify the features of a drawing. In later lessons,

students will expand their understanding of variables and more

advanced ways they can be used.

Agenda
Warm Up (10 Mins)

Labels and Values

Activity (30 Mins)

Programming with Variables

Wrap Up (5 Mins)

Reflection

View on Code Studio

Objectives
Students will be able to:

Identify a variable as a way to label and

reference a value in a program

Use variables in a program to store a piece

of information that is used multiple times

Reason about and fix common errors

encountered when programming with

variables

Preparation

Review the level progression in Code

Studio

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Students

Introduction to Variables - Video

(download)

Vocabulary

Variable - A label for a piece of information

used in a program.

Introduced Code

Declare and assign a value to a variable

Declare a variable

https://curriculum.code.org/csd-1718/unit3/
https://studio.code.org/s/csd3-2017/stage/5/puzzle/1/
https://youtu.be/UG7Q1Sr0_F0
https://videos.code.org/2015/csp/applab/variables_1.mp4
https://studio.code.org/docs/gamelab/declareAssign_x/
https://studio.code.org/docs/gamelab/declareNoAssign_x/

 Teaching Tip

Avoiding Frontloading: While this lesson begins with

two resources that explain how variables work, they'll

likely be more meaningful to students once they have

used variables in the drawing programs. Make sure

students know these resources are available, and then

return to them if you like at the end of the lesson to

help in sense-making.

Teaching Guide

Warm Up (10 Mins)

Labels and Values

Video: As a class watch the video introducing

variables.

Review: Students can review the most important

points from the video on the map level in Level 4.

Students don't need to understand all of these ideas

right now, but they can use this level as a reference

throughout the lesson.

 Remarks

There's a lot to learn about variables and we'll be

seeing them throughout this unit. Today we're going to see them used to help us draw pictures. The most

important thing we care about today, though, is just seeing how giving a label to a value helps us write programs.

Activity (30 Mins)

Programming with Variables

 Code Studio levels

Lesson Overview Student Overview

Introduction to Variables - Part 1 Student Overview

Intro to Variables 3 (click tabs to see student view)

Variables Student Overview

Intro to Variables 5 6 7 (click tabs to see student view)

Naming Variables Student Overview

Intro to Variables 9 10 (click tabs to see student view)

Challenge: Draw an Image Student Overview

Challenge: Updating Variables Student Overview

 Discussion Goal

Goal: Use this discussion to assess students' mental

models of a variable. You may wish to have students

write their responses so you can collect them to

review later. You should be looking to see primarily

that they understand that variables can label or name

a number so that it can be used later in their

programs. While there are other properties of a

variable students may have learned, this is the most

important before moving on to the next lesson.

 Teaching Tip

Input-Output-Store-Process: The model students

learned in Unit 1 might be nice to reference here.

Students are storing information in a variable which

means they are saving that information in memory.

CSS Classes: If students studied CSS classes in Unit 2

then they may be familiar with the act of creating a

name for something in their programs in order to be

able to reference it. While the context here is different,

the idea of naming remains the same.

Wrap Up (5 Mins)

Reflection

Prompt: Give students the following prompts

What is your own definition of a variable?

Why are variables useful in programs?

Discuss: Have students silently write their ideas

before sharing in pairs and then as a whole group.

Journal: What connections do you see between

variables and what you learned about the Input-

Output-Store-Process model of a computer?

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

Free Play Student Overview

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ch. 2 15 16 17 18 19 20 21 22

Lesson 6: Sprites

Overview

In order to create more interesting and detailed images, students

are introduced to the sprite object. Every sprite can be assigned

an image to show, and sprites also keep track of multiple values

about themselves, which will prove useful down the road when

making animations.

Purpose

Keeping track of many shapes and the different variables that

control aspects of those shapes can get very complex. There will

be lots of variables with different variable names. Instead

computer scientists created something called an object which

allows for one variable name to control both the shape and all its

aspects. In Game Lab we use a certain type of object called a

sprite. A sprite is just a rectangle with properties for controlling

its look. Properties are the variables that are attached to a sprite.

You can access them through dot notation.

Using the Animation Tab, students can create or import images to

be used with their sprites. Later on, these sprites will become a

useful tool for creating animations, as their properties can be

changed and updated throughout the course of a program.

Agenda
Warm Up (5 minutes)

How Much Information?

Activity

Introduction to Sprites

Wrap Up (5-10 min)

Share Out

Assessment

Assessing Sprite Scenes

View on Code Studio

Objectives
Students will be able to:

Assign a sprite to a variable

Use dot notation to update a sprite's

properties

Create a static scene combining sprites,

shapes, and text

Preparation

(Optional) Print a copy of Sprite Scene

Planning - Activity Guide for each student

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Sprite Scene Planning - Exemplar

For the Students

Sprite Scene Planning - Activity Guide

Vocabulary

Property - A label for a characteristic of a

sprite, such as its location and appearance

Sprite - A character on the screen with

properties that describe its location,

movement, and look.

Introduced Code

drawSprites(group)

var sprite = createSprite(x, y, width,

height)

sprite.scale

Make a Copy

https://curriculum.code.org/csd-1718/unit3/
https://studio.code.org/s/csd3-2017/stage/6/puzzle/1/
https://docs.google.com/document/d/1I5w4VKBu4qPmoSSve_AwyaVQ47FWkJ-fSq4zfmQCsG8/edit
https://studio.code.org/s/csd3-2017/stage/6/puzzle/1
https://docs.google.com/document/d/1I5w4VKBu4qPmoSSve_AwyaVQ47FWkJ-fSq4zfmQCsG8/edit
https://studio.code.org/docs/gamelab/drawSprites/
https://studio.code.org/docs/gamelab/createSprite/
https://studio.code.org/docs/gamelab/scale/

 Discussion Goal

The goal here is to get students thinking about all of

the different values that go into drawing a single

shape on the screen, and how many more values they

may need to control a more detailed character in a

program. If students are struggling to come up with

ideas, you might use some of the following prompts:

How do you tell a shape where to go on the screen?

How do you tell a shape what size it needs to be? How

do you tell a shape what color it should be? What

about its outline? What if you wanted to change any of

those values during your program, or control other

things like rotation?

 Content Corner

The sprite is a type of data called an object. While we

aren't yet explicitly introducing the concept of objects,

students do need to understand that a sprite is a

different type of value from the ones we've seen

before, one that can hold references to many more

values. For students who are curious about whether

there are other objects in our programs, ask them to

see if there are more blocks in the toolbox that follow

the same dot notation (such as World.width and

World.height)

Teaching Guide

Warm Up (5 minutes)

How Much Information?

Think, Pair, Share: So far we've only written programs

that put simple shapes on the screen. Come up with a

list of all of the different pieces of information that

you have used to control how these shapes are

drawn.

Prompt: What if we wanted to create programs with

more detailed images, maybe even characters that

you could interact with? What other pieces of

information might you need in your code?

 Remarks

Today we'll learn how to create characters in our

animations called sprites. These sprites will be

stored in variables, just like you've stored numbers

in the past, but sprites can hold lots of pieces of

data, which will allow you to create much more

interesting (and eventually animated!) programs.

Activity

Introduction to Sprites

Distribute: (Optional) pass out copies of Sprite Scene

Planning - Activity Guide. Students can use this sheet to plan out the Sprite Scene they create at the end of this

lesson, but the planning can also be completed on scratch paper.

Transition: Send students to Code Studio

 Code Studio levels

View on Code Studio Sprite Scene Planning - Activity Guide Exemplar (PDF | DOCX)

Lesson Overview Teacher Overview Student Overview

Video: Introduction to Sprites Student Overview

Creating Sprites Student Overview

Intro to Sprites 4 5 6 (click tabs to see student view)

https://docs.google.com/document/d/1I5w4VKBu4qPmoSSve_AwyaVQ47FWkJ-fSq4zfmQCsG8/edit
https://studio.code.org/s/csd3-2017/stage/6/puzzle/1
https://docs.google.com/document/d/1LCO-0sTzYBEAglx65F2fFVI5OtF6IbTeycIGqa1H4_Q/edit
https://docs.google.com/document/d/1LCO-0sTzYBEAglx65F2fFVI5OtF6IbTeycIGqa1H4_Q/export?format=pdf
https://docs.google.com/document/d/1LCO-0sTzYBEAglx65F2fFVI5OtF6IbTeycIGqa1H4_Q/export?format=doc

Wrap Up (5-10 min)

Share Out

Share: Allow students to share their Sprite Scenes. Encourage students to reflect on their scenes and identify ways

in which they'd like to improve.

Assessment

Assessing Sprite Scenes

To assess Sprite Scenes, ask students to do a "talk through" of their code with you. Check to ensure that students

know why they sequenced their code the way they did, and in particular look for "dead code", or code that doesn't

impact the final scene. At this point it's likely that students are still drawing shapes before they draw the

background (which then won't be seen) or that they are calling drawSprites() multiple times (it only needs to be

called once).

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

Video: The Animation Tab Student Overview

The Animation Tab Student Overview

Adding Images 9 10 11 (click tabs to see student view)

Sprite Scenes Student Overview

Making Scenes 13 14 15 16 17 (click tabs to see student view)

Challenge: Extend Your Scene Student Overview

Free Play Student Overview

https://studio.code.org/docs/gamelab/drawSprites/
https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ch. 2 15 16 17 18 19 20 21 22

Lesson 7: The Draw Loop

Overview

In this lesson students are introduced to the draw loop, one of the

core programming paradigms in Game Lab. To begin the lesson

students look at some physical flipbooks to see that having many

frames with different images creates the impression of motion.

Students then watch a video explaining how the draw loop in

Game Lab helps to create this same impression in their programs.

Students combine the draw loop with random numbers to

manipulate some simple animations with dots and then with

sprites. At the end of the lesson students use what they learned

to update their sprite scene from the previous lesson.

Purpose

The draw loop is a core component of Game Lab. The fact that

the Game Lab environment repeatedly calls this function many

times a second (by default 30) is what allows the tool to create

animations. This lesson has two goals therefore. The first is for

students to see how animation in general depends on showing

many slightly different images in a sequence. To help students

have physical flipbooks they can use, a video, and a map level.

The second goal is for students to understand how the draw loop

allows them to create this behavior in Game Lab. Students should

leave the lesson understanding that the commands in the draw

loop are called after all other code but are then called repeatedly

at a frame rate. Students will have a chance to continue to

develop an understanding of this behavior in the next two

lessons, but laying a strong conceptual foundation in this lesson

will serve them well for the rest of the unit.

Agenda
Warm Up (5 mins)

Activity (60 min)

Wrap Up (10 mins)

View on Code Studio

Objectives
Students will be able to:

Explain what an animation is and how it

creates the illusion of smooth motion

Explain how the draw loop allows for the

creation of animations in Game Lab

Use the draw loop in combination with the

randomNumber() command, shapes, and

sprites to make simple animations

Preparation

Print and assemble the Random Dot

Flipbook - Manipulative and Random

Sprite Flipbook - Manipulative

Prepare Flipbook Example - by Marnic

Bos - Video

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Random Dot Flipbook - Manipulative

Random Sprite Flipbook - Manipulative

Flipbook Example - by Marnic Bos - Video

Vocabulary

Animation - a series of images that create

the illusion of motion by being shown

rapidly one after the other

Frame - a single image within an animation

Frame Rate - the rate at which frames in an

animation are shown, typically measured in

frames per second

Introduced Code

function draw() { }

World.frameRate

https://curriculum.code.org/csd-1718/unit3/
https://studio.code.org/s/csd3-2017/stage/7/puzzle/1/
https://docs.google.com/drawings/d/1KO4s3j9Zbc6rBxLijxxKIYlN24wej906HHJZ7GQDi9U/edit?usp=sharing
https://docs.google.com/drawings/d/1mVt8SE1N5KYy2TfOlqtvkL_2MmYk6wFpiouMZ-P-kQY/edit?usp=sharing
https://youtu.be/hol0p29cd8o
https://docs.google.com/drawings/d/1KO4s3j9Zbc6rBxLijxxKIYlN24wej906HHJZ7GQDi9U/edit?usp=sharing
https://docs.google.com/drawings/d/1mVt8SE1N5KYy2TfOlqtvkL_2MmYk6wFpiouMZ-P-kQY/edit?usp=sharing
https://youtu.be/hol0p29cd8o
https://studio.code.org/docs/gamelab/draw/
https://studio.code.org/docs/gamelab/World.frameRate/

 Discussion Goal

Goal: This discussion should introduce some key

understandings about animation. Students should

understand that the key is seeing many pictures in a

row that are slightly different. Introduce the

vocabulary word "frame" as one of those pictures.

Then transition to the fact that soon students will be

creating animations of their own.

 Teaching Tip

Pair Programming: This lesson introduces a

challenging new paradigm. Until students are working

to improve their projects consider having them pair

program. Remember to give students clear

instructions on when to switch driver and navigator.

Teaching Guide

Warm Up (5 mins)

Video: Show Flipbook Example - by Marnic Bos - Video

Prompt: This video shows a flipbook to make animation. In your own words how is it working? Why does it "trick our

eyes" into thinking something is moving?

Discuss: Have students write their ideas

independently, then share with partners, then as a

whole group.

Vocabulary:

Frame: a single image within an animation

 Remarks

We're going to start learning how to make

animations, not just still images. In order to do this

we need a way to make our programs draw many

pictures a second. Our eyes will blur them together to make it look like smooth motion. To do this, though, we're

going to need to learn an important new tool

Activity (60 min)

Video: Watch the video introducing the draw loop

Map Level: Briefly point students to the map level

following the video. Ask students to use it as a

reference as they complete the challenges in today's

activity.

Demo: If you choose, use the provided Random Dot

Flipbook - Manipulative and Random Sprite Flipbook

- Manipulative to provide a hands-on manipulative for

exploring how the draw loop and animations are connected.

 Code Studio levels

Lesson Overview Student Overview

Video: Introduction to the Draw Loop Student Overview

Shapes and the Draw Loop 3 (click tabs to see student view)

The Draw Loop Student Overview

Shapes and the Draw Loop 5 6 (click tabs to see student view)

https://youtu.be/hol0p29cd8o
https://docs.google.com/drawings/d/1KO4s3j9Zbc6rBxLijxxKIYlN24wej906HHJZ7GQDi9U/edit?usp=sharing
https://docs.google.com/drawings/d/1mVt8SE1N5KYy2TfOlqtvkL_2MmYk6wFpiouMZ-P-kQY/edit?usp=sharing

 Discussion Goal

Goal: Use these prompts to assess whether students

have understood the main learning objectives of the

lesson.

Key Understandings: There are many common

misconceptions with the draw loop. Make sure

students understand the following

The draw loop is run after all other code in your

program. It does not actually matter where it is

located in your program

The draw loop is run by Game Lab at a constant

frame rate of 30 frames per second. You do not

actually need to call the function yourself.

The "frames" in Game Lab can be thought of as

transparency sheets. Unless you draw a background

then all your new shapes or sprites will simply

appear on top of your old ones

You should only have one draw loop in your program

Wrap Up (10 mins)

Share: Students only need to make small changes to their projects (e.g. shaking a single sprite) but ask them to

share with a neighbor or as a full class

Prompt: Have students respond to the following

prompts

What is an animation?

Why does the draw loop help us make animations?

What are some common errors or mistakes we

should look out for as we keep programming with

the draw loop?

Review: Return to the resources students saw at the

beginning of the lesson (Map Level, Video, physical

flip books) and address misconceptions that have

arisen in the lesson.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

Sprites and the Draw Loop 7 (click tabs to see student view)

Sprite Properties Student Overview

Sprites and the Draw Loop 9 10 11 (click tabs to see student view)

Animate Your Scene 12 (click tabs to see student view)

Free Play Student Overview

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ch. 2 15 16 17 18 19 20 21 22

Lesson 8: Counter Pattern Unplugged

Overview

Students explore the underlying behavior of variables through an

unplugged activity. Using notecards and string to simulate

variables within a program, students implement a few short

programs. Once comfortable with this syntax, students use the

same process with sprite properties, tracking a sprite's progress

across the screen.

Purpose

Reasoning about variables can be tricky, especially for new

programmers. In this lesson students complete an unplugged

activity using physical manipulatives (cards and string) to build a

mental model of how information can be stored in a variable and

manipulated by a program. This model is then extended to sprite

properties, which hold values in a similar way. This lesson

introduces syntax and concepts that students will be able to

“plug-in” in the following lesson. The mental model presented in

this lesson will continue to be useful throughout the unit, even as

students begin to write larger and increasingly complex

programs.

Agenda
Warm Up (15 mins)

Activity (20 mins)

Variables Unplugged Activity

Activity 2 (30 mins)

Sprite Properties

Wrap Up (10 mins)

Discussion

View on Code Studio

Objectives
Students will be able to:

Describe the connection between updating

a sprite's location properties and sprite

movement on the screen.

Read and follow the steps of a short

program written in pseudocode that

manipulates variable values.

Preparation

Prepare materials for Labels and Values:

index cards, post-its, or scraps of paper (2

in. by 2 in.) etc. (~ 50 per pair)

Prepare materials for Connectors: pieces

of string, pens, or pipe-cleaners, etc. (~ 4

per pair)

Print copies of Variables Unplugged

Board - Manipulative for each group or

gather paper for students to use to make

their boards.

Review the rules of the Variables

Unplugged Activity to ensure you

understand them and are prepared to

answer questions, especially if you will be

demonstrating them yourself.

Printed a copy of Variables Unplugged -

Activity Guide for each student.

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Variables Uplugged - Key

For the Students

Variables Unplugged - Activity Guide

Variables Unplugged Board - Manipulative

Vocabulary

Make a Copy

Make a Copy

https://curriculum.code.org/csd-1718/unit3/
https://studio.code.org/s/csd3-2017/stage/8/puzzle/1/
https://docs.google.com/document/d/1hxwkz9ed4Qd3KvKJ7MLQdgKGOtItXQ_qaYRQfZcfRn8/edit
https://docs.google.com/document/d/12-tfreuhFfNnxzBSl4dsLavDptTIruVcRiC3AzGKq1Y
https://studio.code.org/s/csd3-2017/stage/8/puzzle/1
https://docs.google.com/document/d/12-tfreuhFfNnxzBSl4dsLavDptTIruVcRiC3AzGKq1Y
https://docs.google.com/document/d/1hxwkz9ed4Qd3KvKJ7MLQdgKGOtItXQ_qaYRQfZcfRn8/edit

Expression - Any valid unit of code that

resolves to a value.

Variable - A label for a piece of information

used in a program.

Teaching Guide

Warm Up (15 mins)

Prompt: In the last lesson, we used the draw loop to make our sprites move around on the screen. What are some

other ways we might want to make our sprites move?

Put student ideas up on the board.

 Remarks

In the next few lessons, we're going to look at lots of ways to have our sprites move around. In order to do that,

we need to learn a little bit more about variables and how they work. Today, we're going to do an activity with

variables and sprite properties that will help us to make these types of movement. As we go through the activity,

think about how what you're learning might help you to make your sprites move in the way you want.

Activity (20 mins)

Variables Unplugged Activity

Group: Put students in pairs.

Distribute: Give each pair:

1) A set of labels/values and connectors

2) A single sheet of paper to create their board

3) 2 copies of the Variables Unplugged - Activity Guide (One for each student.)

Display: Display the rules from the front page of the activity guide and write the first two programs from the second

page.

 Remarks

Today we are going to be working in a world of labels, values, and the connectors between them. To simulate this

world you'll be using the scraps of paper and string that I've given you. To begin with we'll need to set up our

boards, and afterwards we'll go over how the commands for this world work.

Demonstrate: Show the class how to divide their boards into 3 sections and label them accordingly, as shown on the

first page of the activity guide.

Support: Students should work through the first two programs as a group, as you reference the steps in the activity

guide. As groups feel increasingly comfortable with completing commands themselves encourage groups to

independently run each command before comparing their boards with a neighboring pair. The goal is just to make

sure everyone has an opportunity to understand the steps of the activity.

 Remarks

Now it's your turn to try running some of these programs on your own. On the bottom of the page there are two

more programs that you can run. For each one you should run the program to find out the ending state of the

program. In other words, you want to know what labels are connected to what values. Once you reach the end of

each program you can compare your results with a neighboring group. If you don't agree, then go back though

and see if you can find where you lost track.

Support: Students should work in pairs through the two programs on the activity guide. Have a check-in to make

sure everyone agrees on the ending state of the program (what labels are connected to what values). If students

disagree, reinforce the need to debug when reading code by going back and tracing each step.

Activity 2 (30 mins)

https://docs.google.com/document/d/12-tfreuhFfNnxzBSl4dsLavDptTIruVcRiC3AzGKq1Y

 Discussion Goal

The goal of the discussion is not to have students

think of solutions to all the problems, but for them to

identify them, priming them for the counter pattern

lesson. Some problems students may see are that the

smiley faces remained on the screen, rather than

moving, that they could only move left and right or up

or down, or that the images stopped after a certain

amount of time.

 Content Corner

This activity is designed to address many common

misconceptions with variables and memory.

Common Misconceptions

Variables can have multiple values (They cannot,

variables hold at most one value)

Variables “remember” old values (They do not,

hence old values being removed to the Trash)

Variables are connected after a command like “x =

y” (This may arise later in the course when students

use sprites and will be addressed in great detail. For

now students are being forced to create new value

cards every time because even for a statement like

x = y there is no “connection” between those

variables formed)

Variables hold expressions (e.g. 1 + 5) (Variables

only hold values, expressions are computed

beforehand. This is why value cards are only

created once students have a single value. Enforce

this rule closely)

 Discussion Goal

Goal: Students should see that commands such as x =

x + 1 will move a sprite in a deliberate way across the

screen, as opposed to the random movement they

saw in the previous lesson.

Sprite Properties

Distribute: Sprite Properties in Variables Unplugged -

Activity Guide if you have not included it on the

original activity guide.

Demonstrate: Show students the rules of activity on

the activity guide. Work through program 5 as a

group, and demonstrate how to make a new sprite

card and connect it to both its variable label card and

the sprite property cards. Make sure students

understand that they should be creating a new sprite

card every time they see the createSprite command

and should draw their sprites on the grid every time

they see the drawSprites command.

Support: Students should work through the last two

programs using their manipulatives.

Prompt: How did the sprite move across the grid in

Program 3? How did the sprite move across the grid in

Program 4?

After students have filled out the reflection questions,

they should compare with another pair, then discuss

as a class.

Wrap Up (10 mins)

Discussion

Prompt: We saw some clues today of how we might

program the types of movement that we want for our

sprites. What are some problems that we still need to

solve to make the sprite look like it's moving in the

way that you want?

Allow students to brainstorm problems and list them

on the board.

Prompt: Choose one or two of these problems and

start to think of some ways you could solve this

problem.

Allow students time to brainstorm individually before sharing out their solutions.

 Remarks

These are great ideas. In the next lesson, we're going to look at how we can use some of the things we've learned

today to make our sprites move in lots of different ways.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

https://docs.google.com/document/d/12-tfreuhFfNnxzBSl4dsLavDptTIruVcRiC3AzGKq1Y
https://studio.code.org/docs/gamelab/createSprite/
https://studio.code.org/docs/gamelab/drawSprites/

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ch. 2 15 16 17 18 19 20 21 22

Lesson 9: Sprite Movement

Overview

By combining the Draw Loop and the Counter Pattern, students

write programs that move sprites across the screen, as well as

animate other sprite properties.

Purpose

This lesson combines the Draw Loop that students first saw in

Lesson 7 and the Counter Pattern that they learned in Lesson 8 to

create programs with purposeful motion. By either incrementing

or decrementing sprite properties, such as sprite.x , you can

write programs that move sprites in expected patterns, instead of

the randomization that we used in the past. The animations that

students learn to create in this lesson lay the foundation for all of

the animations and games that they will make throughout the

rest of the unit.

Agenda
Warm Up (5 minutes)

Reviewing Sprite Properties

Activity (40 minutes)

Levels: Sprites and Images

Wrap Up (5 minutes)

Journal

View on Code Studio

Objectives
Students will be able to:

Use the counter pattern to increment or

decrement sprite properties

Identify which sprite properties need to be

changed, and in what way, to achieve a

specific movement

https://curriculum.code.org/csd-1718/unit3/
https://studio.code.org/docs/gamelab/x/
https://studio.code.org/s/csd3-2017/stage/9/puzzle/1/

 Discussion Goal

The purpose of this discussion is to start students

thinking about how they might use the various sprite

properties they've seen so far to make animations with

purposeful motion. If students struggle to come up

with ideas, you can narrow down the question to

specific properties. For example:

What would happen to a sprite if you constantly

increased its x property?

What would happen to a sprite if you constantly

increased its y property?

What about other properties, or combining multiple

properties?

Teaching Guide

Warm Up (5 minutes)

Reviewing Sprite Properties

Prompt: On a piece of scratch paper, list out all of the

sprite properties you can think of and what aspect of

a sprite they affect.

Discuss: What kinds of animations could you make by

combining sprite properties with the counter pattern?

Consider both adding and subtracting from

properties, or even updating multiple properties at

the same time. Record ideas as students share them

on the board.

Activity (40 minutes)

Levels: Sprites and Images

Transition: Send students to Code Studio.

Support: Students should be progressing through the levels without stopping in this class. When they have finished

the skill building levels they are given the option of which project they wish to extend.

 Code Studio levels

Lesson Overview Student Overview

Video: Sprite Movement Student Overview

The Counter Pattern Student Overview

Movement with the Counter Pattern 4 5 6 7 8

(click tabs to see student view)

Debugging with Watchers Student Overview

Animating Sprites 10 11 12 13 (click tabs to see student view)

Create Your Own Animation 14 15 (click tabs to see student view)

Challenges Student Overview

https://studio.code.org/docs/gamelab/x/
https://studio.code.org/docs/gamelab/y/

Wrap Up (5 minutes)

Journal

Prompt: Have students reflect on their development of the five practices of CS Discoveries (Problem Solving,

Persistence, Creativity, Collaboration, Communication). Choose one of the following prompts as you deem

appropriate.

Choose one of the five practices in which you believe you demonstrated growth in this lesson. Write something

you did that exemplified this practice.

Choose one practice you think you can continue to grow in. What’s one thing you’d like to do better?

Choose one practice you thought was especially important for the activity we completed today. What made it so

important?

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

Free Play Student Overview

https://docs.google.com/document/d/1FhHPqlC6dU_z9retuBYb-duUwyKpnjwuEgjF4zfdhvI/edit#heading=h.5u3d4jfozbgc
https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ch. 2 15 16 17 18 19 20 21 22

Lesson 10: Booleans Unplugged

Overview

In this lesson, students are introduced to boolean values and

logic, as well as conditional statements. The class starts by

playing a simple game of Stand Up, Sit Down in which the

boolean (true/false) statements describe personal properties (hair

or eye color, clothing type, age, etc). This gets students thinking

about how they can frame a property with multiple potential

values (such as age) with a binary question.

From there students are provided a group of objects with similar,

yet varying, physical properties. With a partner they group those

objects based on increasingly complex boolean statements,

including compound booleans with AND and OR.

Finally we reveal Conditionals as a tool to make decisions or

impact the flow of a program using boolean statements as input.

Agenda
Warm Up (10 min)

Stand Up, Sit Down

Example Translation

Activity (30 min)

Asking the Right Questions

Sorting with Booleans

Conditionals

Wrap Up (5 min)

Explicit Conditionals

View on Code Studio

Objectives
Students will be able to:

Organize objects based on simple and

compound boolean statements

Describe the properties of an object using

boolean statements

Preparation

Read the Forum

Print a copy of the Boolean Properties -

Activity Guide for each student

(Optional) Gather objects with similar

but varying features to use instead of the

worksheet (LEGO bricks work well, a mixed

bag of candy can be fun as well)

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Students

Boolean Properties - Activity Guide

Vocabulary

Boolean - A single value of either TRUE or

FALSE

Conditionals - Statements that only run

when certain conditions are true.

Expression - Any valid unit of code that

resolves to a value.

Make a Copy

https://curriculum.code.org/csd-1718/unit3/
https://studio.code.org/s/csd3-2017/stage/10/puzzle/1/
https://docs.google.com/document/d/1kRNIUD5Z3r7HK9twMPMnenyEFPh9ouMsJKIb4T0-6so/
https://docs.google.com/document/d/1kRNIUD5Z3r7HK9twMPMnenyEFPh9ouMsJKIb4T0-6so/

Teaching Guide

Warm Up (10 min)

Stand Up, Sit Down

Distribute: Give each student a card and have them answer the following questions on it (feel free to add some of

your own)

1. What is your hair color?

2. Do you wear glasses or contacts?

3. What is your favorite number?

4. What is your favorite color?

5. What month were you born?

6. Do you have any siblings?

7. What is the last digit of your phone number?

8. What is something about you that people here don't know and can't tell by looking at you?

Then collect the cards and shuffle them. To play the game, follow these steps:

For Each Card:

1. Select a card

2. Say: I’m going to read the answer to #8 but if it is you, don’t say anything.

3. Read the answer to #8

4. Say: Now everyone stand up and we are going to ask some questions with Boolean answers to help determine

who this person is. I'm going to say a bunch of statements. If they are true about you stay standing. If they are

false sit down.

5. Translate the answers from #1 to #7 into statements that can either be true or false (See below). The person

whose card it is should always answer true.

6. Because of how numbers 3, 4, 5, and 7 were asked it is likely that some people will still be standing. You will need

to revisit these and ask them again in a more narrow fashion such as “My favorite color is purple”.

Example Translation

Question Answer True/False Statement

1) What is your hair color? brown "My hair color is brown."

2) Do you wear glasses or

contacts?
yes "I wear glasses or contacts."

3) What is your favorite number? 12
"My favorite number is greater than 10

and less than 20."

4) What is your favorite color? purple "My favorite color appears in a sunset."

5) What month were you born May "I was born in the spring."

6) Do you have any siblings? yes "I have siblings."

7) What is the last digit of your

phone number?
5

"The last digit of my phone number is

prime."

 Content Corner

In English, an “or” is often an “exclusive or” such as

“You can have chicken or fish.” In English, you only get

to pick one, but with Boolean logic you could have

chicken, fish, or both!! For the example person, “I was

born in May OR my favorite number is 12” is true.

Note that “I was born in May OR my favorite number is

13” is also true.

 Teaching Tip

Students often struggle with the idea of greater-than

or equals to ever being FALSE - they tend to think of

those as statements of truth rather than questions of

relation.

In this activity we use the language something is equal

to something else in order to mirror the code they'll

see later (eg something == something_else), but for

students who are struggling with seeing this as a

question rather than a statement, you can encourage

them to reword the statement by moving the 'is' to the

beginning, so:

something is equal to something else

becomes

is something equal to something else?

Play this several times changing the true/false

statements you use. Be creative with using or and

and. Remind students that the OR means that either

part of the statement being true will result in the

entire statement being true.

Discuss: the Stand up Sit Down game with students:

What kinds of questions did the teacher ask?

Were you ever confused about whether you should

be standing or sitting? Why?

At any point in the game, how many different states could you be in?

Introduce the vocabulary boolean as a description for the kinds of questions we were asking. The defining feature of

a Boolean is that it can have only two states - in our game those states were True and False, or Standing and Sitting

Activity (30 min)

Asking the Right Questions
Brainstorm

Prompt: Brainstorm places where they've seen Boolean values before, either in the class or in the world.

Discuss: Have students share out their answers. Potential answers could include:

Binary

Flow charts

Light switches (and other devices that can be on or off)

Sorting with Booleans

 Remarks

In the game we played, the boolean questions I asked were all based on your properties. Your properties didn't

have to exist in only two states (how many different hair colors are in the room?), but the questions I asked had to

split them into two states (how many people in the room have red hair?). We're going to do similar sorting using

the properties of various images.

Group: Organize students into pairs

Set Up: Assign each member of the pair as either True

or False.

Distribute: Hand out the cut out the images from the

worksheet, or provide students with some objects to

sort (such as LEGO bricks or candies).

 Remarks

I'm going to read a bunch of binary statements in

the form of shape is equal to square or sides is

greater than 4 , and you are going to sort through

their objects to organize them into TRUE and FALSE

piles. If students disagree about which pile an

object should go into they should first discuss what

the property is, what the two outcomes of the

binary question are, and then if they still cannot

agree they should bring it to the class for a vote.

 If you are using the provided cutouts, you can start

with the following questions:

 Content Corner

When combining booleans with OR we are using what

is called a logical or - meaning that we are asking if

either (or both) or the booleans is TRUE. Students

often default to thinking of OR as an exclusive or -
meaning that we are asking if only one (but not the

other) is TRUE.

Make sure you ask students questions or questions

where both of the booleans are TRUE to ensure you

can get at this misconception early

sides is equal to 3

fill is equal to black

corners is less than 1

width is equal to height

fill is equal to grey AND sides is greater than 4

sides is greater than 4 AND less than 7

sides is greater than 4 OR less than 7

sides is NOT less than 5

Conditionals

Goal: After getting used to sorting objects into TRUE

and FALSE, we need to introduce students to the

concept that Booleans can also be used to control the flow of a program.

 Remarks

A conditional allows us to make a decision based on the outcome of a boolean question (or condition). We actually

were implicitly using conditionals in the Stand Up, Sit Down activity because there was an action related to each

potential outcome of the boolean. We could have rephrased the instructions as

if statement is true: remain standing else: sit down

Prompt: Select one object from your pile and hold it up.

 Remarks

I'm going to ask you a boolean question about your object and give you an action related to the potentail

outcome of the boolean. Figure out what your response should be for your shape and do the correct response.

Prompt: Ask students some boolean questions about that single object AND give students something to do if that

question is true. For example:

If sides is equal to 4, do a dance

If pattern is equal to striped, sit down

If width is equal to height, hop on one foot

Wrap Up (5 min)

Explicit Conditionals

Goal: Booleans and conditionals are actually something that we use in our everyday lives - we just aren't usually

explicit about it.

Model: As a way to practice thinking explicitly about conditionals, consider dismissing your students using

compound booleans and conditionals. For example.

If you sit at table four and your hair is brown, you may leave.

If your first name starts with A OR B, you may leave.

If your shoes are black, you may leave.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ch. 2 15 16 17 18 19 20 21 22

Lesson 11: Booleans and Conditionals

Overview

Students start by using booleans to compare the current value of

a sprite property with a target value, using that comparison to

determine when a sprite has reached a point on the screen,

grown to a given size, or otherwise reached a value using the

counter pattern. After using booleans directly to investigate the

values or sprite properties, students add conditional if statements

to write code that responds to those boolean comparisons.

Purpose

This lesson follows closely the booleans model that students first

experienced in the Booleans Unplugged lesson. As before, we

start with using booleans directly before using booleans to trigger

if statements. In the following lesson we will introduce some

boolean producing blocks, such as keyDown() , which can be used

in place of simple boolean comparisons to write programs that

respond to user input.

Agenda
Warm Up (5 min)

Answering Boolean Questions

Activity (40 min)

Booleans Plugged

Wrap Up (5 min)

Adding Conditionals

View on Code Studio

Objectives
Students will be able to:

Predict the output of simple boolean

statements

Use conditionals to react to changes in

variables and sprite properties

Vocabulary

Boolean Expression - in programming, an

expression that evaluates to True or False.

If-Statement - The common programming

structure that implements "conditional

statements".

Introduced Code

If statement

Equality operator

Inequality operator

Greater than operator

Greater than or equal operator

Less than operator

Less than or equal operator

https://curriculum.code.org/csd-1718/unit3/
https://studio.code.org/docs/gamelab/keyDown/
https://studio.code.org/s/csd3-2017/stage/11/puzzle/1/
https://studio.code.org/docs/gamelab/ifBlock/
https://studio.code.org/docs/gamelab/equalityOperator/
https://studio.code.org/docs/gamelab/inequalityOperator/
https://studio.code.org/docs/gamelab/greaterThanOperator/
https://studio.code.org/docs/gamelab/greaterThanOrEqualOperator/
https://studio.code.org/docs/gamelab/lessThanOperator/
https://studio.code.org/docs/gamelab/lessThanOrEqualOperator/

 Content Corner

Though seemingly simple, understanding how a

boolean statement will evaluate can be difficult given

that different programming languages have differing

opinions on 'truthiness' and 'falsiness'. In fact,

JavaScript (the language used in this course) has two

different operators to test boolean equality == and

=== .

The double equals operator (==) is pretty generous in

determining truthiness, for example each of the

following is considered true in JavaScript when using

the == operator, but would be false using the ===

operator:

1 == true;

"1" == true;

5 == "5";

null == undefined;

"" == false;

We use the == operator in this course because it's

more forgiving, but it's important to be aware that it

can sometimes report back truth when you really

didn't intend it to (in which case you might want to

use the more strict === operator)

Teaching Guide

Warm Up (5 min)

Answering Boolean Questions

Goal: At the end of the Boolean Question game from the previous lesson, students began adding conditions to their

boolean questions - meaning that if the answer to the question is true, something should happen. Before

programming with conditionals, we want to make sure that students have a solid understanding of what booleans

really are.

Prompt:

How many different numbers are there in the world?

How many different words or combination of letters and other characters are there?

How many different boolean values are there?

Discuss: Students should realize that the first two questions (numbers and strings), are essentially infinite, but that

booleans are limited to two states.

 Remarks

As you begin programming today, you'll be using booleans to make programs that change their behavior

depending on the answer to those boolean questions.

Activity (40 min)

Booleans Plugged

Transition: Send students to Code Studio.

 Code Studio levels

Lesson Overview Student Overview

Wrap Up (5 min)

Adding Conditionals

Journal: Think back to all of the programs you've written so far; how might you use conditionals to improve one of

your programs from past lessons? What condition would you check, and how would you respond to it?

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

Make a Prediction 2 (click tabs to see student view)

Video: Booleans Student Overview

Booleans and Comparison Operators Student Overview

Boolean Comparison 5 6 7 8 (click tabs to see student view)

If Statements Student Overview

Basic Conditionals 10 11 12 (click tabs to see student view)

Free Play Student Overview

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ch. 2 15 16 17 18 19 20 21 22

Lesson 12: Conditionals and User Input

Overview

Following the introduction to booleans and if statements in the

previous lesson, students are introduced to a new block called

keyDown() which returns a boolean and can be used in

conditionals statements to move sprites around the screen. By

the end of this lesson students will have written programs that

take keyboard input from the user to control sprites on the

screen.

Purpose

One common way conditionals are used is to check for different

types of user input especially key presses. Having a way for a

user to interact with a program makes it more interesting and

dynamic. Without interaction from the user it is very difficult to

create a game. Therefore the introduction of conditionals and

user inputs for decision making is the first big step toward

creating games.

Agenda
Warm Up (5 min)

Taking Input

Activity (40 min)

Keyboard Input

Wrap Up (5 min)

Considering Conditions

View on Code Studio

Objectives
Students will be able to:

Use conditionals to react to keyboard input

Move sprites in response to keyboard input

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Students

Boolean Expressions - Video (download)

Introduced Code

keyDown(code)

https://curriculum.code.org/csd-1718/unit3/
https://studio.code.org/docs/gamelab/keyDown/
https://studio.code.org/s/csd3-2017/stage/12/puzzle/1/
https://youtu.be/y3rCKJNOwpA
https://videos.code.org/2015/csp/applab/conditionals_1.mp4
https://studio.code.org/docs/gamelab/keyDown/

 Discussion Goal

The goal here isn't to get into the technical specifics of

how programs can take input (students will get to that

in the online portion of the lesson), but rather to get

students thinking about how allow user input could

change the programs they've made. Encourage

students to think back to Unit 1 and the various

computer inputs and outputs they explored then.

Which inputs would be most useful for the types of

programs they've been making?

Teaching Guide

Warm Up (5 min)

Taking Input

Discuss: So far all of the programs you've written run

without any input from the user. How might adding

user interaction make your programs more useful,

effective, or entertaining? How might a user provide

input into your program?

Activity (40 min)

Keyboard Input

Transition: Send students to Code Studio

 Code Studio levels

Wrap Up (5 min)

Considering Conditions

Prompt: To get students to continue thinking about how conditionals can be used in programming, prompt them to

come up with scenarios in games or programs they use regularly that might be triggered by conditionals.

Discuss: Have students share responses. Student responses might include:

If my username and password are correct, log me into Facebook

If Pacman has collected all the balls, start the next level

If my keyboard or mouse hasn't moved in 10 minutes, turn on the screensaver

Lesson Overview Student Overview

Keyboard Input 2 3 4 5 6 7

(click tabs to see student view)

Editing Images Student Overview

Keyboard Input 9 (click tabs to see student view)

Challenge: Add More Inputs Student Overview

Free Play Student Overview

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ch. 2 15 16 17 18 19 20 21 22

Lesson 13: Other Forms of Input

Overview

In this lesson students continue to explore ways to use

conditional statements to take user input. In addition to the

simple keyDown() command learned yesterday, students will

learn about several other keyboard input commands as well as

ways to take mouse input.

Purpose

Students have learned how to make simple decisions with

conditionals. Sometimes however we want to make decision

based on if the condition we asked about originally was false or

we want to make a decision based on multiple conditions being

true. Thats where else statements and more complex conditionals

come in. Else statements are a second statement which is

attached to a if statement. Else statements execute when the if

statement it is attached to is false. You can think of it as "if

something is true do thing 1 else do thing 2.

This concept is introduced alongside several new key and mouse

input commands, allowing students to gradually build up

programs that input in different ways.

Agenda
Warm Up (5 minutes)

Check for Understanding

Activity (40 minutes)

If/Else and More Input

Wrap Up (5 minutes)

Share Out

View on Code Studio

Objectives
Students will be able to:

Use an else statement as the fallback case

to an if statement

Differentiate between conditions that are

true once per interaction, and those that

remain true through the duration of an

interaction.

Vocabulary

Conditionals - Statements that only run

when certain conditions are true.

Introduced Code

keyWentDown(code)

keyWentUp(code)

mouseDidMove()

mouseDown(button)

mouseWentDown(button)

mouseWentUp(button)

sprite.visible

If/else statement

https://curriculum.code.org/csd-1718/unit3/
https://studio.code.org/docs/gamelab/keyDown/
https://studio.code.org/s/csd3-2017/stage/13/puzzle/1/
https://studio.code.org/docs/gamelab/keyWentDown/
https://studio.code.org/docs/gamelab/keyWentUp/
https://studio.code.org/docs/gamelab/mouseDidMove/
https://studio.code.org/docs/gamelab/mouseDown/
https://studio.code.org/docs/gamelab/mouseWentDown/
https://studio.code.org/docs/gamelab/mouseWentUp/
https://studio.code.org/docs/gamelab/visible/
https://studio.code.org/docs/gamelab/ifElseBlock/

Teaching Guide

Warm Up (5 minutes)

Check for Understanding

 Remarks

Today we'll be picking up today where we left off yesterday - using conditionals to write programs that respond to

user input. Let's refresh what we learned yesterday.

Prompt:

What is a Boolean? (eg. a true/false value)

What is the relationship between a Boolean and a Conditional? (eg. a conditional asks a Boolean question and

runs code if the answer is true)

What are some examples of comparison operators that result in a Boolean? (eg. >, <, ==)

What is the difference between = and == ? (eg. = is used to assign a value, == is used to check if two values

are equal)

Activity (40 minutes)

If/Else and More Input

Video: Watch the Conditionals Video together as a class. It will be a review of if statements and introduce some

new concepts too.

Transition: Send students to Code Studio

 Code Studio levels

Wrap Up (5 minutes)

Lesson Overview Student Overview

Follow the Mouse 2 3 (click tabs to see student view)

Video: Conditionals Student Overview

If-Else Statements Student Overview

Input with If-Else 6 7 8 9 10 11 12

(click tabs to see student view)

Challenge: Checking for Multiple Conditions Student Overview

Free Play Student Overview

Share Out

Share: The final program in this lesson is asks students to expand a program to uses conditionals for user input in

new and interesting ways. Have your students share their projects with the class, prompting them to explain how

they used conditionals in their programs.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ch. 2 15 16 17 18 19 20 21 22

Lesson 14: Project - Interactive Card

Overview

In this cumulative project for Chapter 1, students plan for and

develop an interactive greeting card using all of the programming

techniques they've learned to this point.

Purpose

This end of chapter assessment is a good place for students to

bring together all the pieces they have learned (drawing,

variables, sprites, images, conditionals, user input) in one place.

Students should still be working with code that is easily readable

and doesn't involve a whole lot of magic. Giving students the

opportunity to really be creative after learning all these new

concepts will help to engage them further as we head into

chapter 2.

Agenda
Warm Up (10 min)

Demo Project Exemplars (Level 2)

Activity (2 days)

Unplugged: Interactive Card Planning

Levels: Implementing Interactive Card (Level 3 - 7)

Peer Review

Iterate - Update Code

Reflect

Wrap Up (10 minutes)

Sharing Cards

Assessment

View on Code Studio

Objectives
Students will be able to:

Use conditionals to react to keyboard input

or changes in variables / properties

Sequence commands to draw in the proper

order

Apply an iterator pattern to variables or

properties in a loop

Preparation

Read the Forum

Print out a copy of the Interactive Card -

Project Guide Activity Guide for each

student

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Interactive Card - Peer Review Exemplar

Interactive Card - Project Guide Exemplar

For the Students

Interactive Card - Project Guide

Interactive Card - Rubric

Interactive Card - Peer Review

Make a Copy

Make a Copy

Make a Copy

https://curriculum.code.org/csd-1718/unit3/
https://studio.code.org/s/csd3-2017/stage/14/puzzle/1/
https://docs.google.com/document/d/1PtGpvAAyCYa_glecPhytGPrZau9ElJfJRhnVogFEqv4/
https://studio.code.org/s/csd3-2017/stage/14/puzzle/1
https://studio.code.org/s/csd3-2017/stage/14/puzzle/1
https://docs.google.com/document/d/1PtGpvAAyCYa_glecPhytGPrZau9ElJfJRhnVogFEqv4/
https://docs.google.com/document/d/1EdEpsowofT8WGQSFvzYVF53HEKipLYdWULtjLgpOEBw/
https://docs.google.com/document/d/1aVP_8YU-JWkxVvRiituCOf66w7refwDaecNBLMZkKgs

View on Code Studio

Teaching Guide

Warm Up (10 min)

Demo Project Exemplars (Level 2)

Goal: Students see an example of a final project and discuss the different elements that went into making it.

Display: On the projector, run the exemplar for students. Since this is on level 2 of the progression, if its easier for

students to do it on their own computers you could do that as well.

 Code Studio levels

CSD U3 Interactive Card Exemplar

Student Overview

Example Project
Run the program a few times and answer the following questions:

1) Which elements appear to use drawing commands?

2) Which elements appear to be Sprites?

3) For each Sprite, which properties are being updated?

4) Where do you see conditionals being used?

5) Are there elements that you don’t understand?

Discuss: Have students share their observations and analyses of the exemplar.

Encourage the class to consider that there are multiple approaches to programming anything, but that there may

be clues as to how something was created. In particular, when they are sharing their thoughts ask them to specify

the following :

Clues that suggest a Sprite was used

Clues that suggest a conditional was used

Clues that suggest an iterator pattern was used

Display: Show students the Interactive Card - Rubric rubric. Review the different components of the rubric with

them to make sure they understand the components of the project.

Activity (2 days)

Unplugged: Interactive Card Planning

Goal: Students should plan out what they want to create before they head to the computer so that once they get to

the computer they are just executing the plan.

Distribute: Hand out the Interactive Card - Project Guide to students. This is the tool students will use to scope out

their projects before getting onto the computers. Give students some time to brainstorm the type of card they want

to create and who the recipient will be.

Steps

1) The first layer of the interactive card is a background drawn with just the commands in the Drawing drawer. The

front of the Activity Guide provides a grid for students to lay out their background, a reference table of drawing

commands, and an area for students to take notes and write pseudocode.

2) Next students think through the Sprites they'll need, filling out a table of each Sprite's label, images, and

properties

https://studio.code.org/s/csd3-2017/stage/14/puzzle/2
https://docs.google.com/document/d/1EdEpsowofT8WGQSFvzYVF53HEKipLYdWULtjLgpOEBw/
https://docs.google.com/document/d/1PtGpvAAyCYa_glecPhytGPrZau9ElJfJRhnVogFEqv4/

View on Code Studio

View on Code Studio

View on Code Studio

3) Finally students consider the conditionals they'll need in order to make their card interactive.

Levels: Implementing Interactive Card (Level 3 - 7)

 Transition: Once students have completed their planning sheet, it's time to head to the Code.org website for

Lesson 10. The short level sequence asks students to complete each element of their project.

 Code Studio levels

Levels

 3

 4

 5

 6

 7

Student Instructions

Laying Out Your Background
Before beginning this project, you should have already completed the Interactive Card Planning activity, and you'll

want to have that paper with you as you develop your program. Preparation is one of the most important elements

of successfully creating a program!

Do This
Refer to your planning activity sheet to help you lay out the shapes that will become the background to your card.

First, figure out what the lowest layer in your image is (this should use the background() block) and add it to the

very top of the draw loop.

Next, layer each additional drawing block in the order you want them to appear in the stack.

Finally, add a comment to the top of this section of code to describe what it does, and if you have any

particularly complicated chunks of code within (such as code to draw a tree or a house), add a descriptive

comment to that as well.

Challenge: Can you use variables or randomNumber() to add some subtle animation to your background layer?

Student Instructions

Adding Sprites
Now that you have the more static elements of your card layed out, it's time to add the Sprites. Your Sprites should

provide the primary animations and interactions for your card - so feel free to get creative here and have fun.

Do This
Check out the Sprites table on the back of your planning sheet. For each Sprite in your table:

Initialize the Sprite at the top of your program with createSprite() .

Find or create the image(s) for the Sprite and set it with setAnimation() .

Inside the draw() loop update any Sprite properties that we will be constantly animating (we'll deal with

conditionals in a minute).

Student Instructions

User Input

https://studio.code.org/s/csd3-2017/stage/14/puzzle/3
https://studio.code.org/s/csd3-2017/stage/14/puzzle/4
https://studio.code.org/s/csd3-2017/stage/14/puzzle/5
https://studio.code.org/docs/gamelab/background/
https://studio.code.org/docs/gamelab/randomNumber/
https://studio.code.org/docs/gamelab/createSprite/
https://studio.code.org/docs/gamelab/setAnimation/
https://studio.code.org/docs/gamelab/draw/

View on Code Studio

View on Code Studio

You've got a background, you've got Sprites, now it's time to give your user something to do!

Do This
On the interactions table from your planning sheet, find all of the interactions that rely on user input (key presses

and mouse movements). For each of those interactions:

Add an if block (or if-else block if you need a fallback action) inside the draw() loop.

Add the appropriate input block for your condition (such as keyDown() or mouseDown()).

Add the necessary actions inside the if block.

Challenge: Can you create more sophisticated conditionals by nesting them or using compound booleans?

Student Instructions

Other Conditionals
The surprise in your card comes from conditionals that don't directly respond to user input, but to some other

element of your card. This could be triggered by a variable that gets updated as the user interacts with your card,

or a Sprite moving into a certain part of the screen.

Do This
For each of the remaining items on your interactions table:

Add an if block (or if-else block if you need a fallback action) inside the draw loop.

Add the appropriate Boolean comparison block to the condition (eg. < , > , or ==).

Add the necessary actions inside the if block.

Challenge: Can you create more sophisticated conditionals by nesting them or using compound booleans?

Student Instructions

Finishing Touches
Now's your chance to put some finishing touches on your card. We've included some new blocks that you haven't

seen before, so take some time to look around and try out some new blocks.

Do This
Consider adding any of the following to finish up your card:

Text

Additional images for your sprites

Subtle animation in the background

Sound effects (Can you figure out now to do this?)

More ways for a user to interact with your card

Peer Review

Distribute: Give each student a copy of Interactive Card - Peer Review.

Students should spend 15 minutes reviewing the other student's card and filling out the peer review guide.

Iterate - Update Code

Circulate: Students should complete the peer review guide's back side and decide how to respond to the feedback

they were given. They should then use that feedback to improve their cards.

https://studio.code.org/s/csd3-2017/stage/14/puzzle/6
https://studio.code.org/s/csd3-2017/stage/14/puzzle/7
https://studio.code.org/docs/spritelab/codestudio_ifStatement/
https://studio.code.org/docs/gamelab/draw/
https://studio.code.org/docs/gamelab/keyDown/
https://studio.code.org/docs/gamelab/mouseDown/
https://studio.code.org/docs/spritelab/codestudio_ifStatement/
https://studio.code.org/docs/spritelab/codestudio_ifStatement/
https://studio.code.org/docs/spritelab/codestudio_ifStatement/
https://docs.google.com/document/d/1aVP_8YU-JWkxVvRiituCOf66w7refwDaecNBLMZkKgs

View on Code Studio

Reflect

Using the Interactive Card - Rubric, students should assess their own project before submitting it.

 Send students to Code Studio to complete their reflection on their attitudes toward computer science. Although

their answers are anonymous, the aggregated data will be available to you once at least five students have

completed the survey.

 Code Studio levels

Levels

 8

Student Instructions

This level is an assessment or survey with multiple questions. To view this level click the "View on Code Studio" link.

Wrap Up (10 minutes)

Sharing Cards

Goal: Students share their creations with the class.

Share: Find a way for students to share their cards with each other, and with the intended recipient. It will likely be

helpful to use the share link for the project so that students can share the project with other students.

Assessment

A rubric for assessing student projects is provided in the resources.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://studio.code.org/s/csd3-2017/stage/14/puzzle/8
https://docs.google.com/document/d/1EdEpsowofT8WGQSFvzYVF53HEKipLYdWULtjLgpOEBw/
https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ch. 2 15 16 17 18 19 20 21 22

Lesson 15: Velocity

Overview

After a brief review of how they used the counter pattern to move

sprites in previous lessons, students are introduced to the

properties that set velocity and rotation speed directly. As they

use these new properties in different ways, they build up the

skills they need to create a basic side scroller game.

Purpose

This lesson launches a major theme of the chapter: that complex

behavior can be represented in simpler ways to make it easier to

write and reason about code.

In this lesson they are taught to use the velocity blocks to

simplify the code for moving a sprite across the screen. This

marks a shift in how new blocks are introduced. Whereas

previously blocks were presented as enabling completely new

behaviors, they are now presented as simplifying code students

could have written with the blocks previously available. Over the

next several lessons, students will see how this method of

managing complexity allows them to produce more interesting

sprite behaviors.

Agenda
Warm Up (15 min)

Activity (75 minutes)

Learning to Use the Velocity Blocks

Wrap Up (5 min)

Journal

View on Code Studio

Objectives
Students will be able to:

Use the velocity and rotationSpeed blocks

to create and change sprite movements

Describe the advantages of simplifying

code by using higher level blocks

Introduced Code

sprite.rotationSpeed

sprite.velocityX

sprite.velocityY

https://curriculum.code.org/csd-1718/unit3/
https://studio.code.org/s/csd3-2017/stage/15/puzzle/1/
https://studio.code.org/docs/gamelab/rotationSpeed/
https://studio.code.org/docs/gamelab/velocityX/
https://studio.code.org/docs/gamelab/velocityY/

 Discussion Goal

Goal: The earlier demonstration should have

reinforced the fact that repeatedly giving the same

instruction is something you would never do in real

life. You would instead come up with a way to capture

that the instruction should be repeated, like "keep

moving forward by 1."

 Teaching Tip

Check for Understanding: This is just a quick check for

understanding after the video. Students are quickly

prompted to see if they understood the main point of

the video and if not you have an opportunity to

reinforce it before moving into the Code Studio levels.

Leave the translation from the velocity blocks to their

associated counter pattern on the board to reference

throughout the lesson.

Teaching Guide

Warm Up (15 min)

Demonstrate: Ask for a volunteer to come to the front of the class and act as your "sprite". Say that you will be

giving directions to the sprite as though you're a Game Lab program.

When your student is ready, face them so that they have some space in front of them and ask them to "Move

forward by 1". They should take one step forward. Then repeat the command several times, each time waiting for

the student to move forward by 1 step. You should aim for the repetitiveness of these instructions to be clear. After

your student has completed this activity, have them come back to where they started. This time repeat the

demonstration but asking the student to "Move forward by 2" and have the student take 2 steps each time. Once

the student has done this multiple times ask the class to give them a round of applause and invite them back to

their seat.

Prompt: I was just giving instructions to my "sprite", but they seemed to get pretty repetitive. How could I have

simplified or streamlined my instructions?

Discuss: Give students a minute to write down

thoughts before inviting them to share with a

neighbor. Then have the class share their thoughts.

You may wish to write their ideas on the board.

 Remarks

One way to simplify these instructions is just tell our

sprite to keep moving by 1 or 2, or however many

steps we want. This would make instructions as

humans easier to understand, and as we're about to

see there's a similar way to make our code simpler as well.

Show: Sprite Velocity Video

 Code Studio levels

Video: Velocity

Student Overview

Display: On the board, write the following pieces of code.

sprite.velocityX = 4;

sprite.velocityY = -1;

sprite.rotationSpeed = 2;

Prompt: We just saw how these new blocks help us

simplify the counter pattern we used to move sprites.

On a sheet of paper write down the counter pattern

each of these lines of code is replacing.

Discuss: Have students write their ideas on a sheet of

paper before discussing their responses as a class.

Eventually write the correct answers on the board

next to each, as shown below.

sprite.x = sprite.x + 4;

sprite.y = sprite.y - 1;

 Teaching Tip

Inside or Outisde the Draw Loop?: For the first few

puzzles, check to make sure that students are setting

the velocities and rotation speeds outside the draw

loop, immediately after they create their sprites. The

code will work for the first few puzzles, even if they set

the velocities inside the draw loop, but it will cause

problems later.

sprite.rotation = sprite.rotation + 2;

 Remarks

These new "higher level" blocks are helping us to write code that we actually already knew how to write. They're

simplifying our code for us by hiding some of the unnecessary details. As we're about to see, however, these new

blocks will change the kind of programs and games we're able to write.

Activity (75 minutes)

Learning to Use the Velocity Blocks

Transition: Move students to Code Studio

Circulate: These levels introduce the velocityX, velocityY, and rotationSpeed properties that you just discussed with

students. Check in with students to see how they are doing and keep track of when everyone has made it to the

end of level 10.

 Code Studio levels

If students are finished early, encourage them to experiment with different aspects of the scroller game they

created. They can change the animations, create a background, etc.

Wrap Up (5 min)

Journal

Lesson Overview Student Overview

Sprite Velocity Student Overview

Velocity 4 5 6 7 8 9 10 (click tabs to see student view)

Side Scroller 11 12 13 (click tabs to see student view)

Free Play Student Overview

Prompt: You learned a few new blocks today. As first glance, these blocks did the same sorts of things we'd already

done with the counter pattern, but made it simpler for us to do them. As you went through the puzzles, though, you

started doing some interesting movements that we hadn't been able to do before.

Describe one of those movements, and how you made it.

Describe another movement you'd like to make but don't know how yet.

Describe another block that you'd like to have.

Would it take any arguments?

What would it do?

What code would it hide inside?

 Remarks

All of the movements that we did today are possible without the new blocks, but it would be very complicated to

code them. One of the benefits of blocks like velocity is that when we don't have to worry about the details of

simple movements and actions, we can use that extra brain power to solve more complicated problems. As you

build up your side scroller game, we'll keep looking at new blocks that make things simpler, so we can build more

and more complicated games.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ch. 2 15 16 17 18 19 20 21 22

Lesson 16: Collision Detection

Overview

Students learn about collision detection on the computer. Working

in pairs, they explore how a computer could use sprite location

and size properties and math to detect whether two sprites are

touching. They then use the isTouching() block to create

different effects when sprites collide, including playing sounds.

Last, they use their new skills to improve the sidescroller game

that they started in the last lesson.

Purpose

This lesson formally introduces the use of abstractions, simple

ways of representing underlying complexity.

In the last lesson, students were exposed to the idea of using one

block to represent complex code. Students further explore this

idea in the context of the intentionally complex mathematical

challenge of determining whether two sprites are touching. By

using a single block to represent this complexity, in this case the

isTouching block, it becomes much easier to write and reason

about code, and students can appreciate the value of using

abstractions. In later lessons, students will continue to build on

the isTouching() abstraction to create more complex sprite

interactions.

Agenda
Warm Up (10 min)

Activity

Collisions Unplugged

isTouching()

Wrap Up (5 min)

View on Code Studio

Objectives
Students will be able to:

Use the isTouching block to determine

when two sprites are touching

Describe how abstractions help to manage

the complexity of code

Preparation

Print copies of Collision Detection -

Activity Guide such that each pair of

students has a part A and a part B

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Collision Detection - Exemplar

For the Students

Collision Detection - Activity Guide

Vocabulary

Abstraction - a simplified representation of

something more complex. Abstractions

allow you to hide details to help you

manage complexity, focus on relevant

concepts, and reason about problems at a

higher level.

Debugging - Finding and fixing problems in

an algorithm or program.

If-Statement - The common programming

structure that implements "conditional

statements".

Introduced Code

sprite.isTouching(target)

sprite.debug

Make a Copy

https://curriculum.code.org/csd-1718/unit3/
https://studio.code.org/docs/gamelab/isTouching/
https://studio.code.org/docs/gamelab/isTouching/
https://studio.code.org/s/csd3-2017/stage/16/puzzle/1/
https://docs.google.com/document/d/16uOeOnjKEIQfWgHFjMyVkmurSVM1oDXjQPooSL7UlHs
https://studio.code.org/s/csd3-2017/stage/16/puzzle/1
https://docs.google.com/document/d/16uOeOnjKEIQfWgHFjMyVkmurSVM1oDXjQPooSL7UlHs
https://studio.code.org/docs/gamelab/isTouching/
https://studio.code.org/docs/gamelab/debug/

 Teaching Tip

Showing the Game: Avoid signing students into Code

Studio at this point to play the game themselves. They

have a fairly significant unplugged activity

immediately afterwards and it will likely lead to

difficulties in transitioning.

 Discussion Goal

Goal: This purpose of this discussion is just to get

some ideas on the board for students to use in the

next activity. There's no need to actually evaluate or

try them, because students will be working together to

do so immediately after the discussion.

Teaching Guide

Warm Up (10 min)

Review: Briefly remind students of the side scroller game they made in the last lesson, and ask them to share out

any ideas they had for improving their game in the future.

Display: On a projector or just a computer screen

demonstrate the game that appears in the first level

in Code Studio for this lesson. The teacher or a

student can control the frog to jump over a

mushroom. Make sure at least some jumps are

successful and some are not to see that the collision

detection is working.

Prompt: An interesting improvement in this game is

that the mushroom moves when the frog touches it.

Can you think of any way that the computer could use

the sprites’ properties to figure out whether they are

touching each other?

Discuss: Allow the students to brainstorm ideas for

how the computer could determine whether the two

sprites are touching. List their ideas on the board and tell them that they’ll have a chance to try out their theories

in a moment.

Activity

Collisions Unplugged

Group: Group students into pairs.

 Remarks

Now you’re going to have a chance to try out the strategies that you came up with as a group. Each activity guide

has four sheets of paper. One partner should take the papers with the “A” on the top, and the other should take

the papers with the “B” on the top. You’re each going to draw two secret sprites on the chart, and your partner

will try to figure out whether or not they are touching based on the same information that the computer will have

about each sprite’s properties, so don’t let your partner see what you are drawing.

Distribute: The Collision Detection - Activity Guide to each set of partners. Ensure that one partner has taken the

pages with "A" on the top and the other has taken the pages with "B" on the top.

Each student will have a line on which to draw two squares. The student chooses the location and the size of each

of the squares, and then records the information about the squares in a table. They then switch tables (not

drawings) and try to determine whether or not the two sprites are touching based on the width of each sprite and

the distance between them.

The math to determine whether the sprites are touching is as follows:

1. Subtract the x (or y) positions of the sprites to find the distance between their centers.

2. Divide the width (or height) of each square by 2 to get the distance from the center to the edge.

3. If the distance between the centers of the sprites is greater than the sum of the distances from their centers to

their edges, the sprites are not touching.

https://docs.google.com/document/d/16uOeOnjKEIQfWgHFjMyVkmurSVM1oDXjQPooSL7UlHs

View on Code Studio

 Discussion Goal

Goal: The goal of this discussion is for students to see

that the math in the code is the same math described

in the unplugged activity. The code combines the tests

for x and y in nested "if" statements.

4. If the distance between the centers of the sprites is equal to the sum of the distances from their centers to

their edges, the sprites are barely touching.

5. If the distance between the centers of the sprites is greater than the sum of the distances from their centers to

their edges, the sprites are overlapping.

Circulate: Support students as they complete the worksheet. If students are not sure how to determine whether the

sprites are touching, encourage them to use one of the ideas on the board. Remind them that they are not being

graded on whether they are right or wrong, but on their ability to use the problem solving process. If any students

are finished early, challenge them to find a method that will work for sprites anywhere on the grid, not just on the

same line.

Share: After students have all had a chance to test their solutions, ask them to share what they discovered.

 Remarks

People can use a lot of different strategies to solve a problem like this. Because computers can’t “see” the

drawings in the same way that people can, they need to use math to figure out whether two things are touching.

We looked at how this can work along a line, but we can combine these methods to work anywhere on the game

screen.

isTouching()

Transition: Have the class log onto Unit 3 - Code Studio Levels for Lesson 16.

Display: Show bubble 2, and allow students to look in and discuss in pairs how they might code the behavior that

they see in the program.

 Code Studio levels

Sample Game

Student Overview

Frog Jump
Look at the frog jumping game to the left. It looks like the game from the last lesson, but the frog moves the

mushroom if it hits it. What code do you think would help the computer to know whether two sprites are touching?

The purpose of this level is for students to see that they can test whether two sprites are touching with the blocks

that are already available to them. The code is complicated, but it only uses blocks students have already learned

to detect when two sprites are touching.

Discuss: Ask the students how the code below relates to what they did in the unplugged activity.

 Remarks

Even though this code works, it can be hard to read, and it would be easy to make a careless error when you’re

writing it. It would also take some time to write out every single time, so a programmer saved the code into one

block that we can use to figure out whether two sprites are touching, and we don’t need to write all of this code.

Because this is something a programmer wants to do over and over again, someone has created a block called

isTouching() that already has all of the math inside of it. Hiding the details of how something is done to make it

easier to program is called abstraction.

 Code Studio levels

Collision Detection

https://studio.code.org/s/csd3-2017/stage/16/puzzle/2
https://studio.code.org/docs/gamelab/isTouching/

View on Code Studio

View on Code Studio

View on Code Studio

View on Code Studio

Teacher Overview

Student Overview

The code in this level is overwhelming. The point is not that students understand every line,

but that they see that it's possible to check whether sprites are touching just by using their positions. They should

understand that the isTouching block used in the next level automatically runs the complicated code that they see

here, but that it's hidden inside the block to make programming easier.

Balloon
The code below uses the sprites' x and y positions to check whether they are touching. It will change the balloon

sprite's animation when the tack touches it. Use the arrow keys to move the tack until it touches the balloon.

Do This
You do not need to change any code on this level.

Read the if statements inside the draw loop and find the different sprite properties and how they are compared.

Discuss the code with your partner. Would you want to write this code every time you checked whether sprites

were touching?

Levels

 4

 5

 6

 7

 8

Student Instructions

isTouching()
Writing out the math each time you want to check whether two sprites are touching can take a while, so a

programmer created the isTouching block, which can check whether one sprite is touching another sprite (the

target). The computer is still doing the same math as in the previous program, but you don't have to worry about it

because another programmer already did that work.

Do This
Inside the draw loop, drag the isTouching block into the if block. (Show me where)

Hint: Don't forget to change the "sprite" to "balloon" and the "target" to "tack".

Student Instructions

Applesauce
When the apple hits the blender, the blender should turn on.

Do This
Use the isTouching block to make the blender shake back and forth when the apple sprite touches the blender

sprite. The shaking motion is already coded using the random block, so you just have to check when the two sprites

are touching.

Challenge: Can you make the apple disappear when it touches the blender?

https://studio.code.org/s/csd3-2017/stage/16/puzzle/3
https://studio.code.org/s/csd3-2017/stage/16/puzzle/3
https://studio.code.org/s/csd3-2017/stage/16/puzzle/4
https://studio.code.org/s/csd3-2017/stage/16/puzzle/5
https://studio.code.org/docs/gamelab/isTouching/
https://studio.code.org/docs/gamelab/isTouching/
https://studio.code.org/docs/gamelab/isTouching/
https://studio.code.org/docs/spritelab/codestudio_ifStatement/
https://studio.code.org/docs/gamelab/isTouching/

View on Code Studio

View on Code Studio

View on Code Studio

Student Instructions

Making Sounds
You can also use code to play a blender sound.

Do This
Use the playSound block from the "World" drawer to play the "https://studio.code.org/docs/sounds/blender.mp3"

sound when the apple touches the blender. You will need to paste the address of the sound into the block, so it

looks like this:

Student Instructions

Rainbow Horse
When the rainbow touches the horse, it should turn into a unicorn.

Do This
Use the if , isTouching , and setAnimation blocks to change the horse sprite's image when the rainbow touches it.

The unicorn image is already loaded in the animations tab for you.

Student Instructions

Debugging Collisions
The balloon is popping before the tack touches it. When sprites aren't doing what you expect, you can use the

debug block to get more information about why the sprites are behaving that way. Can you find out what's wrong in

the code below?

Do This
Run the code and use the arrow keys to move the tack to pop the balloon.

In the code below, change balloon.debug = false to balloon.debug = true .

Add a new debug block to the code and set the tack sprite's debug property to true .

Run the code again, then discuss with your partner why the balloon is popping early.

Challenge: Can you use the animations tab to resize the balloon picture so it pops at the correct time?

Circulate: Support students as they work through levels 3-8. Level 8 allows students to work on the side scroller

that they created in the last lesson. It is very open, so encourage students to be creative and try to code sprite

interactions that they haven’t seen before. Students who complete the level early can continue to add new

interactions or improve their games in other ways.

Wrap Up (5 min)

Prompt: What were some different things that your sprites did when they interacted? What is one type of

interaction you’d like, but you haven’t seen yet? Do you have any ideas for how you might write the code for that

type of interaction?

Share: Once students have finished journaling, allow them to share out the different type of interactions they’d like

to see. Let them know that you will be learning more ways for sprites to interact later in the unit.

https://studio.code.org/s/csd3-2017/stage/16/puzzle/6
https://studio.code.org/s/csd3-2017/stage/16/puzzle/7
https://studio.code.org/s/csd3-2017/stage/16/puzzle/8
https://studio.code.org/docs/gamelab/playSound/
https://studio.code.org/docs/spritelab/codestudio_ifStatement/
https://studio.code.org/docs/gamelab/isTouching/
https://studio.code.org/docs/gamelab/setAnimation/
https://studio.code.org/docs/gamelab/debug/
https://studio.code.org/docs/gamelab/debug/

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ch. 2 15 16 17 18 19 20 21 22

Lesson 17: Complex Sprite Movement

Overview

Students learn to combine the velocity properties of sprites with

the counter pattern to create more complex sprite movement. In

particular students will learn how to simulate gravity, make a

sprite jump, and allow a sprite to float left or right. In the final

levels of the Code Studio progression students combine these

movements to animate and control a single sprite and build a

simple game in which a character flies around and collects a coin.

Students are encouraged to make their own additions to the

game in the final level.

Purpose

This lesson does not introduce any new blocks and in fact only

uses patterns students have seen in Chapter 1. Instead it

demonstrates how combining these tools, in particular the

abstractions students learned in the previous two lessons, allows

them to build new behaviors for their sprites. This highlights the

broader point that abstractions not only simplify code, but also

can themselves be used as building blocks of even more complex

behavior.

The lesson features some of the most challenging programming

in the unit. Students will be combining multiple programming

constructs, including the velocity properties, the counter pattern,

user interaction, and collision detection. The patterns students

use in this lesson are generally useful for building games and

students can and will reuse them later in the unit. In particular

students will return to their flyer game from this lesson in the

following one, and many of the mechanics students learn in this

game reappear in lesson 17.

Agenda
Warm Up (10 mins)

Activity (60 mins)

Wrap Up (10 mins)

View on Code Studio

Objectives
Students will be able to:

Use sprite velocity with the counter pattern

to create different types of sprite

movement

Explain how individual programming

constructs can be combined to create more

complex behavior

Preparation

https://curriculum.code.org/csd-1718/unit3/
https://studio.code.org/s/csd3-2017/stage/17/puzzle/1/

View on Code Studio

View on Code Studio
View on Code Studio

 Teaching Tip

This level introduces the primary new programming

pattern of this lesson, combing the counter pattern

with sprites' velocity properties. Encourage students to

take seriously their predictions before actually running

the code.

Teaching Guide

Warm Up (10 mins)

Review: On the board write up the four major concepts that students will be combining in today's lesson,

isTouching() , keyDown() , sprite.velocityX / sprite.velocityY , and the "counter pattern". Ask students to discuss

with a neighbor and remind one another what each of these four constructs is used for and how they work. As a

class define each based on these discussions.

 Remarks

In the last several lessons we've learned a lot of powerful programming constructs that have let us make much

more interesting games. Today we're going to explore how combining these together will give us even more

control over the types of games we can make.

Activity (60 mins)

Transition: Move students to Code Studio. With the exception of the discussion after the first level students will be

working in Game Lab until the end of the lesson.

 Code Studio levels

Lesson Overview

Student Overview

Overview
The class learns to combine the velocity properties of sprites with the counter pattern to create more complex

sprite movement, such as simulating gravity, making a sprite jump, and allowing a sprite to float left or right. In the

final levels the class combine these movements to animate and control a single sprite and build a simple game in

which a character flies around and collects coins.

Discuss: After students have made their predictions about how the code in the first level has run quickly discuss

why they saw the car start to move more quickly. Note that whereas before they used the counter pattern to

increase a car's position, now it is being used to increase the car's velocity.

Levels 2 - 4: These levels give students practice using velocity inside of the counter pattern.

 Code Studio levels

Velocity and the Counter Pattern

Teacher Overview

Student Overview

Student Instructions

Velocity and
the Counter
Pattern
Using the counter pattern with a sprite's x and y property makes a sprite move smoothly across the screen. In this

program the counter pattern is being used with the sprite.velocityX property instead.

https://studio.code.org/s/csd3-2017/stage/17/puzzle/1
https://studio.code.org/s/csd3-2017/stage/17/puzzle/2
https://studio.code.org/s/csd3-2017/stage/17/puzzle/2
https://studio.code.org/docs/gamelab/isTouching/
https://studio.code.org/docs/gamelab/keyDown/
https://studio.code.org/docs/gamelab/velocityX/
https://studio.code.org/docs/gamelab/velocityY/
https://studio.code.org/docs/gamelab/velocityX/

View on Code Studio

View on Code Studio

View on Code Studio

View on Code Studio

Predict
What do you think will happen when the code is run? Why? Once you're ready you can run the code to find out.

Levels

 3

 4

Student Instructions

Velocity and the Counter Pattern
As you just saw, using a sprite.velocityX property with the counter pattern will change a sprite's velocity during

the program. This makes the sprite speed up. Do a little practice using this pattern yourself.

Do This
This program already makes a car move across the screen, but it's going very slowly.

Use the counter pattern with the sprite's velocityX property to make the car speed up. (Show me where)

Student Instructions

Falling Rock
The rock should speed up as it falls down the screen. Can you use the same counter pattern with velocityY inside

the draw loop to make the rock go faster and faster as it falls?

Do This
Use the counter pattern with the sprite's y velocity to make the rock speed up as it falls. (Show me where)

Challenge: Can you make the rock spin as it falls?

Levels 5 - 6: These levels introduce using velocity and the counter pattern to slow down a sprite, eventually moving

it in the opposite direction. This leads to introducing how this pattern could be used to simulate gravity.

 Code Studio levels

Levels

 5

 6

Student Instructions

Rising Bubble
This program makes a bubble rise up the water. Can you make it get faster as it rises?

Do This
Use the counter pattern and the sprite's y velocity to make the bubble move up more quickly.

Student Instructions

https://studio.code.org/s/csd3-2017/stage/17/puzzle/3
https://studio.code.org/s/csd3-2017/stage/17/puzzle/4
https://studio.code.org/s/csd3-2017/stage/17/puzzle/5
https://studio.code.org/s/csd3-2017/stage/17/puzzle/6
https://studio.code.org/docs/gamelab/velocityX/
https://studio.code.org/docs/gamelab/velocityY/

View on Code Studio

View on Code Studio

Slowing Things Down
Now that you've had some practice speeding things up, can you use the counter pattern to slow sprites down?

Do This
The car is going to run into the water! You'll need to use the counter pattern to slow it down.

Use the sprite.velocityX block with a counter pattern to slow the car down by 0.25 as it moves across the

screen.

Discuss with your Partner: What do you think will happen when the car finally stops?

Challenge: Add code that makes the car slow down only if his velocityX is greater than 0.

Levels 7 - 9: Students begin working on a flyer game. In these levels they use the programming constructs they've

learned to make their main character move. The character responds to simulated gravity, jumps, and floats left and

right.

 Code Studio levels

Levels

 7

 8

 9

Student Instructions

Simulating Gravity
In the last level you slowed down the car with the sprite.velocityX block and the counter pattern. It almost looked

like the car was getting pulled to the left.

If you use this same pattern with the sprite.velocityY block it will look like your sprite is always being pulled

down, which is exactly what gravity does!

Do This
The rock is thrown in the air but it never falls back down.

Use the sprite.velocityY block with the counter pattern to make the rock slow down and then fall in the other

direction.

Experiment with different values in your counter pattern. Do you want the rock to slow down quickly or

gradually? What looks most realistic to you?

Discuss with your partner: Why are you setting the rock's initial velocity outside the draw loop? Why are you

changing the sprite's velocity inside the draw loop?

Student Instructions

Jumping
Increasing a sprite's y velocity inside the counter pattern can simulate gravity. By adding user interactions you can

make your sprite appear to jump as well. For starters you'll make a simple jump, and then make it more realistic

looking in the next level.

Do This

https://studio.code.org/s/csd3-2017/stage/17/puzzle/7
https://studio.code.org/s/csd3-2017/stage/17/puzzle/8
https://studio.code.org/docs/gamelab/velocityX/
https://studio.code.org/docs/gamelab/velocityX/
https://studio.code.org/docs/gamelab/velocityY/
https://studio.code.org/docs/gamelab/velocityY/

View on Code Studio

View on Code Studio

View on Code Studio

A sprite has already been created for you that falls because its y velocity is increased inside the draw loop. You'll

need to make this sprite appear to jump.

Inside the if block that checks whether the up arrow has been pressed, set the sprite's y velocity to -5. (Show

me where)

Discuss with a neighbor: Why does this code run the way it does? How would using a number besides -5 affect

the way the code works? How could you jump higher or lower?

Student Instructions

Floating Right
You're now using the counter pattern with the sprite's Y velocity to simulate gravity and jumping. If you use the

sprite's X velocity in the counter pattern then you can make your sprite float from side to side as well.

Do This
In this level you'll make your sprite start floating to the right when the right arrow is pressed.

Add an if statement inside your draw loop below the one you created for the "up" arrow.

Use the keyDown block to make the if statement respond to when the "right" arrow is pressed.

Inside the if block use the counter pattern with the sprite.velocityX block to add 0.1 to the sprite's X velocity.

Run your code to see how it works. The sprite should start floating to the right when you press the right arrow and

jump when you press "up". You'll make the left arrow work in the next level.

Levels 10 - 12: Students add a coin to the game for their character to collect. In the last level they are encouraged

to update the game themselves. Use this opportunity in particular to encourage students to use other programming

patterns they've learned in this unit, e.g. creating a scoreboard.

 Code Studio levels

Levels

 10

 11

 12

Student Instructions

Floating Left
In the last level you got detailed instructions on how to make your sprite start floating to the right. This time you'll

need to make your sprite float to the left on your own. You should be pretty comfortable with using velocity and the

counter pattern together at this point. If you're having trouble, talk to a neighbor or review some of the past levels.

Do This
Add code to your draw loop that will make the sprite start moving to the left when the "left" arrow is down.

Make sure you're using velocity and the counter pattern together.

Once your code is working share what you wrote with a partner. Is your sprite easy to control? Does changing the

amount you add or subtract in the counter patterns you wrote affect the way the game feels? What kind of game

might be fun to make with a player that moves like this?

Student Instructions

Add a Coin

https://studio.code.org/s/csd3-2017/stage/17/puzzle/9
https://studio.code.org/s/csd3-2017/stage/17/puzzle/10
https://studio.code.org/s/csd3-2017/stage/17/puzzle/11
https://studio.code.org/docs/spritelab/codestudio_ifStatement/
https://studio.code.org/docs/spritelab/codestudio_ifStatement/
https://studio.code.org/docs/gamelab/keyDown/
https://studio.code.org/docs/spritelab/codestudio_ifStatement/
https://studio.code.org/docs/spritelab/codestudio_ifStatement/
https://studio.code.org/docs/gamelab/velocityX/

View on Code Studio

 Discussion Goal

Goal: This conversation should highlight that students

did not learn any new blocks in today's lesson, they

just learned new ways to combine blocks and patterns

they had learned previously. The broader point here is

that programming is not always about learning new

blocks, but being creative about combining the tools

you already know how to use in the language.

In the next few levels you'll add to your program to make a simple game. In this game the player will collect points

to increase the score. This is a good chance to see how different kinds of movement can affect the way a game

feels, and it will also just help you practice programming skills.

Do This
In this level you'll just be adding a new coin sprite to the game. You should be working at the top of your program,

outside the draw loop.

Use the createSprite() block to create a new sprite. Make sure to give it a descriptive name such as coin.

Use the sprite.x and sprite.y properties of the sprite to give it a random X and Y position between 0 and 400.

In the Animation Tab there is already a coin animation. Use the sprite.setAnimation() block to give your sprite

this animation.

Test your code before moving on. When you run the game, you should see a coin sprite appear somewhere

randomly on the screen.

Student Instructions

Reset Coin
When your character touches the coin you should reset it somewhere on the screen.

Do This
Place an if block inside of your draw loop.

Use the sprite.isTouching() block as the condition to detect when the character touches the coin.

Inside the if block write code that sets the coin's X and Y position to random numbers between 0 and 400.

Hint: You've already written this code elsewhere in your program.

Test your code before moving on. When your player touches the coin, it should move somewhere else on the

screen.

Wrap Up (10 mins)

Share: Have students share with their classmates what additions they made to their final flyer game. Have students

focus not just on how the game works, but what the code to create that kind of functionality looks like.

Prompt: On your paper make two lists. First make a list of new things you can program to do after today's lesson.

On the second list write down all the new blocks you learned today.

Discuss: Have students share their lists with

classmates. Afterwards share lists as a class. They

should hopefully have listed many new sprite

movements but students haven't actually learned any

new blocks in this lesson.

After you call out that all the new movements they

created today were made by combining blocks and

patterns they already learned, ask students what they

think this might tell them about how programmers

develop code.

Prompt: Today we built lots of new sprite movements like gravity and jumping, but none of this required us to learn

new blocks. Do you think learning to program always means learning new commands?

https://studio.code.org/s/csd3-2017/stage/17/puzzle/12
https://studio.code.org/docs/gamelab/createSprite/
https://studio.code.org/docs/gamelab/x/
https://studio.code.org/docs/gamelab/y/
https://studio.code.org/docs/gamelab/setAnimation/
https://studio.code.org/docs/spritelab/codestudio_ifStatement/
https://studio.code.org/docs/gamelab/isTouching/
https://studio.code.org/docs/spritelab/codestudio_ifStatement/

 Discussion Goal

Goal: Reinforce the fact that learning to program is

actually not always just about memorizing blocks.

Being creative with programming often means coming

up with clever ways to combine the commands and

patterns you already know how to use.

Discuss: Lead a quick follow-up to your initial

discussion about this point.

 Remarks

We're going to keep learning a few more tools in

Game Lab, but as we do remember what we saw

today. To create new kinds of programs you don't

always need to learn new blocks. Most of the time

the creativity of programming comes from learning

to combine things you already know in new and creative ways.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ch. 2 15 16 17 18 19 20 21 22

Lesson 18: Collisions

Overview

Students program their sprites to interact in new ways. After a

brief review of how they used the isTouching block, students

brainstorm other ways that two sprites could interact. They then

use isTouching to make one sprite push another across the

screen before practicing with the four collision blocks (collide ,

displace , bounce , and bounceOff).

Purpose

This lesson introduces collisions, another useful abstraction that

will allow students to manipulate their sprites in entirely new

ways. While students could theoretically have written their own

displace, collide, or bounce commands, the ability to ignore the

details of this code allows them to focus their attention on the

high level structure of the games they want to build.

This lesson is also intended to give students more practice using

the new commands they have learned in the second chapter. It is

actually the last time they will learn a new sprite behavior, and

following this lesson students will transition to focusing more on

how they organize their increasingly complex code.

Agenda
Warm Up

Activity

Code Studio Levels

Wrap Up (10 mins)

Share Out and Journal 3-2-1

View on Code Studio

Objectives
Students will be able to:

Use the `displace`, `collide`, `bounce`,

and `bounceOff` blocks to produce sprite

interactions

Describe how abstractions can be built

upon to develop even further abstractions

Vocabulary

Abstraction - a simplified representation of

something more complex. Abstractions

allow you to hide details to help you

manage complexity, focus on relevant

concepts, and reason about problems at a

higher level.

Introduced Code

sprite.bounce(target)

sprite.bounceOff(target)

sprite.collide(target)

sprite.displace(target)

setCollider(type, xOffset, yOffset,

width/radius, height, rotationOffset)

sprite.bounciness

https://curriculum.code.org/csd-1718/unit3/
https://studio.code.org/docs/gamelab/isTouching/
https://studio.code.org/docs/gamelab/isTouching/
https://studio.code.org/docs/gamelab/collide/
https://studio.code.org/docs/gamelab/displace/
https://studio.code.org/docs/gamelab/bounce/
https://studio.code.org/docs/gamelab/bounceOff/
https://studio.code.org/s/csd3-2017/stage/18/puzzle/1/
https://studio.code.org/docs/gamelab/bounce/
https://studio.code.org/docs/gamelab/bounceOff/
https://studio.code.org/docs/gamelab/collide/
https://studio.code.org/docs/gamelab/displace/
https://studio.code.org/docs/gamelab/setCollider/
https://studio.code.org/docs/gamelab/bounciness/

View on Code Studio

 Discussion Goal

Goal: The goal of this discussion is for students to

brainstorm ways to solve the problem of having one

sprite push another across the screen. There's no need

for students to come to a consensus, because they will

each have a chance to try out a solution in the next

level in Code Studio. Students should understand that

it is possible to use blocks to produce the desired

movement just with the blocks that they have already

learned.

Teaching Guide

Warm Up

Display: If you have the ability, project the animation

on the first level in Code Studio for this lesson.

Otherwise ask pairs of students to look at it together.

It shows two sprites, one moving across the screen

towards the other and eventually pushing the one

when they collide.

 Code Studio levels

Lesson Overview

Student Overview

Overview
The class programs their sprites to interact in new ways. After a brief review of how they used the isTouching block,

the class brainstorms other ways that two sprites could interact. They then use isTouching to make one sprite push

another across the screen before practicing with the four collision blocks (collide, displace, bounce, and bounceOff).

Vocabulary

Abstraction - Pulling out specific differences to make one solution work for multiple problems.

Introduced Code

sprite.bounceOff()

sprite.collide()

sprite.displace()

sprite.setCollider()

sprite.bounce()

sprite.bounciness

Prompt: Using the blocks we already know how to use, how could we create the sprite interaction we can see in this

program?

 Remarks

We have a lot of great ideas for how we might make one sprite push another across the screen. Now that you've

prepared, you can try out your ideas in Code Studio. One big part of the problem is figuring out when the two

sprites are touching, but because we already figured out how to do that and can now use the isTouching block,

we don’t need to think about it anymore. We can focus on the new part of the problem.

Activity

https://studio.code.org/s/csd3-2017/stage/18/puzzle/1
https://studio.code.org/docs/gamelab/bounceOff/
https://studio.code.org/docs/gamelab/collide/
https://studio.code.org/docs/gamelab/displace/
https://studio.code.org/docs/gamelab/setCollider/
https://studio.code.org/docs/gamelab/bounce/
https://studio.code.org/docs/gamelab/bounciness/
https://studio.code.org/docs/gamelab/isTouching/

View on Code Studio

View on Code Studio

View on Code Studio

Code Studio Levels

Levels 2-4: In these levels students are shown a sprite interaction. They then implement their ideas for creating the

sprite interaction they observed. The first time they can implement the ideas from the group. The second time

challenge them to implement that behavior independently.

 Code Studio levels

Sprite Interactions

Student Overview

Sprite Interactions
So far you've been able to create simple sprite interactions by using the sprite.isTouching() block. For example,

you've reset a coin to a different location on the screen when a character touches it. Now it's time to start making

sprites have more complex interactions.

Do This
Run the program and observe the interaction between the two sprites.

Discuss with a neighbor: Using only the commands you already know how could you create this kind of

interaction? There are many ways to do it, but here are some blocks to consider:

sprite.isTouching()

sprite.velocityX

sprite.velocityY

sprite.x

sprite.y

Be ready to share your ideas with your classmates.

Levels

 3

 4

Student Instructions

Program a Sprite Interaction
You should have discussed with your classmates how you could create the sprite interaction you saw in the last

level. Now it's your turn to program it yourself. How can you make the giraffe move the monkey off the screen?

Do This
The giraffe is already moving across the screen toward the monkey but the sprite interaction itself hasn't been

programmed.

Use the plan you developed with your classmates on the last level to program the sprite interaction yourself.

Student Instructions

Write Your Own Sprite Interaction
In the last level you should have written code for a sprite interaction that you developed with your classmates. This

time try to write the program on your own, but you can use the patterns you saw in the last level.

https://studio.code.org/s/csd3-2017/stage/18/puzzle/2
https://studio.code.org/s/csd3-2017/stage/18/puzzle/3
https://studio.code.org/s/csd3-2017/stage/18/puzzle/4
https://studio.code.org/docs/gamelab/isTouching/
https://studio.code.org/docs/gamelab/isTouching/
https://studio.code.org/docs/gamelab/velocityX/
https://studio.code.org/docs/gamelab/velocityY/
https://studio.code.org/docs/gamelab/x/
https://studio.code.org/docs/gamelab/y/

View on Code Studio

View on Code Studio

 Discussion Goal

This is a good time to call out how far the students

have progressed in their skills since the beginning of

the unit. This problem would have seemed almost

impossible at the beginning of the year. Some things

that made the problem easier to solve were:

Preparation: The students brainstormed and thought

about solutions before trying out their code.

Cooperation: Students worked as a group to come

up with a solution

Abstraction: Students were able to use the

isTouching and velocityY blocks to hide part of

the solution's complexity.

Do This
The elephant should push the hippo off the screen. Notice that the elephant moves at a random Y velocity each

time the program runs.

Using the patterns from the last level, write code that makes the elephant push the hippo off the screen.

Prompt: This was a challenging problem, but we were

able to solve it. What helped us to solve this problem?

 Remarks

All of these things are very important, and they

come up in Computer Science a lot. One thing that

was particularly helpful was the isTouching block,

which hid the complicated code that tells us

whether the two sprites are touching. There's also a

displace block that hides the code we just wrote,

and some other blocks that hide the code for some

other types of sprite interactions. You'll have a

chance to try out these blocks in the next few

levels, and use them to improve your flying game.

Levels 5-10: These levels introduce how to use the 4

new collision blocks students will learn in this lesson.

 Code Studio levels

Levels

 5

 6

 7

 8

 9

 10

Student Instructions

Displace
The interaction you've been programming is so common that there's a block designed to do the interaction for you.

sprite.displace() that will make one sprite push the other when they touch. The code underlying this block might

look a lot like what you just wrote, but now you no longer need to worry about writing those details yourself.

Do This
Someone tried to use the sprite.displace() block to make the elephant push the hippo, but there is a bug. Can

you change the code so that the elephant pushes the hippo off the screen?

Find the line of code where the sprite.displace() block is used and fix the error.

Student Instructions

More Collision Blocks
Three new types of sprite interactions have been added to the toolbox, sprite.collide() , sprite.bounce() , and

sprite.bounceOff() . How do you think they'll affect the sprites?

https://studio.code.org/s/csd3-2017/stage/18/puzzle/5
https://studio.code.org/s/csd3-2017/stage/18/puzzle/6
https://studio.code.org/docs/gamelab/isTouching/
https://studio.code.org/docs/gamelab/velocityY/
https://studio.code.org/docs/gamelab/isTouching/
https://studio.code.org/docs/gamelab/displace/
https://studio.code.org/docs/gamelab/displace/
https://studio.code.org/docs/gamelab/displace/
https://studio.code.org/docs/gamelab/displace/
https://studio.code.org/docs/gamelab/collide/
https://studio.code.org/docs/gamelab/bounce/
https://studio.code.org/docs/gamelab/bounceOff/

View on Code Studio

View on Code Studio

Do This
Switch out the displace block for the sprite.collide() , sprite.bounce() , and sprite.bounceOff() blocks. (

Show me where)

Hint: If you're having trouble doing this with blocks then switch over to text mode.

Discuss with a neighbor: What is the difference between the four different sprite interactions? What do you think

the purpose of each block is?

Student Instructions

Collision Types
There are four types of collisions that we use in Game Lab. These blocks will cause a certain type of interaction

between the sprite and its target.

displace

The displace block causes the sprite to push the target as long as they are touching each other. The sprite keeps

moving normally.

collide

The collide block makes the sprite stop when it runs into the target. If the target is moving, it will push the sprite

with it. The target keeps moving normally.

bounce

The bounce block makes the sprite and the target bounce when they touch each other. Both the sprite and the

target change how they are moving.

bounceOff

The bounceOff block makes the sprite bounce off the target. The target keeps moving normally.

Do This
Choose the best block to model the basketball bouncing off the floor. (Show me where)

Student Instructions

Debugging Sprite Interactions
Sprite interactions just run some code when they're called. The interactions are not "remembered" by the game. If

you want one sprite to bounce or collide with another then it needs to be a part of the draw loop. If you forget then

this can lead to unexpected behavior.

Do This

https://studio.code.org/s/csd3-2017/stage/18/puzzle/7
https://studio.code.org/s/csd3-2017/stage/18/puzzle/8
https://studio.code.org/docs/gamelab/collide/
https://studio.code.org/docs/gamelab/bounce/
https://studio.code.org/docs/gamelab/bounceOff/
https://studio.code.org/docs/gamelab/displace/
https://studio.code.org/docs/gamelab/collide/
https://studio.code.org/docs/gamelab/bounce/
https://studio.code.org/docs/gamelab/bounceOff/

View on Code Studio

View on Code Studio

View on Code Studio

The turtle can be moved with the arrow keys. It's not supposed to be able to walk through the tree, but something

is wrong in the code. Can you find and correct the bug in the code?

Run the code and try to make the turtle collide with the tree.

Look through the code and discuss with your partner what the problem is.

Correct the code, then run it again to make sure it works.

Student Instructions

Debug
Sometimes sprites will behave in ways that are unexpected. There is a special sprite.debug property you can use

to better understand why the sprites interact the way that they do.

Do This
These two coins are round, so you would expect them to bounce in a certain way. Something weird is happening

though!

Run the code and watch the way that the coins interact.

Use the sprite.debug block to make debug 'true' for both the sprites and run the code again.

Change the gold coin's starting x position to 51 and run the code again.

Discuss with a partner: Why do you think the coins are bouncing strangely?

Student Instructions

setCollider
Sprites interact based on the size and shape of their collider, not the images that are assigned to them. You can

only see the collider when debug mode is turned on. You can change the shape of the collider using the

sprite.setCollider() block, which lets you pick between a "rectangle" or a "circle". By default all colliders are

"rectangle".

Do This
Find the sprite.setCollider() block for the gold coin, and change it from "rectangle" to "circle".

Add a new sprite.setCollider() block for the silver coin, and choose "circle" for the shape of the collider.

Run the code again to see how the sprites bounce.

Levels 11-15: These levels guide students through adding collisions to the flyer game they started in the previous

lesson, eventually inviting students to add their own modifications to the game.

 Code Studio levels

Levels

 11

 12

 13

 14

 15

Student Instructions

Bounciness

https://studio.code.org/s/csd3-2017/stage/18/puzzle/9
https://studio.code.org/s/csd3-2017/stage/18/puzzle/10
https://studio.code.org/s/csd3-2017/stage/18/puzzle/11
https://studio.code.org/docs/gamelab/debug/
https://studio.code.org/docs/gamelab/debug/
https://studio.code.org/docs/gamelab/setCollider/
https://studio.code.org/docs/gamelab/setCollider/
https://studio.code.org/docs/gamelab/setCollider/

View on Code Studio

View on Code Studio

View on Code Studio

So far, bounceOff has made sprites bounce away from other objects as fast as they bounced into them. In the real

world, almost everything slows down just a little bit when it bounces off something else. You can use the

bounciness block to tell your sprite how much to slow down or speed up when it bounces off something else.

Do This
Read the code below and press "Run" to see the behavior of the basketball and pool ball.

Use a bounciness block to set the bounciness of your soccer ball.

Run the code again to see how the sprites bounce off the floor.

Student Instructions

Flyer Game - Add Obstacle
This is the flyer game you built in the last lesson. For the next several levels, you'll be adding an obstacle sprite to

the game, using some of the sprite interactions you just learned. At the end you'll have a chance to keep adding on

ideas of your own.

Do This
Add an obstacle sprite to the game. You can use whatever image you like from the

animation tab but the example shown here uses a sun. Right now you just need to add the

sprite to your game and give it an animation.

Add a new sprite to your game called "obstacle".

In the animation tab create a new animation for your obstacle. In the example a sun

image was chosen.

Use the sprite.setAnimation() block to give your sprite the image you chose.

Run the code and make sure the sprite appears where you want it on the screen. You may need to set its X, Y,

and scale properties to get it to look the way you want.

Student Instructions

Flyer Game - Interacting with the Obstacle
You don't want your player to be able to move through the obstacle, so you'll need to use one of the sprite

interactions.

Do This
Add code to your game that prevents your player from moving through the obstacle.

If you use one of the bounce interactions, decide whether you want to reset the bounciness of your character.

Discuss with a neighbor: Which sprite interaction did you decide to use? Is there more than one sprite interaction

that works the way you'd expect?

Student Instructions

Flyer Game - Coin Behind the Obstacle
Right now your coin is moving to random locations. That means sometimes it even will appear behind your

obstacle, so your character can't get to it. Using sprite interactions you can fix this problem.

Do This

https://studio.code.org/s/csd3-2017/stage/18/puzzle/12
https://studio.code.org/s/csd3-2017/stage/18/puzzle/13
https://studio.code.org/s/csd3-2017/stage/18/puzzle/14
https://studio.code.org/docs/gamelab/bounceOff/
https://studio.code.org/docs/gamelab/bounciness/
https://studio.code.org/docs/gamelab/bounciness/
https://studio.code.org/docs/gamelab/setAnimation/

View on Code Studio

Add code to your game that prevents the coin from moving behind the obstacle. Don't be afraid to try out ideas

just to see how they work.

Discuss with a neighbor: Which sprite interaction did you decide to use? Is there more than one sprite interaction

that works the way you'd expect?

Student Instructions

Flyer Game - Change Colliders
Right now your colliders are all rectangular. Switch them over to circles to get more interesting and realistic

bounces and collisions.

Do This
Use the sprite.setCollider() block to change the colliders of your sprites to circles.

Set your sprites' debug properties to true to make sure your game is working the way you want.

Play your game to make sure it's working the way you want.

Wrap Up (10 mins)

Share Out and Journal 3-2-1

Share: Allow students time to play each other's flying games. Ask them to focus not just on the new behavior that

they added but also the code they used to create it.

Journal: Have students write and reflect about the following prompts.

What are three things you saw in someone else's game that you really liked?

What are two improvements you'd make to your game if you had more time?

What's one block you'd like to have in Game Lab, and how would it work?

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://studio.code.org/s/csd3-2017/stage/18/puzzle/15
https://studio.code.org/docs/gamelab/setCollider/
https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ch. 2 15 16 17 18 19 20 21 22

Lesson 19: Functions

Overview

Students learn how to create functions to organize their code,

make it more readable, and remove repeated blocks of code. An

unplugged warmup explores how directions at different levels of

detail can be useful depending on context. Students learn that

higher level or more abstract steps make it easier to understand

and reason about steps. Afterwards students learn to create

functions in Game Lab. They will use functions to remove long

blocks of code from their draw loop and to replace repeated

pieces of code with a single function. At the end of the lesson

students use these skills to organize and add functionality to the

final version of their side scroller game.

Purpose

In the first four lessons of this chapter students have learned to

use a number of abstractions in their programs, including the

velocity properties, isTouching, and collisions. These abstractions

have allowed them to build much more complex programs while

ignoring the details of how that behavior is created. In this lesson

students learn to build abstractions of their own by creating

functions.

Students will primarily use functions to break code into logical

chunks that are easier to reason about. This foreshadows the

chapter's transition from building technical skill to the

organizational processes used to develop software.

Agenda
Warm Up (10 mins)

High Level vs. Low Level Instructions

Activity (60 mins)

Wrap Up (10 mins)

View on Code Studio

Objectives
Students will be able to:

Create and use functions for blocks of code

that perform a single high-level task within

a program

Create and use functions to remove

repeated blocks of code from their

programs

Create and use functions to improve the

readability of their programs

Explain how abstractions allow

programmers to reason about a program at

a higher level

Vocabulary

Function - A named bit of programming

instructions.

Introduced Code

Define a function

Call a function

https://curriculum.code.org/csd-1718/unit3/
https://studio.code.org/s/csd3-2017/stage/19/puzzle/1/
https://studio.code.org/docs/gamelab/functionParams_none/
https://studio.code.org/docs/gamelab/callMyFunction/

 Discussion Goal

Goal: This conversations demonstrates to students

that they often use a high level name or description

for much more complex behavior. It is motivating the

value of grouping or combining lots of smaller steps

under a larger name and provides some of the

justifications for creating functions within programs.

Namely, high level steps make it easier to understand

and reason about a process.

 Content Corner

Breaking Down Processes: The order in which they are

breaking down a larger task here also mirrors how

they'll be asked to write code with functions. Often

programmers first write the name of the function they

intend to write based on what it should do before

actually going in and writing the details.

Teaching Guide

Warm Up (10 mins)

High Level vs. Low Level Instructions

Prompt: Imagine you needed to write a 5-step set of instructions for going through your morning. What would they

be? Write down your steps and be ready to share.

Discuss: Student should write 5-step instructions for

their morning and share with a neighbor. Ask a couple

of students to share with the class.

Prompt: This set of instructions is pretty easy to

follow and understand. They're at the level you might

think about when describing your day to a friend. Now

let's go a level deeper. Pick one of your 5 steps and

split it into 5 smaller steps you need to complete that

larger task. Be ready to share your ideas again.

Discuss: Students should share their smaller steps.

Again ask some volunteers to subsequently share

their original step and how they split it up.

Discuss: This is getting interesting. It seems like the

first time we gave our steps we were "hiding" some of

the details necessary to complete the task. Let's try

this once more. Take one of your 5 smaller steps and

split it up again into 5 even smaller steps.

Discuss: Ask students to share their steps one more time. Again ask some volunteers to share how they broke up

one of their steps into even smaller steps.

Prompt: Imagine we had split every one of your first 5 steps into 5, and then split all of those steps again. This

would mean we would have a high level set of instructions, and at the bottom a really low-level or detailed set of

instructions. Be ready to respond to the following questions.

When would the high level set of steps you just wrote be most appropriate?

When would the lowest level set of steps be most appropriate?

Which one is easiest to reason about or understand?

Discuss: Ask students to share their thoughts and opinions. After a couple of minutes move the conversational to

the transitional comment below.

 Remarks

Sometimes details are important, but often high level steps are much easier to reason about and make it clear

what's happening. In programs the same thing is true. We've learned that blocks like velocityX or isTouching

actually just contain code that we could've written ourselves. Using these commands, or abstractions, is really

helpful since we can think about code at a high level. Today we're going to learn how to group lots of commands

to create a single new block our own. In programming when we create a new block like this we call it a function.

Activity (60 mins)

Transition: Move students into Code Studio where they will learn to create an call functions.

View on Code Studio

View on Code Studio

 Teaching Tip

Introducing Functions

In these first several lessons students are just being

shown the syntax of functions and are not asked to

write or create their own. It can be useful to explain

creating a function as basically “creating a new block”

just like another programmer created the “isTouching”

or “velocity” blocks that they’ve seen actually contain

other more complex code.

 Code Studio levels

Lesson Overview

Student Overview

Overview
This lesson covers functions as a way to organize their code, make it more readable, and remove repeated blocks of

code. The class learns that higher level or more abstract steps make it easier to understand and reason about

steps, then begins to create functions in Game Lab. At the end of the lesson the class uses these skills to organize

and add functionality to the final version of their side scroller game.

Vocabulary

Function - A piece of code that you can easily call over and over again.

Introduced Code

Define a function

Call a function

Levels

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

Student Instructions

Calling Functions
Functions let you build your own blocks and decide

what code goes inside of them. This is the command

that lets you create a new function.

You use or "call" your function like any other block by

using the name you gave it.

The blocks to create and call functions can be found in the "Functions" tab of the palette.

Do This

https://studio.code.org/s/csd3-2017/stage/19/puzzle/1
https://studio.code.org/s/csd3-2017/stage/19/puzzle/2
https://studio.code.org/docs/gamelab/functionParams_none/
https://studio.code.org/docs/gamelab/callMyFunction/

View on Code Studio

View on Code Studio

View on Code Studio

View on Code Studio

This program has already created 2 functions. Only one of them is being called.

Call the second function to reveal the full image. Use the function that is being called as a guide.

Tip: Just as with all other blocks, spelling and capitalization are important here.

Student Instructions

Reordering Code
Placing code inside functions makes it easy to read and make changes to. Good names for functions indicate what

your program is doing to a reader. You can call your functions in a different order to quickly make significant

changes to how your program runs.

Do This
This program has already created 4 functions that draw parts of a scene. Unfortunately it's not coming out right.

Read the 4 functions to know what they do

Call the functions in an order that draws the scene in the way that looks best to you

Student Instructions

Does It Matter Where You Create Functions?
So far all your functions have been created at the bottom of your code. What do you think will happen if you call a

function before it's defined?

Notice that the red square is drawn before its function is created while the green square is drawn after its function

is created. Which of these do you think will be drawn?

The red square will be drawn but the green one will not. You cannot call functions after they are created.

The green square will be drawn but the red one will not You cannot call functions before they are created.

Both squares will be drawn. You can create functions anywhere you like in your code.

Neither square will be drawn. There is an error in the code.

Student Instructions

Calling Functions in the Draw Loop
You can call a function inside the draw loop, just as you would anywhere else in your code.

Do This
A function that will draw a background has been created for you. A sprite has been created to move across the

background.

Call the function inside the draw loop so that the sprite appears on top of the background.

Note: Don't create functions inside the draw loop. Make them at the bottom of your code.

Student Instructions

https://studio.code.org/s/csd3-2017/stage/19/puzzle/3
https://studio.code.org/s/csd3-2017/stage/19/puzzle/4
https://studio.code.org/s/csd3-2017/stage/19/puzzle/5
https://studio.code.org/s/csd3-2017/stage/19/puzzle/6

 Teaching Tip

Why Use Functions

This and the next two levels introduce three uses of

functions, namely removing repetition in programs,

allowing code to quickly be changed at multiple

points, and providing organization in code. Students

will need to write more of their own functions in these

levels.

View on Code Studio

View on Code Studio

View on Code Studio

Calling Functions
Multiple Times
You'll often want to use the same code at many

places in your program. Once you've created a

function you can call it as many times as you like.

Do This
This code creates a sprite that moves across the screen once. How can you make it go back across the screen?

Note: The function is already called once at the beginning of your program

Read the condition of the if-statement inside the draw loop. Why do you think it's there?

Use this if-statement and the function written for you to make the sprite move across the screen multiple times.

Student Instructions

Making Changes to Functions
A nice benefit of using functions to remove repeated code is that you can now easily make changes to multiple

places in your code. Just change how you create the functions, and your program will now use the new code

everywhere your function is called.

Do This
Make changes to the setFlyer function so that the flyer starts at a random Y location between 0 and 400, and

moves at a random velocity every time he is reset.

Student Instructions

Creating Functions to Organize Code
In Game Lab all the action is happening in the draw loop, but too much complex code makes it really confusing to

read. To keep your draw loop easy to read, use functions for larger chunks of code. You can call them inside the

draw loop and define them below. This is a really good example of using abstraction to think about problems at a

high level and worry about details later.

Do This
This program should draw a daytime scene or a nighttime scene, depending on the location of

the mouse. The draw loop describes what needs to happen but one of the functions hasn't been

written yet.

Write the drawNight function which has been created but is empty.

Hint: Look at the picture to the right for how your night image should look. Can you use the drawDay function to

help you at all?

Student Instructions

Write Your Own Function
Time to practice writing functions of your own. This is a very simple game in which coins fall from the sky and the

bunny tries to catch them. All you need to do is write the function that sets up the coin.

https://studio.code.org/s/csd3-2017/stage/19/puzzle/7
https://studio.code.org/s/csd3-2017/stage/19/puzzle/8
https://studio.code.org/s/csd3-2017/stage/19/puzzle/9

View on Code Studio

View on Code Studio

 Teaching Tip

Functions in Context

In this and the next two lessons, students will use

functions to organize code within a simple game.

While it is not identical to the side scroller, many of

the skills and uses of functions in these levels can and

should be used when they complete their side scroller.

 Discussion Goal

Goal: Use this first prompt to review what students

learned today. When they create a function they are

creating their own block that they can call or use

whenever they like. They saw at least two primary

motivations for creating functions today including.

Simplifying code by breaking it into logically named

chunks

Avoiding repeated code by making one block you

can use multiple times.

Do This
Read and run the code that already exists to make

sure you know how it works.

Write the code for the setCoin function to make

the coin fall from the sky.

You can go look at some of the previous levels if

you need help.

Student Instructions

Catch the Coin, Increase the Score
Let's make that score change now, too, to complete the game. You'll need to be able to tell when the bunny is

touching the coin and then reset it.

Do This
Use an if-statement and the isTouching block to increase the score when the bunny catches the coin.

Make sure you're calling your function to reset the coin once it's been caught.

Play the game and randomize the velocity of the coin to a range that you think is fun.

Student Instructions

Change the Background with the Score
Once you've caught 10 coins it's time to celebrate. You should change the background to be something fun.

Do This
Use an if-statement and two separate functions to draw your backgrounds.

Then go write your functions outside your draw loop. You get to decide what a "simple" or

"crazy" background are. Have fun with it!

Wrap Up (10 mins)

Prompt: Why would we say that functions allow us to

"create our own blocks?" Why is this something we'd

want to do?

Discuss: Have students discuss at their table before

talking as a class.

Prompt: Write down your own definition of an

abstraction? Why would a function count as an

abstraction?

Discuss: Have students discuss at their table before

talking as a class.

 Remarks

https://studio.code.org/s/csd3-2017/stage/19/puzzle/10
https://studio.code.org/s/csd3-2017/stage/19/puzzle/11

 Discussion Goal

Goal: Students should review the definition of

abstraction as "a simple way of representing

something complex". Note that a function is an

abstraction because it allows you to create one simple

name for a more complex block of code.

Functions are a useful tool for helping us write and

organize more complex pieces of code. As we start

looking to end of the unit and your final project,

being able to keep your code organized will be an

important skills.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ch. 2 15 16 17 18 19 20 21 22

Lesson 20: The Game Design Process

Overview

This lesson introduces students to the process they will use to

design games for the remainder of the unit. This process is

centered around a project guide which asks students to define

their sprites, variables, and functions before they begin

programming their game. In this lesson students begin by playing

a game on Game Lab where the code is hidden. They discuss

what they think the sprites, variables, and functions would need

to be to make the game. They are then given a completed project

guide which shows one way to implement the game. Students are

then walked through this process through a series of levels. As

part of this lesson students also briefly learn to use multi-frame

animations in Game Lab. At the end of the lesson students have

an opportunity to make improvements to the game to make it

their own.

Purpose

This lesson introduces multi-frame animations, and is the first in a

sequence centered around the process of building software.

While previous lessons focused on using abstractions to manage

the complexity of the code, this lesson focuses on managing the

complexity of the software development process. The lesson

heavily scaffolds the software development process by providing

students a completed project guide, providing starter code, and

walking students through its implementation. In the subsequent

lessons students will need to complete a greater portion of this

guide independently, and for the final project they will follow this

process largely independently.

Agenda
Warm Up (15 mins)

Play Cake Defender

Stop: Review Project Guide

Activity (60 mins)

Multiframe Animations

Implement Project Guide

Wrap Up (20 mins)

Make It Your Own

View on Code Studio

Objectives
Students will be able to:

Identify core programming constructs

necessary to build different components of

a game

Create and use multiframe animations in a

program

Implement different features of a program

by following a structured project guide

Preparation

Print copies of the Defender Game -

Project Guide (Filled Out) if you will be

giving students physical copies (see notes

in Lesson Plan)

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Students

Defender Game - Project Guide (Filled Out)

Make a Copy

https://curriculum.code.org/csd-1718/unit3/
https://studio.code.org/s/csd3-2017/stage/20/puzzle/1/
https://docs.google.com/document/d/10tgS4d9feduPveRZSMzWV0TdyL6AL5VHHGFy_-m2XNQ/edit?usp=sharing
https://docs.google.com/document/d/10tgS4d9feduPveRZSMzWV0TdyL6AL5VHHGFy_-m2XNQ/edit?usp=sharing

View on Code Studio

 Teaching Tip

Keeping Focus: Students can easily get distracted by

the fun of playing the game. Let them play for a while

but eventually encourage them to follow the on-screen

instructions and make a list of the variables, sprites,

and functions that would be necessary to play the

game.

 Discussion Goal

Running the Conversation: You can write "Variables",

"Sprites", and "Functions" on the board and record

their ideas below each. Ask students to justify their

decisions but don't feel the need to settle on one right

answer.

Teaching Guide

Warm Up (15 mins)

Play Cake Defender

 Transition: This lesson begins immediately in Code Studio. On the first level they will be find a game but will not

be able to see the code. They should play the game and follow the instructions which ask them to list the variables,

sprites, and functions they think are necessary to create this game.

 Code Studio levels

Sample Game

Student Overview

Defend Your Cake!
This is an example of a defender game that you'll build by the end of this lesson. To defend your cake, move the

alien with arrow keys to block the lady bugs and push them into the water.

Do This
Turn to a classmate and make a list of the following information.

How many sprites are there in this game. Which are they?

What variables are needed to make this game? What do they store?

If you were to split the code of this game into functions what do you think they would be? What are the major

pieces of behavior you'd need to create in your code?

Stop: Review Project Guide

Discuss: Students should have individually created a

list of variables, sprites, and functions they would

create to make the defender game they played. Ask

students to share their lists with a neighbor before

discussing as a class.

Distribute: Give each student or pair of students a

copy of the Defender Game - Project Guide (Filled

Out)

Prompt: Compare the components of the game you thought would be included to the ones on this project guide. Do

you notice any differences?

https://studio.code.org/s/csd3-2017/stage/20/puzzle/2
https://docs.google.com/document/d/10tgS4d9feduPveRZSMzWV0TdyL6AL5VHHGFy_-m2XNQ/edit?usp=sharing

 Teaching Tip

Project Guide: The project guide is intentially filled out

for students so that they can experience using it as a

reference when programming. This should give them

more context when filling out their own project guide

in the next two lessons.

You can give each student their own copy for

reference, but you might also choose to print one copy

per pair, share digital copies, or just display the guide

on the projector. So long as it is available for

reference, any approach will work fine.

View on Code Studio

View on Code Studio

View on Code Studio

Discuss: As a class compare the list you had on the

board to the list of variables, sprites, and functions on

the project guide. Note the similarities. Where there

are differences try to understand why. Don't approach

one set as "right" vs. "wrong" but just confirm both

would be able to make the game students played.

 Remarks

There's usually lots of ways you can structure a

program to get it to work the way you want. The

important thing when writing complex or large

programs is that you start with a plan. Today we're

going to look at how we could implement this plan

to build our own defender game. By the end of the

lesson you'll not only have built your game, but you'll know how to change it and make it your own. Let's get

going!

Activity (60 mins)

Multiframe Animations

Transition: Students should move back to Code Studio. Before actually implementing the plan students will need to

quickly review one new skill, how to use multiframe animations. Students will quickly learn how to create, modify,

and rename animations as well as pick them from the library.

 Code Studio levels

Plan Your Project

Student Overview

Stop
Before you move on you'll need to look at the Project Guide for this project. Wait for instructions from your teacher

as well.

Levels

 4

 5

Student Instructions

Using Multiframe Animations
In the sample defender game the sprites themselves were animated. Before getting started on programming this

game, take a minute to get familiar with this new way of animating sprites.

Do This
This program already includes several sprites but they don't yet have any animations.

Go to the Animation Tab and check out the multi-frame animations already added to your project. Choose one for

each of your characters.

Remember you can use setAnimation to give your sprites animations you've created in the Animation Tab.

Student Instructions

https://studio.code.org/s/csd3-2017/stage/20/puzzle/3
https://studio.code.org/s/csd3-2017/stage/20/puzzle/4
https://studio.code.org/s/csd3-2017/stage/20/puzzle/5
https://studio.code.org/docs/gamelab/setAnimation/

View on Code Studio

View on Code Studio

Slow Down
Nice work! Time to start learning how to control these multiframe animations.

Do This
Your sprites should be animated but they're moving really quickly.

Head back to the Animation Tab. Underneath each animation you should see a slider.

Use these sliders to slow down your animations so they look more realistic.

Implement Project Guide

Students are given a large amount of starter code in this project. The sprites, variables, and functions have all

already been given to them. The work of this project is writing the code for the individual functions. These levels

guide students through how to implement those functions. As students move through the levels point out how the

project guide is being used.

The most challenging skill students use in these levels is recognizing the need to create new functions to replace

repeated code. Students need to build this skill on their own but these levels demonstrate an instance where this

might happen.

 Code Studio levels

Levels

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

Student Instructions

Editing Multiframe Animations
Your sprites will look a lot more realistic if they turn around when they're moving. You can switch back and forth

between multiframe animations when the user presses different keys.

Do This
Read this code and run the program. Make sure you know how the sprite responds to the arrow keys.

In the Animation Tab, create a copy of the alien animation by clicking the following button:

Use the tool to flip your animation. Make sure you flip both frames using this button:

Rename your new animation.

Use your new animation and old animation so that the alien faces the correct direction when moving. Where do

you think you'll need to set the sprite's animation in your code?

Student Instructions

https://studio.code.org/s/csd3-2017/stage/20/puzzle/6
https://studio.code.org/s/csd3-2017/stage/20/puzzle/7

View on Code Studio

View on Code Studio

View on Code Studio

Getting Started: Set Animations
You should have already reviewed the planning guide for this project. A lot of the work to turn this project guide into

a working game has already been started. Based on the project guide you're going to do the rest of this work.

Do This
Before we get started you'll want some better animations for each of your sprites.

In the Animation Tab are animations for each of your sprites. Go look at what they are.

In your code give each sprite its appropriate animation. Use the ones provided for now but later you'll be able to

go change them.

Head to Level 4 if you need help remembering how to do this.

Student Instructions

Moving The Enemies
It's time to start writing the code that will move your sprites. To begin you'll need to get your enemy sprites to a

random position and moving across the screen.

Do This
At the top of your program, after you create each enemy sprite, write code that will move it to the correct position

and give it the correct velocity.

Use sprite.x to set the x position to 0.

Use sprite.y to set the y position should be a random number between 150 and 250.

Use sprite.velocityX to set the x velocity to 2.

Test your program. Your enemy sprites should now be moving across the bridge.

Student Instructions

Touching the Cake
If the enemies get all the way across to the cake you should place them back at the left side of the screen and

decrease the score. To start you'll write code for only one of your enemies.

Do This
Inside the enemiesTouchCake function you'll need to write code that checks when a ladybug is touching the cake,

resets its position, and changes the score.

Use an if and isTouching to detect whether enemy1 has touched the cake.

Inside your if block place code that:

sets enemy1's x position back to 0.

sets enemy1's y position to a random number between 150 and 250.

uses the counter pattern to decrease the score by 2.

(Hint: You can reuse some code you already wrote)

Test your code. One of your ladybugs should now reset when it gets across to the cake, and the score should go

down by 2.

Student Instructions

https://studio.code.org/s/csd3-2017/stage/20/puzzle/8
https://studio.code.org/s/csd3-2017/stage/20/puzzle/9
https://studio.code.org/s/csd3-2017/stage/20/puzzle/10
https://studio.code.org/s/csd3-2017/stage/20/puzzle/4
https://studio.code.org/docs/gamelab/x/
https://studio.code.org/docs/gamelab/y/
https://studio.code.org/docs/gamelab/velocityX/
https://studio.code.org/docs/spritelab/codestudio_ifStatement/
https://studio.code.org/docs/gamelab/isTouching/
https://studio.code.org/docs/spritelab/codestudio_ifStatement/

View on Code Studio

View on Code Studio

View on Code Studio

Touching the Cake: Second Ladybug
Your first enemy sprite should now be resetting when it gets to the cake. Now you'll want the other ladybug to reset

as well.

Do This
Inside the enemiesTouchCake function you should have written code that resets enemy1 .

Copy the entire if-statement you wrote in the last level (Ctrl-C).

Paste the code inside of the enemiesTouchCake function, just below the last one (Ctrl-V).

Change the name of the sprite in that code from enemy1 to enemy2 .

Test your code. Now both bugs should reset when they touch the cake.

Student Instructions

Creating Functions
Your program now includes code in two places to set the enemies on the left side

of the screen at a random y location. You can create functions to reset each of

your two enemies to remove repetitions from your program. This will make your

program easier to read, allow you to change it more easily, and allow you to

quickly reset your sprites at other points in your program if you need to.

Do This
At the bottom of your program create two new functions, setEnemy1 and setEnemy2 .

Inside each of these functions place the code that sets the enemies on the left side of the

screen and gives them a random y position.

Wherever the code for setEnemy1 and setEnemy2 appears in your program replace them with a call to the

functions you just created.

Student Instructions

Moving Left and Right
Now that your enemy sprites are moving correctly, it's time to write the code to move your player. For now you'll

just need to get your character moving left and right and changing its animations.

Do This
For this level you'll be writing code inside the movePlayer function.

Use an if block along with keyDown to detect when the "right" arrow is pressed.

Use sprite.x and the counter pattern increase the player's x position by 3.

Use another if block to move the player to the left when the "left" arrow is pressed. This time you'll need to

decrease the player's x position.

Test your game. Your character sprite should now move left and right when you press the left and right arrows.

Student Instructions

Moving Up and Down

https://studio.code.org/s/csd3-2017/stage/20/puzzle/11
https://studio.code.org/s/csd3-2017/stage/20/puzzle/12
https://studio.code.org/s/csd3-2017/stage/20/puzzle/13
https://studio.code.org/docs/spritelab/codestudio_ifStatement/
https://studio.code.org/docs/gamelab/keyDown/
https://studio.code.org/docs/gamelab/x/
https://studio.code.org/docs/spritelab/codestudio_ifStatement/

View on Code Studio

View on Code Studio

View on Code Studio

You'll want your player sprite to move up and down as well.

Do This
For this level you'll still be writing code inside the movePlayer function.

Use an if block along with keyDown to detect when the "up" arrow is pressed.

Use sprite.y to increase the player's y position by 3 using the counter pattern.

Use another if block to move the player down when the "down" arrow is pressed.

Test your code. Your character should now move in all 4 directions.

Student Instructions

Change Player Animations
Right now your player is always facing the same direction. You can make things look a lot more realistic by

switching between animations. Your player should switch between a left-facing and right-facing animation

depending on which key was last pressed. Remember, you can quickly copy and edit animations inside the

Animation Tab.

Do This
Inside the Animation Tab copy the animation of your player sprite.

Flip each frame of the new animation so that the sprite is facing in the opposite direction.

Rename your new animation.

Use the setAnimation command inside the movePlayer function so that the player changes the direction it is

facing when the "left" and "right" arrows are pressed.

Student Instructions

Displace Enemies
It's time to write code for some more sprite interactions. Your player sprite should displace the enemy sprites.

Do This
For this level you'll be writing code inside the displaceEnemies function.

Write code that makes player displace both enemy sprites.

Test your program to make sure your player is displacing enemies but they keep moving right after the player

moves away.

Hint: You can use sprite.debug to see your sprites' colliders if you need to debug your program.

Student Instructions

Touching the Water
The last part of the game that you'll need to write is the code to reset the sprites when they touch the water.

Luckily you should have already written functions that reset each sprite, so you'll just need a good way to know

when either sprite leaves the bridge. Start by writing the code for a single enemy and then copy-paste and make

small changes to create code for your second enemy.

Do This

https://studio.code.org/s/csd3-2017/stage/20/puzzle/14
https://studio.code.org/s/csd3-2017/stage/20/puzzle/15
https://studio.code.org/s/csd3-2017/stage/20/puzzle/16
https://studio.code.org/docs/spritelab/codestudio_ifStatement/
https://studio.code.org/docs/gamelab/keyDown/
https://studio.code.org/docs/gamelab/y/
https://studio.code.org/docs/spritelab/codestudio_ifStatement/
https://studio.code.org/docs/gamelab/setAnimation/
https://studio.code.org/docs/gamelab/debug/

View on Code Studio

For this level you'll be writing code inside the enemiesTouchWater function.

Use an if statement to check whether enemy1 is off the top of the bridge by checking whether its y value is

below 140. Within your if statement:

use your setEnemy1 function to reset the sprite.

add 1 to the score.

Use an if statement to check whether enemy1 is off the bottom of the bridge by checking whether its y value is

above 260. Within your if statement:

use your setEnemy1 function to reset the sprite.

add 1 to the score.

Test your program for the first enemy sprite. Make sure the sprite is resetting and the score goes up.

Once it is working copy and paste the code you wrote to create the same behavior for enemy2 . You'll need to

change the name of the sprite and the name of the functions you use.

Wrap Up (20 mins)

Make It Your Own

This last level encourages students to make the game their own. If students have made their way to this point they

have all the skills they need to progress through the curriculum, so there is no pressure to complete any of the

modifications suggested in this level. If you have time, however, getting practice planning and implementing new

features will be a useful skill. Even just modifying the animations of the game is an easy way students can make

the game their own.

 Code Studio levels

Levels

 17

Student Instructions

Make It Your Own
You just walked through someone else's plan for creating a game, so now it's time to make it your own. What

additional features or challenges do you want to create?

Do This
Select one of the challenges below to add to the game or come up with a challenge of your own.

Change the visuals of the game so that your player, enemies, or cake look different.

End the game when the enemies get to the cake and print the score. For an extra challenge end the game only

after 3 enemies get through.

Randomize the speed of the enemies.

Create a new background that shows up when players reach a higher score.

Share: Once students have completed the project they can share their work with their classmates. Encourage

students to showcase the additional code they wrote and explain how it has changed the way the game works.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

https://studio.code.org/s/csd3-2017/stage/20/puzzle/17
https://studio.code.org/docs/spritelab/codestudio_ifStatement/

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ch. 2 15 16 17 18 19 20 21 22

Lesson 21: Using the Game Design Process

Overview

In this multi-day lesson, students use the problem solving process

from Unit 1 to create a platform jumper game. They start by

looking at an example of a platform jumper, then define what

their games will look like. Next, they use a structured process to

plan the backgrounds, variables, sprites, and functions they will

need to implement their game. After writing the code for the

game, students will reflect on how the game could be improved,

and implement those changes.

Purpose

Students have already learned all of the programming constructs

that they need to make a game. This lesson reviews many of

those concepts while introducing them to a structured process

that will help them to manage the work. It builds on the use of

the Project Guide in the previous lesson by having students

complete more of this project guide independently before using it

to build a game. This activity prepares students to write their own

game from scratch for the final project.

Agenda
Warm Up

Activity

Play Alien Jumper

Discuss Project Guide

Share out

Wrap Up

Journal

View on Code Studio

Objectives
Students will be able to:

Identify core programming constructs

necessary to build different components of

a game

Implement different features of a program

by following a structured project guide

Preparation

Print one copy of Planning Your Platform

Game - Project Guide for each student or

pair of students

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Teachers

Planning Your Platform Game - Exemplar

For the Students

Planning Your Platform Game - Project

Guide Make a Copy

https://curriculum.code.org/csd-1718/unit3/
https://studio.code.org/s/csd3-2017/stage/21/puzzle/1/
https://docs.google.com/document/d/1-h8vfW6PfppsDKKqVeVDMU6FxbPP8tA1Up_oc5_p9Dk/edit
https://studio.code.org/s/csd3-2017/stage/21/puzzle/1
https://docs.google.com/document/d/1-h8vfW6PfppsDKKqVeVDMU6FxbPP8tA1Up_oc5_p9Dk/edit

 Discussion Goal

Goal: Students should share their thoughts but if it

doesn't come up naturally then suggest the examples

provided. This discussion will motivate the use of the

project guide for building a game later in the lesson.

View on Code Studio

Teaching Guide

Warm Up

Prompt: The Problem Solving Process helps us work through all kinds of problems. Think about the problem of

building a larger piece of software, like the game we built in the last lesson. What did each of the 4 steps look like?

Why were they important?

Discuss: Students should brainstorm quietly and write

down what each step might be. Afterwards, lead a

share out discussion. You can record ideas on the

board. Possible parts of each step include:

Define: Figuring out what you want the game to

look like, how it should work, who will play it.

Prepare: Plan ahead what your code will look like.

Decide on a structure for your game.

Try: Write the code following your plan.

Reflect: Test your code, play the game to make sure it works, get feedback from other people to make the game

better.

 Remarks

When you build software, the problem solving process can be a helpful guide. Obviously we need to write the

code, but being careful to define what you want to build, making a good plan to build it, and reflecting afterwards

on how to improve it are all part of making good software. Today we’re going to use this process to make a new

game.

Activity

Play Alien Jumper

Distribute: Give each student a copy of Planning Your Platform Game - Project Guide

 Remarks

We're going to be building a jumper game today. You'll have a chance to play a sample game, then plan out how

you would create the game on your Project Guide.

 Move students to Code Studio. On the first level they will be find a game but will not be able to see the code.

They should play the game and follow the instructions which ask them to list the variables, sprites, and functions

they think are necessary to create this game.

 Code Studio levels

Sample Platform Jumper Game

Student Overview

Platform Jumper
The game on the left is an example of a platform jumper. Press "Run" to play it. You can make the alien jump with

the up arrow, and move it to the left and right with the arrow keys. You score by collecting stars, and if you score

high enough, the background will change.

You already know how to use all the blocks you need to make a game just like this one, and you'll be making your

own platform jumper in this lesson.

https://studio.code.org/s/csd3-2017/stage/21/puzzle/2
https://docs.google.com/document/d/1-h8vfW6PfppsDKKqVeVDMU6FxbPP8tA1Up_oc5_p9Dk/edit

View on Code Studio

View on Code Studio

 Teaching Tip

Making the game will take at least two class periods. If

there's not enough time for all students to finish the

lesson, groups of students can work to to code

different aspects, then share their code with each

other. For example, one group could work on the

platforms, one on the stars, and another on the player.

Student who have finished early can choose more

challenges from the later levels.

Discuss Project Guide

Circulate: Students should complete the project guide in the style of the one they saw in the previous lesson. They

will likely want to keep the game up as they try to determine the behavior each of the sprites will have.

Share: Students share out their plans for making the game. Reassure them that there are many correct ways to

make the same piece of software, and that they will have a chance to try out theit ideas in code studio.

 Code Studio levels

CSD U3 platform intro

Student Overview

Build a Platform Jumper
In the next several levels, you'll be building a platform jumper game. Before you move on you'll need to look at the

Project Guide for this project. Wait for instructions from your teacher before clicking to the next level.

Levels

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

Student Instructions

Background
The first thing that you will create for your game is the background. The sample game had two different

backgrounds that were chosen according to the user's score. The first background has already been created for

you. Look at the background1 function in the code below to see how it works. (Show me where)

In order for the background function to do something, you have to call it inside the draw loop. (Show me where)

There is also an empty function named background2 . (Show me where) You will need to fill that function with new

code to make a different background, then test the code by calling the function inside the draw loop.

Do this

https://studio.code.org/s/csd3-2017/stage/21/puzzle/3
https://studio.code.org/s/csd3-2017/stage/21/puzzle/4

View on Code Studio

View on Code Studio

View on Code Studio

View on Code Studio

Read the code for background1 .

Fill the background2 function with new code for a second background.

Test your background2 function by calling it inside the draw loop.

Hint: It's much easier to copy, paste, and make small changes to your code in text mode.

Student Instructions

Score Variable
Now that you've created your backgrounds, you'll need to choose when each background is drawn. For that, you'll

need a score variable to hold information about your player's score.

You should always give your variables a starting value at the very beginning of the program. That way, they are

available for any code that comes after.

Do This
Create a score variable at the beginning of your game program. (Show me the block)

Set the score equal to 0.

Student Instructions

Choosing your Background
Now that you have your score variable, you can use it to choose the right background for your game. You can see

an example of changing your background according to your score in Lesson 19 Level 11

Do This
Inside the draw loop, use an if statement and your two background functions to draw your background

according to your score level.

Test your code by changing the start score to 100, then running to code to see whether the background changes.

Challenge: If you have a third background, you can click the plus sign at the bottom of the if block. Another space

will appear for your third background function, as well as a place to check the score again.

Student Instructions

Make the Scoreboard
You'll also need a scoreboard so the player can keep track of the score. There's already a

showScore function written, but it only shows the text "Score" and not the actual score. (Show

me where) You can see an example of a working scoreboard in Lesson 16 Level 9.

Do This
Read the code in the showScore function.

Call the function inside the draw loop, right after you draw the backgrounds.

Use the text block to display the score at the top of the screen.

Student Instructions

Create a Platform Sprite

https://studio.code.org/s/csd3-2017/stage/21/puzzle/5
https://studio.code.org/s/csd3-2017/stage/21/puzzle/6
https://studio.code.org/s/csd3-2017/stage/21/puzzle/7
https://studio.code.org/s/csd3-2017/stage/21/puzzle/8
https://studio.code.org/s/csd3-2017/stage/19/puzzle/11
https://studio.code.org/docs/spritelab/codestudio_ifStatement/
https://studio.code.org/docs/spritelab/codestudio_ifStatement/
https://studio.code.org/s/csd3-2017/stage/16/puzzle/9
https://studio.code.org/docs/gamelab/text/

View on Code Studio

View on Code Studio

Now that you have your background and your variables, it's time to create your sprites. Usually,

it will be easiest to start with the sprites that are part of the environment, such as your

platforms. The sample game had two platform sprites, but you'll make just one first, then test it

before copying and pasting the code to make the second.

Do This
Look at your worksheet and choose a platform sprite to create.

In the "Create sprites" area at the top of your code, create your new sprite with the createSprite block, giving it

the correct position and label (name). (Show me the block)

Use the setAnimation and velocityY blocks to give your sprite the correct image and downward velocity.

Test the sprite to make sure that it's moving in the correct way. You might need to adjust its velocity.

Hint: The sprite will go off the screen and not come back. You'll make it loop back around in the next level.

Student Instructions

Loop the Platform Sprite
Right now, your platform sprite moves down, but it doesn't loop back up to the top of the screen.

You can look at Lesson 15 Level 13 to see an example of a sprite looping around a screen.

Do This
Use the function block to create a loopPlatforms function at the bottom of your code.

Use the if block inside the function to check whether the platform has gone off the bottom of screen and, if it

has, move it back to the top of the screen.

Call the function inside the draw loop, in the "update sprites" area.

Run the code to test your sprite.

Hint: What will platform.y be when the sprite moves off the bottom of the screen? What should platform.y be when

you put it back at the top of the screen?

Student Instructions

Make your Second Platform
Making a second platform will be easier than making the first, because you can copy and paste a

lot of the code, then make a few small changes. This is a lot easier in text mode, so be sure to

try it out if you haven't already.

You'll need to copy two parts of your code: the part at the beginning where you made the

platform, and the part in your loopPlatforms function, where you looped the platform back to

the top of the screen.

Do This
Copy the code you used to create the first platform sprite (createSprite , setAnimation , and velocityY), and

paste it directly beneath the original code.

Change the names of the sprite in the new lines. For example, if you named your original sprite "platform", you

could name this one "platform2".

Change the starting position of your new platform sprite.

Inside your loopPlatforms function, copy the if statement, then paste it directly underneath the original code,

inside the function.

Change the sprite name in the new lines of code.

https://studio.code.org/s/csd3-2017/stage/21/puzzle/9
https://studio.code.org/s/csd3-2017/stage/21/puzzle/10
https://studio.code.org/docs/gamelab/createSprite/
https://studio.code.org/docs/gamelab/setAnimation/
https://studio.code.org/docs/gamelab/velocityY/
https://studio.code.org/s/csd3-2017/stage/15/puzzle/13
https://studio.code.org/docs/spritelab/codestudio_ifStatement/
https://studio.code.org/docs/gamelab/createSprite/
https://studio.code.org/docs/gamelab/setAnimation/
https://studio.code.org/docs/gamelab/velocityY/

View on Code Studio

View on Code Studio

View on Code Studio

Run your code to test it.

Challenge: You can make your platforms appear at random x positions when they loop back to the top of the

screen.

Student Instructions

Create an Item
Next, you need to add the items that fall from the top of the screen. These move just like the

platforms, but faster. In order to make the game more interesting, the items start at a random

location above the screen. For the sample game, the item's x position is a random number

between 50 and 350, and the y position is a random number between -30 and -60.

Do This
Use the createSprite block to make an item sprite in the "create sprites" section of your code.

Use the randomNumber block inside your createSprite block to start the item at a random x and y position.

Use setAnimation and velocityY to give your sprite the correct image and make it fall from the top of the

screen.

Run the code to test your sprite.

Student Instructions

Loop your Item
Now that your item is falling, you can add code to loop it back to the top. This is similar to what

you did for the platform sprite, but the item sprite will loop back to a random x and y location

when it goes to the top of the screen.

Do This
Create a loopItems function that uses an if block to check whether the item sprite is off the bottom of the

screen, then sends the item back to a random x and y position, just as it did when you first created the sprite.

Call the function inside the draw loop.

Run the code to test your sprite.

Student Instructions

Make your Second Item
Next, you'll copy and paste the code for your first item to create a second item. Remember that

this is a lot easier in text mode, so be sure to try it out if you haven't already.

You'll need to copy two parts of your code: the part at the beginning where you made the item,

and the part in your loopItem function, where you looped the item back to the top of the screen.

Do This
Copy the code you used to create the first item sprite (createSprite , setAnimation , and velocityY), and paste

it directly beneath the original code.

Change the names of the sprite in the new lines. For example, if you named your original sprite "star", you could

name this one "star2".

https://studio.code.org/s/csd3-2017/stage/21/puzzle/11
https://studio.code.org/s/csd3-2017/stage/21/puzzle/12
https://studio.code.org/s/csd3-2017/stage/21/puzzle/13
https://studio.code.org/docs/gamelab/createSprite/
https://studio.code.org/docs/applab/randomNumber/
https://studio.code.org/docs/gamelab/createSprite/
https://studio.code.org/docs/gamelab/setAnimation/
https://studio.code.org/docs/gamelab/velocityY/
https://studio.code.org/docs/spritelab/codestudio_ifStatement/
https://studio.code.org/docs/gamelab/createSprite/
https://studio.code.org/docs/gamelab/setAnimation/
https://studio.code.org/docs/gamelab/velocityY/

View on Code Studio

View on Code Studio

View on Code Studio

Inside your loopItems function, copy the if statement, then paste it directly underneath the original code, inside

the function.

Change the sprite name in the new lines of code.

Run your code to test it.

Student Instructions

Create your Player
Now you can create your player sprite. Just like the item sprites, the player sprite will fall from

the top of the screen. Unlike the items, your player sprite will get faster as it falls, just like real

falling objects. This is what allows it to jump up, and fall back down.

Do This
Use the createSprite block to make a player sprite with the label and starting position that you put on your

worksheet.

Use setAnimation to give it the correct image.

Create a playerFall function that makes the sprite fall from the top of the screen. The code inside the function

should use velocityY in a counter pattern, just as when you made the falling rock in Lesson 17 Level 4.

Call the playerFall function inside the draw loop.

Run the code to test your sprite.

Student Instructions

User Controls
Next, you should add user controls so that you can move your player around. Your player needs to move to the left

when the left arrow key is pressed, to the right when the right arrow key is pressed, and jump when the space bar is

pressed.

Do This
Create a new controlPlayer function in the "functions" area of your code.

Inside the controlPlayer function, use the if , keyDown , and sprite.x blocks to make your player move to the

left and right according to the arrow keys. Look at Lesson 12 Puzzle 7 for examples.

Inside the controlPlayer function, use the if , keyDown , and velocityY blocks to make your player jump when

the up arrow is pressed. Look at Lesson 15 Puzzle 11 for an example.

Call the controlPlayer function inside the draw loop.

Run the game and test your code.

Student Instructions

Player Interactions
The last part of making your game is programming the player interactions with the other sprites. First, your player

needs to land on the platforms.

Do This
Create a playerLands function and add it to the "functions" area of your code.

Inside the function, use the collide block so that your player can land on both the platforms.

Call the function inside the draw loop.

https://studio.code.org/s/csd3-2017/stage/21/puzzle/14
https://studio.code.org/s/csd3-2017/stage/21/puzzle/15
https://studio.code.org/s/csd3-2017/stage/21/puzzle/16
https://studio.code.org/docs/gamelab/createSprite/
https://studio.code.org/docs/gamelab/setAnimation/
https://studio.code.org/docs/gamelab/velocityY/
https://studio.code.org/s/csd3-2017/stage/17/puzzle/4
https://studio.code.org/docs/spritelab/codestudio_ifStatement/
https://studio.code.org/docs/gamelab/keyDown/
https://studio.code.org/docs/gamelab/x/
https://studio.code.org/s/csd3-2017/stage/12/puzzle/7
https://studio.code.org/docs/spritelab/codestudio_ifStatement/
https://studio.code.org/docs/gamelab/keyDown/
https://studio.code.org/docs/gamelab/velocityY/
https://studio.code.org/s/csd3-2017/stage/15/puzzle/11
https://studio.code.org/docs/gamelab/collide/

View on Code Studio

View on Code Studio

View on Code Studio

Run the code to test your function.

Students work in pairs to create the alien jumper game.

 Code Studio levels

Levels

 17

Student Instructions

Collect Items
Last, you'll want your player to collect the items falling from the top of the screen.

Do This
Create a collectItems function and add it to the "functions" area of your code.

Use the if and isTouching blocks to change the x and y position of the items when the player touches them.

You can look at the loopItem function for clues in how to reset the item position.

Inside your if statement, add a counter pattern that will increase the score every time the player touches an

item. Look at Lesson 16 Puzzle 9 for an example.

Call the function inside the draw loop, in the "update sprites" area of your code.

Run the code to test your function.

Plane Jumper

Student Overview

Plane Jumper
Here's another example of a platform jumper, but it has a few more features. You can use it to get ideas to improve

your own game. For example, there is a coin sprite that gives the player an extra life.

Choose one or more of the following changes and add them to your game. Choose new animations for your player,

platform, and items. Make it impossible for your player to go off the left or right of the screen. Add a different type

of item for the player to collect or avoid. Add a variable that keeps track of how many lives the player has, and end

the game if the player runs out.

Bunny Jumper

Student Overview

Bunny Jumper
Here's another example of a jumper. In this one, the items get faster when they fall, and bounce off the platforms.

Choose one or more of the following changes and add them to your game. Make your player's animation change

direction when the player changes direction. Add another background and make it appear when the score gets even

higher. * Make your items interact with the platforms in some way.

Students have an opportunity to improve their game after being exposed to two other versions of a platform

jumper.

Share out

Share: Students share their games with their classmates.

https://studio.code.org/s/csd3-2017/stage/21/puzzle/17
https://studio.code.org/s/csd3-2017/stage/21/puzzle/18
https://studio.code.org/s/csd3-2017/stage/21/puzzle/19
https://studio.code.org/docs/spritelab/codestudio_ifStatement/
https://studio.code.org/docs/gamelab/isTouching/
https://studio.code.org/docs/spritelab/codestudio_ifStatement/
https://studio.code.org/s/csd3-2017/stage/16/puzzle/9

Wrap Up

Journal

Prompt: Have students reflect on their development of the five practices of CS Discoveries (Problem Solving,

Persistence, Creativity, Collaboration, Communication). Choose one of the following prompts as you deem

appropriate.

Choose one of the five practices in which you believe you demonstrated growth in this lesson. Write something

you did that exemplified this practice.

Choose one practice you think you can continue to grow in. What’s one thing you’d like to do better?

Choose one practice you thought was especially important for the activity we completed today. What made it so

important?

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://docs.google.com/document/d/1FhHPqlC6dU_z9retuBYb-duUwyKpnjwuEgjF4zfdhvI/edit#heading=h.5u3d4jfozbgc
https://creativecommons.org/
https://code.org/contact

UNIT

3
Ch. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ch. 2 15 16 17 18 19 20 21 22

Lesson 22: Project - Design a Game

Overview

Students will plan and build their own game using the project

guide from the previous two lessons to guide their project.

Working individually or in pairs, students will first decide on the

type of game they'd like to build, taking as inspiration a set of

sample games. They will then complete a blank project guide

where they will describe the game's behavior and scope out the

variables, sprites, and functions they'll need to build. In Code

Studio, a series of levels prompts them on a general sequence

they can use to implement this plan. Partway through the

process, students will share their projects for peer review and will

incorporate feedback as they finish their game. At the end of the

lesson, students will share their completed games with their

classmates. This project will span multiple classes and can easily

take anywhere from 3-5 class periods.

Purpose

This lesson is the culmination of Unit 3 and provides students an

opportunity to build a Game Lab project of their own from the

ground up. The scaffolding provided by the project guide and the

practice they have using it are intended to assist students in

scoping their projects and seeing their ideas through to

completion. This project is an opportunity to showcase technical

skills, but they will also need to collaborate with their partner,

provide constructive peer feedback, and repeatedly use the

problem solving process as they encounter obstacles along the

way. This project should be student-directed whenever possible,

and provide an empowering and memorable conclusion to the

first unit of CS Discoveries.

Agenda
Warm Up (10 mins)

Review Project Guide

Activity (80-200 mins)

Define - Scope Game

Prepare - Complete Project Guide

Try - Write Code

Reflect - Peer Review

Iterate - Update Code

Wrap Up (10 mins)

Share

Reflect

View on Code Studio

Objectives
Students will be able to:

Independently scope the features of a

piece of software

Create a plan for building a piece of

software by describing its major

components

Implement a plan for creating a piece of

software

Preparation

Print copies of Make Your Own Game -

Project Guide, one for each student / pair

of students

Print copies of Make Your Own Game -

Rubric, one for each student / pair of

students

Print copies of Make Your Own Game -

Peer Review, one for each student / pair of

students

Review sample games in Code Studio

Links

Heads Up! Please make a copy of any

documents you plan to share with

students.

For the Students

Make Your Own Game - Project Guide

Make Your Own Game - Rubric

Make Your Own Game - Peer Review

Make a Copy

Make a Copy

Make a Copy

https://curriculum.code.org/csd-1718/unit3/
https://studio.code.org/s/csd3-2017/stage/22/puzzle/1/
https://docs.google.com/document/d/1SBye25XfdnytxCrc6a_OtpcS02YsT99nyJ9Vjwp_zeo/edit?usp=sharing
https://docs.google.com/document/d/1WChOizSb4gZsEbdER5KwYXj9c6Ogpeuv0AzegJ5HD8A/edit
https://docs.google.com/document/d/1ORjDuRep39xwiFaz20_jF74eWB63FVtK2FIQhq7Wecg/edit
https://docs.google.com/document/d/1SBye25XfdnytxCrc6a_OtpcS02YsT99nyJ9Vjwp_zeo/edit?usp=sharing
https://docs.google.com/document/d/1WChOizSb4gZsEbdER5KwYXj9c6Ogpeuv0AzegJ5HD8A/edit
https://docs.google.com/document/d/1ORjDuRep39xwiFaz20_jF74eWB63FVtK2FIQhq7Wecg/edit

View on Code Studio

View on Code Studio

Teaching Guide

Warm Up (10 mins)

Review Project Guide

Group: This project can be completed individually or in pairs. At your discretion you may choose to have students

form larger groups as well.

Distribute: Each student or group of students should be given a copy of Make Your Own Game - Project Guide. As a

class review the different steps of the project and where they appear in the project guide. Direct students towards

the rubric so that they know from the beginning what components of the project you will be looking for.

Activity (80-200 mins)

Define - Scope Game

Circulate: Students should spend the first 15-20 minutes playing the sample games, reviewing past work, and

discussing as a group the type of game they'd like to build. If they want they can sketch ideas on scratch paper or

in

Prepare - Complete Project Guide

Circulate: Once students have discussed their ideas for the project they should complete the Make Your Own Game

- Project Guide. While this should be a fairly familiar process, encourage students to make each component as

clear and detailed as they can at this point. Planning ahead can help them identify issues in their plan before they'll

need to make more significant changes to their code.

Try - Write Code

 Transition: Students are now ready to program their games on Code Studio. These levels provide some guidance

on how students may go about implementing their Make Your Own Game - Project Guide. None of the steps are

significantly different from what students have seen from the previous two lessons. If they wish, students can work

in a different order than the one suggested in these levels.

 Code Studio levels

Lesson Overview

Teacher Overview

Student Overview

Make Your Own Game - Project Guide Exemplar (PDF | DOCX)

Make Your Own Game - Peer Review Exemplar (PDF | DOCX)

Overview
The class plans and builds original games using the project guide from the previous two lessons. Working

individually or in pairs, the class plans, develops, and gives feedback on the games. After incorporating the peer

feedback, the class shares out the completed games.

Resources

Make Your Own Game - Project Guide

Make Your Own Game - Rubric

https://studio.code.org/s/csd3-2017/stage/22/puzzle/1
https://studio.code.org/s/csd3-2017/stage/22/puzzle/1
https://docs.google.com/document/d/1SBye25XfdnytxCrc6a_OtpcS02YsT99nyJ9Vjwp_zeo/edit?usp=sharing
https://docs.google.com/document/d/1SBye25XfdnytxCrc6a_OtpcS02YsT99nyJ9Vjwp_zeo/edit?usp=sharing
https://docs.google.com/document/d/1SBye25XfdnytxCrc6a_OtpcS02YsT99nyJ9Vjwp_zeo/edit?usp=sharing
https://docs.google.com/document/d/1T4Br-iQAhFnuoey6QvhdYRQ7X0uPKwjAhlalAQf8Bxc/edit?usp=sharing
https://docs.google.com/document/d/1T4Br-iQAhFnuoey6QvhdYRQ7X0uPKwjAhlalAQf8Bxc/export?format=pdf
https://docs.google.com/document/d/1T4Br-iQAhFnuoey6QvhdYRQ7X0uPKwjAhlalAQf8Bxc/export?format=doc
https://docs.google.com/document/d/1eCE7xT-YWu1xRyxVLx4xCXggqihxJwtU6XkXcchqk6w/edit
https://docs.google.com/document/d/1eCE7xT-YWu1xRyxVLx4xCXggqihxJwtU6XkXcchqk6w/export?format=pdf
https://docs.google.com/document/d/1eCE7xT-YWu1xRyxVLx4xCXggqihxJwtU6XkXcchqk6w/export?format=doc
https://docs.google.com/document/d/1SBye25XfdnytxCrc6a_OtpcS02YsT99nyJ9Vjwp_zeo/export?format=pdf
https://docs.google.com/document/d/1WChOizSb4gZsEbdER5KwYXj9c6Ogpeuv0AzegJ5HD8A/export?format=pdf

View on Code Studio

View on Code Studio

View on Code Studio

Make Your Own Game - Peer Review

Design Your Game

Student Overview

Create your own game
Now that you have all the skills you need, it's time to make your own game!

With a partner, brainstorm some different ideas for your game. You can think about the games you've already seen,

or look at some more sample games to give you ideas.

Once you have settled on a type of game with your partner, fill out the Project Guide with the backgrounds,

variables, sprites, and functions that you will need to make the game. You'll spend the next few levels creating your

game.

Levels

 3

 4

 5

 6

 7

Student Instructions

Create your Variables
First, you'll need to create all of your variables and put them in the variables area of your code. Show me the block

Show me the area in the code

Don't forget, each variable needs a label (name) and a starting value. You can change the value of the variable

later in your code.

Student Instructions

Create your Backgrounds

https://studio.code.org/s/csd3-2017/stage/22/puzzle/2
https://studio.code.org/s/csd3-2017/stage/22/puzzle/3
https://studio.code.org/s/csd3-2017/stage/22/puzzle/4
https://docs.google.com/document/d/1ORjDuRep39xwiFaz20_jF74eWB63FVtK2FIQhq7Wecg/export?format=pdf
https://studio.code.org/projects/gamelab/AwDcX5nehOApfzyywI6BOLT1xbf0MIV1dUj8KjQaNtA
https://studio.code.org/projects/gamelab/r9OYVTSj2od8vaCA-nKikTVpx-2Co8qHhuZiBIu30JA
https://studio.code.org/projects/gamelab/hAz7RSdqc0c_MSQVUpvz1XrLDr8QLsansWDVI0ZberQ
https://studio.code.org/projects/gamelab/DmRPNYR3n7bMO--_KkP7r6mOoGynBVyi3BMVPWDiVeI

View on Code Studio

View on Code Studio

View on Code Studio

Next, you'll create all of the background functions that you need for your game. Some games only have one

background, and others have more than one that's chosen according to user score or another aspect of gameplay.

You'll need to create a function for each separate background in your game. You'll write the code to choose the

correct background in the next level.

Show me the block to create a new function

Show me the area in the code to put my function

After you create your functions, test them by calling them inside the draw loop, one background per test.

Show me the block to call my function

Student Instructions

Display Boards
Now that your backgrounds are working, you can add your display boards. Most games have a score board, but you

might also want to display information about player level or lives remaining. Look at Lesson 16 Puzzle 9 for an

example of how to make a scoreboard.

For each display board: Create a function to display the information Call the function in the draw loop

Be sure to test your boards by changing the starting value of your variables and making sure the board also

changes when you run the code.

Student Instructions

Choose your Backgrounds
Now that you have the backgrounds that you need, you'll write the code to choose the correct background. You've

seen this done in Lesson 19 Level 11.

After you've written the code, test it by changing the starting value of your variables and making sure the correct

background shows up.

Student Instructions

Create your Animations
Next you will create your animations in the animation tab. Don't forget to make multiple animations if you want

your sprite to change appearance according to how it's moving.

Reflect - Peer Review

Distribute: Give each student a copy of Make Your Own Game - Peer Review.

Students should spend 15 minutes reviewing the other group's game and filling out the peer review guide.

Iterate - Update Code

Circulate: Students should complete the peer review guide's back side where they decide how to respond to the

feedback they were given. They should then use that feedback to improve their game.

Wrap Up (10 mins)

Share

Share: Give students a chance to share their games. If you choose to let students do a more formal presentation of

their projects the project guide provides students a set of components to include in their presentations including:

https://studio.code.org/s/csd3-2017/stage/22/puzzle/5
https://studio.code.org/s/csd3-2017/stage/22/puzzle/6
https://studio.code.org/s/csd3-2017/stage/22/puzzle/7
https://studio.code.org/s/csd3-2017/stage/16/puzzle/9
https://studio.code.org/s/csd3-2017/stage/19/puzzle/11
https://docs.google.com/document/d/1ORjDuRep39xwiFaz20_jF74eWB63FVtK2FIQhq7Wecg/edit

View on Code Studio

The original game they set out to build

A description of the programming process including at least one challenge they faced and one new feature they

decided to add

A description of the most interesting or complex piece of code they wrote

A live demonstration of the actual game

Reflect

 Send students to Code Studio to complete their reflection on their attitudes toward computer science. Although

their answers are anonymous, the aggregated data will be available to you once at least five students have

completed the survey.

 Code Studio levels

Levels

 13

Student Instructions

This level is an assessment or survey with multiple questions. To view this level click the "View on Code Studio" link.

Standards Alignment

CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://studio.code.org/s/csd3-2017/stage/22/puzzle/13
https://creativecommons.org/
https://code.org/contact

