

COURSE

D
Ch. 1 1 2 3 4 Ch. 2 5 6 Ch. 3 7 8 9

Ch. 4 10 11 12 13 14 Ch. 5 15 16 Ch. 6 17 Ch. 7

18

Course D
Course D was created for students who read at roughly a third grade level. Angles and mathematical concepts are
introduced with helpful videos and hints.

The course begins with a review of the concepts found in Courses A, B, and C. This review helps introduce or refresh basic
ideas such as repeat loops and events. Students will develop their understanding of algorithms, nested loops, while loops,
conditionals, and events. Lessons on digital citizenship are also included. This course is crafted to build a strong foundation
of basic concepts before opening up to a wide range of new and exciting topics.

Journaling
The lessons in this course include journaling prompts. Journals are also useful as scratch paper for building, debugging,
and strategizing. Journals can become a fantastic resource for referencing previous answers when struggling with more
complex problems.

Think Spot Journal Student Handout

Debugging
From beginners to professionals, debugging is an essential yet often underrated practice. It is likely that your students will
find most of their "coding" time is actually spent fixing bugs! To encourage students to take ownership of this practice, we
provide this handy reference they can use while coding. Please consult the "Debugging" section of our CS Fundamentals
Curriculum Guide for more information on this, as well as other debugging facilitation strategies for your classroom.

Debugging Guide Student Handout

Chapter 1: Sequencing
Lesson 1: Graph Paper Programming
Unplugged | Sequencing

In this lesson, you will program your classmate to draw pictures!

Lesson 2: Introduction to Online Puzzles
Skill Building | Sequencing

This lesson will give you practice in the skills you will need for this course.

Lesson 3: Relay Programming
Unplugged | Sequencing

Remember at the beginning of the course when you made drawings with code? In this lesson,
you will be working with a team to do something very similar!

https://docs.google.com/document/d/1IwPCkbZen2Md6MsbaOO5wYA93e8qrgrna2pozTGazjY/edit?usp=sharing
https://drive.google.com/open?id=1z2FgBWwUq6vxwWbnbiQC0EaEKxwgAqBdtTZzVi98xHA
file:///csf-19/coursed/
file:///csf-19/coursed/
file:///csf-19/coursed/
file:///csf-19/coursed/
file:///csf-19/coursed/
file:///csf-19/coursed/
file:///csf-19/coursed/
file:///csf-19/coursed/
file:///csf-19/coursed/
file:///csf-19/coursed/
file:///csf-19/coursed/
file:///csf-19/coursed/
file:///csf-19/coursed/
file:///csf-19/coursed/
file:///csf-19/coursed/
file:///csf-19/coursed/
file:///csf-19/coursed/
file:///csf-19/coursed/

Lesson 4: Debugging with Laurel
Skill Building | Sequencing

Have you ever run into problems while coding? In this lesson, you will learn about the secrets
of debugging. Debugging is the process of finding and fixing problems in your code.

Chapter Commentary
Sequencing

Chapter 2: Events
Lesson 5: Events in Bounce
Skill Building | Events

Ever wish you could play video games in school? In this lesson, you will get to make your
own!

Lesson 6: Build a Star Wars Game
Skill Building | Events

Feel the force as you build your own Star Wars game in this lesson.

Chapter Commentary
Events

Chapter 3: Loops
Lesson 7: Loops in Ice Age
Skill Building | Loops

In this lesson you'll use the repeat block to help Scrat reach the acorn as efficiently as
possible.

Lesson 8: Drawing Shapes with Loops
Skill Building | Loops

In this lesson, loops make it easy to make cool images with the Artist!

Lesson 9: Nested Loops in Maze
Skill Building | Loops

Loops inside loops inside loops. What does this mean? This lesson will teach you what
happens when you create a nested loop.

Chapter Commentary
Loops

Chapter 4: Conditionals
Lesson 10: Conditionals with Cards
Unplugged | Conditionals

It's time to play a game where you earn points only under certain conditions!

Lesson 11: If/Else with Bee
Skill Building | Conditionals

Now that you understand conditionals, it's time to program Bee to use them when collecting
honey and nectar.

Lesson 12: While Loops in Farmer
Skill Building | Conditionals

Loops are so useful in coding. This lesson will teach you about a new kind of loop: while
loops!

Lesson 13: Until Loops in Maze
Skill Building | Conditionals

You can do some amazing things when you use `until` loops!

Lesson 14: Harvesting with Conditionals
Skill Building | Conditionals

It's not always clear when to use each conditional. This lesson will help you get practice
deciding what to do.

Chapter Commentary
Conditionals

Chapter 5: Binary
Lesson 15: Binary Images
Unplugged | Binary

Learn how computers store pictures using a language with only two options.

Lesson 16: Binary Images with Artist
Skill Building | Binary

In this lesson, you will learn how to make images using only 0s and 1s.

Chapter Commentary
Binary

Chapter 6: Digital Citizenship
Lesson 17: Digital Citizenship
Unplugged | Online Safety

Some information is not safe to share online. This lesson will help you learn the difference
between safe and private information.

Chapter Commentary
Digital Citizenship

Chapter 7: End of Course Project
Lesson 18: Dance Party
End of Course Project

Time to celebrate! In this lesson, you will program your own interactive dance party.

Chapter Commentary
End of Course Project

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
file://code.org/contact

COURSE

D
Ch. 1 1 2 3 4 Ch. 2 5 6 Ch. 3 7 8 9 Ch. 4

10

11 12 13 14 Ch. 5 15 16 Ch. 6 17 Ch. 7 18

Lesson 1: Graph Paper Programming
Overview
By "programming" one another to draw pictures, students get an
opportunity to experience some of the core concepts of programming
in a fun and accessible way. The class will start by having students
use symbols to instruct each other to color squares on graph paper in
an effort to reproduce an existing picture. If there’s time, the lesson
can conclude with images that the students create themselves.

Purpose
The goal of this activity is to build critical thinking skills and excitement
for the course, while introducing some of the fundamental
programming concepts that will be used throughout the course. By
introducing basic concepts like sequencing and algorithms to the
class in an unplugged activity, students who are intimidated by
computers can still build a foundation of understanding on these
topics. In this lesson, students will learn how to develop an algorithm
and encode it into a program.

Agenda
Warm Up (10 min)

Introduction to Graph Paper Programming

Main Activity (30 min)

Practice Together
The Students' Turn

Wrap Up (15 min)

Journaling / Flash Chat

Optional Assessment (10 min)
Extended Learning

View on Code Studio

Objectives
Students will be able to:

Reframe a sequence of steps as an encoded
program
Explain constraints of translating problems
from human language to machine language

Preparation
(Optional) Watch the Lesson in Action

video.
Print out one worksheet and assessment

for each student.
Make sure every student has a journal.

Links
Heads Up! Please make a copy of any
documents you plan to share with students.

For the Teachers

Graph Paper Programming - Lesson in
Action Video
Graph Paper Programming - Worksheet
Answer Key

Graph Paper Programming - Assessment
Answer Key

For the Students

Graph Paper Programming - Activity
Worksheet

Graph Paper Programming - Unplugged
Video (download)
Graph Paper Programming - Assessment

Vocabulary
Algorithm - A list of steps to finish a task.
Program - An algorithm that has been coded
into something that can be run by a machine.

Make a Copy

Make a Copy

Make a Copy

Make a Copy

https://studio.code.org/s/coursed-2019/stage/1/puzzle/1/
https://www.youtube.com/watch?v=vBUtejDNvrs
https://drive.google.com/open?id=1Nt1vX-8Q-xy7tNyTRElaDFvdVXfpC5e28NbrPreVfPQ
https://drive.google.com/open?id=1GXFjDtRjaK8mTnFGb33kT-u72_rXfUh_TyfP7N7Pen4
https://docs.google.com/document/d/1GTB6aTZoQWvkMvx2SWhKerhL8DhevgWlsaetmm5Vpfs/edit?usp=sharing
https://youtu.be/Y_paSrH2ffw
http://videos.code.org/2014/C2-graph-paper.mp4
https://drive.google.com/open?id=1uXNP-9nYnLOeAkh_E8UFzl9Rrpy0rwjVAQVamgdd6XQ


 Discussion
Goal

The goal of this quick discussion is to call out that while
robots may seem to behave like people, they're actually
responding only to their programming. Students will likely
refer to robots from movies and TV that behave more like
humans. Push them to consider robots that they've seen
or heard of in real life, like Roombas, or even digital
assistants like Amazon Alexa.

Teaching Guide
Warm Up (10 min)

Introduction to Graph Paper Programming
In this activity, students will encode instructions to guide each other toward making drawings without letting the rest of their
group see the original image. This warm-up frames the activity for the class.

Display: Watch one of the videos below to give students context for the types of things that robots can do:

Asimo by Honda (3:58)
Dancing Lego Robot (1:35)

Discuss: How do you suppose that robots know how to
do the things that they do? Do they have brains that work
the same way that ours do?

Work this into a discussion on how people have to
program robots to do specific things, using specific
commands.

Main Activity (30 min)

Practice Together
In this activity, students will act as both programmers and robots, coloring in squares according to programs that they have
written for one another.

Distribute: Students will use 4x4 grids (or sheets of graph paper with 4x4 boxes sectioned off). They will also need the
image worksheet.

Display: Project these commands, or write them on the board. They won't persist long, but they will help students make
the transition from Algorithm to Program.

Move one square right
Move one square left
Move one square up
Move one square down
Fill in square with color

Say: Today, we all get to program robots...and they're already here in the room! It's you! We're going to write programs
using symbols with special meanings to help each other recreate a picture. First, we'll practice together as if I am the robot
and you are the programmers, then we can break up into groups so that everyone can get a turn.

Display: Display both the image that you are going to have the students walk you through, and a blank grid that you will fill-
in with your ARM. Make sure that the instructions, grid, and image remain visible at the same time.

https://youtu.be/QdQL11uWWcI
https://youtu.be/NPIq5qldbio
https://code.org/curriculum/docs/csf/c2_GraphPaper1.png

 Remarks

Here is an image. Pretend that I am the robot with an Automatic Realization Machine (ARM). These are the only
instructions that I understand.

Starting at the upper left-hand corner, guide my ARM out loud with your words.

Model: The class might give you instructions like these below. As you hear an instruction that you intend to follow, make
sure to repeat it out loud so that the students can keep track of what you are doing.

Move One Square Right
Fill In Square with Color
Move One Square Right
Move One Square Down
Fill In Square with Color

Continue with the activity until you have completed your sample square.

Capture: Write each of the commands down so that students can see all of the steps that went into the one image.

Move One Square Right
Fill In Square with Color
Move One Square Right
Move One Square Down
Fill In Square with Color

Say: You just gave me a list of steps to finish a task. In programming, they call that an algorithm. Algorithms are great,
because they are easy for you to understand as the programmer. BUT, what happens when we want to write down the
algorithm for a drawing like this?

Display: Show the students a more complicated image, like the one below.

Next, begin writing down some of the instructions that it would take to replicate that image. Hopefully, students will see that
writing everything out longhand would quickly become a bit of a nightmare.

Move One Square Right
Fill In Square with Color
Move One Square Right
Move One Square Right
Fill In Square with Color
Move One Square Down
Move One Square Left
Fill In Square with Color
Move One Square Left
Move One Square Left
Fill In Square with Color
PLUS 12 MORE INSTRUCTIONS!

Display: Show the students this list of symbols.

https://code.org/curriculum/docs/csf/c2_GraphPaper2.png


 Discussion
Goal

The goal for this discussion is to get at the idea that
students can use symbols to stand for entire phrases.
Once they understand that, share with them that making
the switch from listing steps in detail to encoding them is
called "programming."


 Teaching Tip

Notice that we have written our program from left to right
like you would read a book in English. Some students
prefer this method. Others like to start each line of the grid
on a new line of paper. The way they write their program
doesn't matter as much as whether the other people in
their groups can follow along!

Discussion: How could we use these symbols to make
our instructions easier?

Draw out ideas that relate to transitioning from the verbal
instructions to the symbols. Once the students get to that
place, point out that this text:

“Move one square right, Move one square right, Fill-in
square with color”

would now correspond to the program:

Model: Now, have the class help you draw the larger
image using only symbols. Do not worry about
unnecessary steps for now. If their final program works to
create the image, consider it a win.

The classroom may be buzzing with suggestions by this
point. If the class gets the gist of the exercise, this is a
good place to discuss alternate ways of filling out the
same grid. If there is still confusion, save that piece for
another day and work with another example.

See a sample solution below:

The Students' Turn
Group: Divide students into pairs or small groups.

Have each pair/group choose an image from the worksheet.
Discuss the algorithm to draw chosen image with partner(s).
Convert algorithm into a program using symbols.
Trade programs with another pair/group and draw one another's image.
Choose another image and go again!

https://code.org/curriculum/docs/csf/c2_GraphPaper3.png
https://levelbuilder.code.org/curriculum/course2/1/program.png
https://code.org/curriculum/docs/csf/c2_GraphPaper4.png

Wrap Up (15 min)

Journaling / Flash Chat
Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any knowledge
they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today’s lesson about?
How did you feel during today’s lesson?
Draw another image that you could code. Can you write the program that goes with this drawing?
What other types of robots could we program if we changed what the arrows meant?

Optional Assessment (10 min)

Hand out Graph Paper Programming - Assessment and allow students to complete the activity independently after
the instructions have been well explained.
This should feel familiar, thanks to the previous activities.

Extended Learning

Use these activities to enhance student learning. They can be used as outside of class activities or other enrichment.

Better and Better

Have your class try making up their own images.
Can they figure out how to program the images that they create?

Class Challenge

https://code.org/curriculum/docs/csf/c2_GraphPaper7.png

As the teacher, draw an image on a 5x5 grid.
Can the class code that up along with you?

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
file://code.org/contact

COURSE

D
Ch. 1 1 2 3 4 Ch. 2 5 6 Ch. 3 7 8 9 Ch. 4

10

11 12 13 14 Ch. 5 15 16 Ch. 6 17 Ch. 7 18

Lesson 2: Introduction to Online Puzzles
Overview
In this set of puzzles, students will begin with an introduction (or
review depending on the experience of your class) of Code.org's
online workspace. There will be videos pointing out the basic
functionality of the workspace including the Run , Reset , and Step

buttons. Also discussed in these videos: dragging Blockly blocks,
deleting Blockly blocks, and connecting Blockly blocks. Next, students
will practice their sequencing and debugging skills in maze. From
there, students will see new types of puzzles like Collector, Artist, and
Harvester when they learn the very basics of loops.

Purpose
We recognize that every classroom has a spectrum of understanding
for every subject. Some students in your class may be computer
wizards, while others haven't had much experience at all. In order to
create an equal playing (and learning) field, we have developed this
"Ramp Up Stage" for Course D. This can be used as either an
introduction or a review of how to use Code.org and basic computer
science concepts. This stage covers all prerequisites needed to start
Course D.

Agenda
Warm Up (10 min)

Introduction
Vocabulary

Bridging Activities - Programming (10 min)

Preview of Online Puzzles as a Class

Main Activity (30 min)

Online Puzzles

Wrap Up (10 min)

Journaling

View on Code Studio

Objectives
Students will be able to:

Order movement commands as sequential
steps in a program.
Modify an existing program to solve errors.
Break down a long sequence of instructions
into the largest repeatable sequence.

Preparation
Play through the puzzles to find any

potential problem areas for your class.
Make sure every student has a journal.

Links
Heads Up! Please make a copy of any
documents you plan to share with students.

For the Students

Pair Programming - Student Video

Vocabulary
Bug - Part of a program that does not work
correctly.
Debugging - Finding and fixing problems in
an algorithm or program.
Loop - The action of doing something over
and over again.
Program - An algorithm that has been coded
into something that can be run by a machine.
Programming - The art of creating a
program.

https://studio.code.org/s/coursed-2019/stage/2/puzzle/1/
https://www.youtube.com/watch?v=vgkahOzFH2Q

Teaching Guide
Warm Up (10 min)

Introduction
Students will either be learning a lot of new concepts or reviewing a lot of basic concepts. Based on your class's experience,
you can cover the following vocabulary or move on to a bridging activity. We recommend using the following words in
sentences if the definitions aren't explicitly covered.

Vocabulary
This lesson has four new and important vocabulary words:

Program - Say it with me: Pro - Gram An algorithm that has been coded into something that can be run by a machine.

Programming - Say it with me: Pro - Gramm - ing The art of creating a program.

Bug - Say it with me: Bug An error in a program that prevents the program from running as expected.

Debugging - Say it with me: De - Bugg - ing Finding and fixing errors in programs.

Loop - Say it with me: Loo-p The action of doing something over and over again

Bridging Activities - Programming (10 min)

This activity will help bring the unplugged concepts from "Graph Paper Programming" into the online world that the students
are moving into.

Preview of Online Puzzles as a Class
Pull up a puzzle from the lesson. We recommend puzzle 6 for this activity. Break up the students into groups of three or
four. Have them "program" Red, the angry bird, to get to the pig using arrows from "Graph Paper Programming."

The class will not need to use the last arrow.

Once all the groups have an answer, discuss the path as a class.

Main Activity (30 min)

Online Puzzles
Teachers play a vital role in computer science education
and supporting a collaborative and vibrant classroom
environment. During online activities, the role of the
teacher is primarily one of encouragement and support.
Online lessons are meant to be student-centered, so
teachers should avoid stepping in when students get
stuck. Some ideas on how to do this are:

Utilize Pair Programming - Student Video whenever possible during the activity.

https://code.org/curriculum/docs/csf/c2_GraphPaper3.png

 Teacher Tip:

Show the students the right way to help classmates:

Don’t sit in the classmate’s chair
Don’t use the classmate’s keyboard
Don’t touch the classmate’s mouse
Make sure the classmate can describe the solution to
you out loud before you walk away

Encourage students with questions/challenges to start
by asking their partner.
Unanswered questions can be escalated to a nearby
group, who might already know the solution.
Have students describe the problem that they’re
seeing. What is it supposed to do? What does it do?
What does that tell you?
Remind frustrated students that frustration is a step on
the path to learning, and that persistence will pay off.
If a student is still stuck after all of this, ask leading
questions to get the student to spot an error on their own.

 Code Studio levels

Wrap Up (10 min)

Journaling
Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any knowledge
they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today's lesson about?
How did you feel about today's lesson?
List some of the bugs you found in your programs today.
What was your favorite puzzle to complete? Draw your favorite character completing a puzzle.

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

Maze Intro: Programming with Blocks  1 (click tabs to see student view)

Practice  2  3  4  5  6  7 (click tabs to see student view)

Challenge  8 (click tabs to see student view)

Practice  9  10 (click tabs to see student view)

https://creativecommons.org/
file://code.org/contact

COURSE

D
Ch. 1 1 2 3 4 Ch. 2 5 6 Ch. 3 7 8 9 Ch. 4

10

11 12 13 14 Ch. 5 15 16 Ch. 6 17 Ch. 7 18

Lesson 3: Relay Programming
Overview
This activity will begin with a short lesson on debugging and
persistence, then will quickly move to a race against the clock as
students break into teams and work together to write a program one
instruction at a time.

Purpose
Teamwork is very important in computer science. Teams write and
debug code with each other, instead of working as individuals. In this
lesson, students will learn to work together while being as efficient as
possible.

This activity also provides a sense of urgency that will teach students
to balance their time carefully and avoid mistakes without falling too
far behind. This experience can be stressful (which is expected!)
Make sure you provide students with the tools to deal with potential
frustration.

Agenda
Warm Up (15 min)

Where did I go wrong?

Main Activity (20 min)

Relay Programming

Wrap Up (15 min)

Journaling

Extended Learning

View on Code Studio

Objectives
Students will be able to:

Define ideas using code and symbols.
Verify work done by teammates.
Identify signs of frustration

Preparation
Watch the Relay Programming -

Teacher Video.
Locate a wide open space for this activity,

such as the gym or outdoor field.
Print out one Relay Programming -

Activity Packet for each group.
Supply each group with plenty of paper and

pens/pencils.
Print one Relay Programming -

Worksheet for each student.
Make sure every student has a journal.

Links
Heads Up! Please make a copy of any
documents you plan to share with students.

For the Teachers

Relay Programming - Worksheet Answer
Key

Relay Programming - Teacher Debugging
Image

Relay Programming - Teacher Video

For the Students

Relay Programming - Worksheet

Relay Programming - Unplugged Video
(download)
Relay Programming - Activity Packet

Vocabulary

Make a Copy

Make a Copy

Make a Copy

Make a Copy

https://studio.code.org/s/coursed-2019/stage/3/puzzle/1/
https://drive.google.com/open?id=1nneTPNTpboCBMYCr2qpK8DcHSZD6lDi0ovkqkdRDeSc
https://drive.google.com/open?id=1UyiAK9sxuMP3AWjbP0TlsMahNa98LxJwyGWKhcdYpig
https://youtu.be/ZULpfAVJOBo
https://drive.google.com/open?id=1az8K9tDW0XcU2mvQ_1D7CXpZbq7aq5T-x0RiemGlv5s
https://youtu.be/l5MKkXbzOsk
http://videos.code.org/2014/C2-relay-programming.mp4
https://drive.google.com/open?id=1O7nVu6CYhQ_5rWXdAGWEh-e79jZvR__D9xrqSg8Q05o

Algorithm - A list of steps to finish a task.
Bug - Part of a program that does not work
correctly.
Debugging - Finding and fixing problems in
an algorithm or program.
Frustrated - Feeling annoyed or angry
because something is not the way you want
it.
Persistence - Trying again and again, even
when something is very hard.
Program - An algorithm that has been coded
into something that can be run by a machine.



Teaching Guide
Warm Up (15 min)

Recall that in "Graph Paper Programming" we guided our teammate's Automatic Realization Machine (ARM) using arrows.
This warm up will bring back these ideas, which will be needed in the main activity.

Where did I go wrong?
Goal: In this lesson, we want to help students learn to identify and fix bugs in their own programs. The easiest way to do
that is to first present students with a program that contains bugs that are not their fault. Once they've helped you fix "your"
program, share with them how frustrating it can be to make mistakes, and help them see that those feelings are completely
normal and they shouldn't feel embarrassed by them.

Display: Show your students the provided Relay Programming - Teacher Debugging Image .

Discuss: Get the attention of the class and let them know that you are stuck! You have this challenge, and you thought you
had solved it, but it doesn't seem to be working. Your program has a bug, can they help you fix it?

Take a moment to walk them through the rules: - Start at the star - Follow the instructions step-by-step - End when all of the
right squares are filled in

Optional: Follow along by filling in a blank grid. Express frustration when the picture doesn't turn out the way that you
wanted it to.

Think: Can you figure out why my program doesn't work?

Pair: Let students work together to see if they can figure out what the program is supposed to say.

Share: Ask students if anyone was able to figure out a way to solve the problem. When you get a correct answer, let the
students know that they are great at "debugging"!

Discuss: Ask the students if they could tell how you were feeling when you couldn't figure out the answer. They might
suggest that you were "mad" or "sad". Instead of telling them "no", describe that you were feeling a little bit mad, a little bit
sad, and a little bit confused. When you put all of those emotions together, it makes a feeling called "frustration". When you
are "frustrated" you might think you are mad, sad, or confused -- and you might be tempted to give up -- but frustration is a
natural feeling and it's a big hint that you are about to learn something! Instead of quitting, practice persistence. Keep trying
over and over again. After a few times, you will start to understand how to debug your problems!

Distribute: To make sure that students understand the idea of finding and fixing errors (debugging) pass out the Relay
Programming - Worksheet and have students complete the task in pairs.

Optional: If you want to move the activity along more quickly, feel free to complete these as a class, instead.

Transition: Now it's time to play the game!

Main Activity (20 min)

https://curriculum.code.org/media/uploads/Screenshot-2018-05-11-12.30.53.png

 Clarifications

Here are some clarifications that need to be shared from
time to time:

Only one person from each group can be at the image
at one time.
It is okay to discuss algorithms with the rest of the
group in line, even up to the point of planning who is
going to write what when they get to the image.
When a student debugs a program by crossing out an
incorrect instruction (or a grouping of incorrect
instructions) this counts as their entire turn. The next
player will need to figure out how to correct the removed
item.

 Content Corner

For more on persistence and frustration, try reading
Stevie and the Big Project to your students. It will help
them spot moments of frustration. It will also help give
them the tools to deal with it.

If you do not read the book, take a moment to cover tips
on frustration and persistence as a class:

Tips to Help With Frustration

Count to 10
Take deep breaths
Journal about them
Talk to a partner about them
Ask for help

Tips for Being Persistent

Keep track of what you have already tried
Describe what is happening
Describe what is supposed to happen
What does that tell you?
Make a change and try again

Relay Programming
With Graph Paper Programming in mind, it's time to split
up into teams and prepare to run the activity as a relay!

Set-Up: Prepare the Relay Programming - Activity
Packet by printing out one copy for each team of 4-5
students. Cut or fold each page along the center dotted
line.

Go over the rules of the game with your class:

Divide students into groups of 3-5.
Have each group queue up relay-style.
Place an identical image at the other side of the
room/gym/field from each team.
Have the first student in line dash over to the image,
review it, and write down the first symbol in the
program to reproduce that image.
The first student then runs back and tags the next
person in line, then goes to the back of the queue.
The next person in line dashes to the image, reviews
the image, reviews the program that has already been
written, then either debugs the program by crossing
out an incorrect symbol, or adds a new one. That
student then dashes back to tag the next person, and
the process continues until one group has finished
their program.

First group to finish with a program that matches the
image is the winner! Play through this several times, with
images of increasing difficulty.

Go through the game as many times as you can before
time runs out or your students begin feeling exhausted.

Transition: Once the game is over, circle everyone up to
share lessons learned.

Discuss: What did we learn today?

What if each person on a team were allowed to do five
arrows at a time?

How important would it be to debug our own work and the work of the programmer before us?
How about with 10 arrows?
10,000? Would it be more or less important?

Do you think a program is better or worse when more than one person has worked on it?
Do you think people make more or fewer mistakes when they're in a hurry?
If you find a mistake, do you have to throw out the entire program and start over?

Wrap Up (15 min)

Journaling
Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any knowledge
they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

https://drive.google.com/open?id=0B-uvt08wYSQqTUFzaGxKSk45QkU

What was today's lesson about?
How did you feel during today's lesson?
How did teamwork play a role in the success of writing today's program?
Did you start to get frustrated at any point? What did you do about it?

Extended Learning

Use these activities to enhance student learning. They can be used as outside of class activities or other enrichment.

Pass the paper

If you don't have the time or room for a relay, you can have students pass the paper around their desk grouping, each
writing one arrow before they move the paper along.

Fill It, Move It

As the teacher, draw an image with as many filled squares as children in each group.
Have the students write as many arrows in the program as it takes to get to a filled-in square (including actually filling
that square in) before passing to the next person.

Debugging Together

Draw an image on the board. Have each student create a program for the image. Ask students to trade with their elbow
partner and debug each other's code.

Circle the first incorrect step, then pass it back.
Give the students another chance to review and debug their own work.
Ask for a volunteer to share their program.

Ask the class:

How many students had the same program?
Anyone have something different?

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
file://code.org/contact

COURSE

D
Ch. 1 1 2 3 4 Ch. 2 5 6 Ch. 3 7 8 9 Ch. 4

10

11 12 13 14 Ch. 5 15 16 Ch. 6 17 Ch. 7 18

Lesson 4: Debugging with Laurel
Overview
In this online activity, students will practice debugging in the "collector"
environment. Students will get to practice reading and editing code to
fix puzzles with simple algorithms, loops and nested loops.

Purpose
The purpose of this lesson is to teach students that failure is normal
when learning a new skill. Students will be given pre-written programs
that do NOT work. They will be asked to fix these programs. This
process, called "debugging", teaches students essential problem
solving and critical thinking skills. These skills transfer over as
students proceed to harder and harder programming projects.

Agenda
Warm Up (15 min)

Introduction

Bridging Activities - Debugging (15 min)

Unplugged Activity with Paper Blocks
Preview of Online Puzzles as a Class

Main Activity (30 min)

Online Puzzles

Wrap Up (15 min)

Journaling

View on Code Studio

Objectives
Students will be able to:

Read and comprehend given code.
Identify a bug and the problems it causes in a
program.
Describe and implement a plan to debug a
program.

Preparation
Play through the puzzles to find any

potential problem areas for your class.
Make sure every student has a journal.

Links
Heads Up! Please make a copy of any
documents you plan to share with students.

For the Students

Relay Programming - Activity Packet

Unplugged Blocks (Courses C-F) -
Manipulatives

Vocabulary
Bug - Part of a program that does not work
correctly.
Debugging - Finding and fixing problems in
an algorithm or program.

Make a Copy

Make a Copy

https://studio.code.org/s/coursed-2019/stage/4/puzzle/1/
https://drive.google.com/open?id=1O7nVu6CYhQ_5rWXdAGWEh-e79jZvR__D9xrqSg8Q05o
https://docs.google.com/document/d/1cRPELQ28TZMJhc68-eYP1D26Uqzcyfx4RDYuThZJGLo/edit

Teaching Guide
Warm Up (15 min)

Introduction
One of the most important parts of learning to program is learning to debug. Ask the class if they have ever learned a new
skill and faced failure.

For example:

Learning to ride a bike and falling down
Learning to bake and burning the food
Learning to play a sport and not winning a game

Facing failure is very common when learning new things. Have students discuss past failures and how they overcame them.

In programming, computer scientists often run into "bugs" in their code.

Bug: Part of a program that does not work correctly.

A bug can really mess up the program, so it's important to learn to "debug" your code.

Debug: Finding and fixing problems in your algorithm or program.

Continue the conversation if you think your class needs more of an introduction, but leave time for one of the bridging
activities.

Bridging Activities - Debugging (15 min)

This activity will help bring the unplugged concepts from "Debugging Unplugged: Relay Programming" into the online world
that the students are moving into. Choose one of the following to do with your class:

Unplugged Activity with Paper Blocks
Break your class up into teams of 3-5 and go to a large space. This space could be in a gym or outside. Queue up these
teams like in "Relay Programming". Pick a semi-difficult design from Relay Programming - Activity Packet . Display this
design at the end of a long distance between each team. Along with the display, provide each team with enough paper
blocks from Unplugged Blocks (Courses C-F) - Manipulatives . Each team will need plenty of fill 1 and move ___

blocks. The move ___ blocks can either be filled in ahead of time, or filled in during the game. Either way, make sure these

blocks are properly defined when the game is playing out.

Once all the teams are lined up, display or read out the following rules:

The first student in line gets to run over to the image, review it, and place the first code block in the program to reproduce
that image.
The first student then runs back and tags the next person in line, then goes to the back of the queue.
The next person in line dashes to the image, reviews the image, reviews the program that has already been written, then
either debugs the program by taking out an incorrect code block, or adds a new block in. That student then dashes back
to tag the next person, and the process continues until one group has finished their program.

Make sure the students are only using the fill 1 or move ___ blocks, and only placing one down per turn. The first team to

correctly write out the code for their image wins.

Preview of Online Puzzles as a Class

Group the students into teams of 3. Choose a puzzle from the lesson. We recommend the fifth puzzle. Have the students in
each team sit at a computer with the puzzle displayed. Each team only gets one computer and only one student can be
looking at the screen. Display or read the following rules:

Only one student in each team can look at the screen.
This person can only delete or add one block at a time. Once that person has added or removed a block, they can tap
the shoulder of the next person.
The next person can proceed to play out their turn.
No turns can be skipped or repeated, everyone must play an equal amount.

The first team to finish the puzzle correctly wins!

Main Activity (30 min)

Online Puzzles
It might be helpful for students to sit with their teams from the bridging activities. Every student should work on these
puzzles individually or in pairs, but having a closely knit group to ask and answer questions with can help develop
confidence and understanding with the subject matter.

 Code Studio levels

Wrap Up (15 min)

Journaling
Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any knowledge
they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today’s lesson about?
How did you feel during today’s lesson?
What is a bug? How do you know there is a bug in your program?
What does it mean to debug code? How do you debug a program?

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

De-bugging with the Step Button  1 (click tabs to see student view)

Practice  2  3  4  5  6 (click tabs to see student view)

Challenge  7 (click tabs to see student view)

Practice  8  9 (click tabs to see student view)

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
file://code.org/contact

COURSE

D
Ch. 1 1 2 3 4 Ch. 2 5 6 Ch. 3 7 8 9 Ch. 4

10

11 12 13 14 Ch. 5 15 16 Ch. 6 17 Ch. 7 18

Lesson 5: Events in Bounce
Overview
In this online activity, students will learn what events are, and how
computers use them in programs like video games. Students will work
through puzzles making the program react to events (like arrow
buttons being pressed.) At the end of the puzzle, students will have
the opportunity to customize their game with different speeds and
sounds.

Purpose
Events are very common in computer programs, especially in video
games.

In this lesson, students will develop their understanding of events by
making a sports-based game. Students will learn to make their paddle
move according to arrow keys, and make noises when objects collide.
At the very end, they will get to customize their game to make it more
unique!

Agenda
Warm Up (10 min)

Introduction

Main Activity (30 min)

Online Puzzles

Wrap Up (10 min)

Assessment
Journaling

Extended Learning

View on Code Studio

Objectives
Students will be able to:

Identify actions that correlate to input events.
Create an interactive game using sequence
and event-handlers.
Share a creative artifact with other students.

Preparation
Make sure every student has a journal.
Play through the puzzles to find any

potential problem areas for your class.
Read the "Events in Bounce - How Do

They Happen?" slide deck (to be presented
to students at end of class).

Links
Heads Up! Please make a copy of any
documents you plan to share with students.

For the Teachers

Events in Bounce - How Do They
Happen? - Slide Deck

Vocabulary
Event - An action that causes something to
happen.

https://studio.code.org/s/coursed-2019/stage/5/puzzle/1/
https://docs.google.com/presentation/d/1dumoPi0CxOOAUejCCqfuby5oBgX3c34CYX4WrHR-t9Q/edit?usp=sharing




 Teaching Tip

Although introduced in this lesson, the slide deck "Events
in Bounce - How Do They Happen?" can be applied more
generally to express the relationship between hardware
and software. Particularly, the final slide simplifies the
input-to-output sequence and can be made into a poster
for your classroom.

 Teaching Tip

Remind the students to only share their work with their
close friends or family. For more information watch or
show the class Pause and Think Online - Video .

Teaching Guide
Warm Up (10 min)

Introduction
Ask the students to come sit down near you. Now tell them to all stand up!

Tell the students what you just did was declare an event and an action. When you say to sit down, it is an event. The action
responding to this event is the class sitting down. This is the same when you ask the class to stand up. Events and actions
are easily identifiable in our lives.

Some other events and actions include:

Feeling hungry and eating food
Stubbing your toe and yelling "Ouch!"
Getting the basketball in the basket and scoring a point for your team!

Ask the class to come up with a couple of more events. Tell them that they will be making a game where the program will
have actions associated to events that they code!

Main Activity (30 min)

Online Puzzles

 Code Studio levels

At the end of the set of puzzles, students will have the
opportunity to make their game unique. Have the
students try new ways to make the game more
challenging. For example, try playing with many balls at
once, or each time the ball bounces off a wall, launch
more balls.

Wrap Up (10 min)

Assessment
Present the Events in Bounce - How Do They
Happen? slide deck to students. Allow them to record
the correct order of events on the second slide in their
journals first. Call on a few students to share their
answers before revealing the third slide. Discuss the
correct sequence with the class.

Correct Order: D, B, A, C

Practice  1  2  3  4  5  6  7 (click tabs to see student view)

Free Play  8 (click tabs to see student view)

https://www.youtube.com/watch?v=rgbZAWnOWOo

Journaling
Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any knowledge
they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today’s lesson about?
How did you feel during today’s lesson?
What did you do to make your game super cool?
What kind of game do you want to code in the future?

Extended Learning
Take Me Out to the Ball Game

Take the students outside to play some sort of ball game. Keep track of events and actions. For example, not dribbling in
basketball results in a traveling foul and the other team gets the ball. In soccer, kicking the ball out of bounds results in the
other team kicking the ball in. Getting the ball to the goal results in a point! Make up more events if your students are into it.
Have the all of the students yell "Yippee" when the captain of one team scores a point. Have everyone fall to the ground
and roll around if a student makes two goals in a row!

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

CS - Computing Systems

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
file://code.org/contact

COURSE

D
Ch. 1 1 2 3 4 Ch. 2 5 6 Ch. 3 7 8 9 Ch. 4

10

11 12 13 14 Ch. 5 15 16 Ch. 6 17 Ch. 7 18

Lesson 6: Build a Star Wars Game
Overview
In this lesson, students will practice using events to build a game that
they can share online. Featuring R2-D2 and other Star Wars
characters, students will be guided through events, then given space
to create their own game.

Purpose
CS Fundamentals is not simply about teaching computer science, it is
about making computer science fun and exciting. In this series,
students will learn about events using popular characters from Star
Wars. These puzzles blur the lines between "learning" and "fun". Also,
students will learn to recognize regular programming practices in
games so that when they play games at home, they can see common
computer science principles being used.

Agenda
Warm Up (15 min)

Introduction

Main Activity (30 min)

Online Puzzles

Wrap Up (15 min)

Journaling

View on Code Studio

Objectives
Students will be able to:

Create an animated, interactive game using
sequence and events.
Identify actions that correlate to input events.

Preparation
Play through the puzzles and find any

potential problem areas.
Make sure every student has a journal.

Vocabulary
Event - An action that causes something to
happen.

https://studio.code.org/s/coursed-2019/stage/6/puzzle/1/

 Teacher Tip

If you're not quite sure if a student's response describes
an event, try to break down the response. Is there an
action and a response?

For example:

Crossing the finish line and having on screen characters
congratulate you
Finding a big pot of treasure (or other item) and
watching your inventory grow
Buying new items from the game's store and having the
item to use
Pressing the buttons on a game controller and having
your character do something cool

 Teacher Tip

Remind the students to only share their work with their
close friends or family. For more information watch or
show the class:

Pause and Think Online - Video .

Teaching Guide
Warm Up (15 min)

Introduction
In a class discussion, ask the students what their favorite
video game is (you might need to remind the students to
only use games that are classroom appropriate). Ask the
students what their favorite part of the game is.

Most of the time, students will respond with some kind of
event. When you recognize a student response that
describes an event, ask the student to describe it further.

Once the student is done describing their fun, take a
minute to relate it back to the definition of an event.

Event: An action that causes something to happen.

Ask the students to try and relate some of their favorite
parts of video games and how they can be described as
events. Have them pair share and discuss the differences
between their events and their partner's.

Main Activity (30 min)

Online Puzzles

 Code Studio levels

Students will likely be very excited to make their own Star
Wars game at the end of this set of puzzles. If there's
time, ask them to plan out what they want the game to
do. The planning and preparation will help the students
better recognize the key concepts this lesson is trying to
teach. Encourage the students to share and remix each
other's games at the end of this lesson.

Wrap Up (15 min)

Journaling
Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any knowledge
they obtained today and build a review sheet for them to look to in the future.

Practice  1  2  3  4  5  6  7  8  9

(click tabs to see student view)

Free Play  10 (click tabs to see student view)

https://www.youtube.com/watch?v=rgbZAWnOWOo

Journal Prompts:

What was today's lesson about?
How do you feel about today's lesson?
Give an example of an event you used in your program today?
Why is it important not to share private information online? How do you know if information is private?

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
file://code.org/contact

COURSE

D
Ch. 1 1 2 3 4 Ch. 2 5 6 Ch. 3 7 8 9 Ch. 4

10

11 12 13 14 Ch. 5 15 16 Ch. 6 17 Ch. 7 18

Lesson 7: Loops in Ice Age
Overview
As a quick update (or introduction) to using loops, this stage will have
students using the repeat block to get Scrat to the acorn more

efficiently.

Purpose
In this lesson, students will be learning more about loops and how to
implement them in Blockly code. Using loops is an important skill in
programming because manually repeating commands is tedious and
inefficient. With these Code.org puzzles, students will learn to add
instructions to existing loops, gather repeated code into loops, and
recognize patterns that need to be repeated.

Agenda
Warm Up - The Unplugged Foundation (10 min)

Repeat After Me

Online Foundation: Preview Loops in Ice Age
Main Activity (30 min)

Online Puzzles

Wrap Up (5 - 10 min)

Journaling

Extended Learning

View on Code Studio

Objectives
Students will be able to:

Construct a program using structures that
repeat areas of code
Improve existing code by finding areas of
repetition and moving them into looping
structures

Preparation
(Optional) Pick a couple of puzzles to do as

a group with your class.
Make sure each student has a journal.

Links
Heads Up! Please make a copy of any
documents you plan to share with students.

For the Students

Pair Programming - Student Video
Feeling Faces - Emotion Images

Vocabulary
Loop - The action of doing something over
and over again.
Repeat - Do something again

Make a Copy

file://docs.code.org/spritelab/codestudio_repeat/
https://studio.code.org/s/coursed-2019/stage/7/puzzle/1/
https://www.youtube.com/watch?v=vgkahOzFH2Q
https://docs.google.com/document/d/1L3fdbKVZ2oHXjh43-b18esR7UbHgo4OQ9b_3RptRtFQ

Teaching Guide
Warm Up - The Unplugged Foundation (10 min)

Repeat After Me
Model: Ask for a volunteer and have them stand.

Instruct your volunteer to walk around the table (or their chair, or a friend).
When they finish, instruct them to do it again, using the exact same words you did before.
When they finish, instruct again.
Then again.

Prompt: Would it have been easier for me to just ask you to go around the table four times?

Think: What if I wanted you to do it ten times? How would you reword my instructions so that they were more efficient and I
didn't have to repeat myself so much? Feel free to write your instructions down on a piece of scrap paper.

Share: Ask a few students to share their instructions with the class, pointing out how each approach has simplified the
overall approach to giving instructions.

Say: Today we're going to work on finding ways to make giving lots of instructions easier, especially when those
instructions repeat themselves a lot.

Online Foundation: Preview Loops in Ice Age

To finish the connection, preview an online puzzle (or two) as a class.

Model: Reveal an entire online puzzle from the progression to come. We recommend Puzzle 5. Point out the "Play Area"
with Scrat and the acorn, as well as the "Work Space" with the Blockly code. Explain that this Blockly code is now the
language that the class will be using to help Scrat get to the acorn. Do students see any similarities to the exercise that they
just did? What are the big differences?

Work with your class to drag code into the workspace in such a way that Scrat (eventually) gets to the acorn.

Transition: Students should now be ready to transition to computers to complete online puzzles on their own.

Main Activity (30 min)

Online Puzzles
As students work through the puzzles, see if they can figure out how many blocks they use with a loop vs. without a loop.

 Code Studio levels

Practice  1  2 (click tabs to see student view)

Using the Repeat Block  3 (click tabs to see student view)

Practice  4  5  6  7  8  9 (click tabs to see student view)

Challenge  10 (click tabs to see student view)

 Teacher Tip:

Show the students the right way to help classmates by:

Don’t sit in the classmate’s chair
Don’t use the classmate’s keyboard
Don’t touch the classmate’s mouse
Make sure the classmate can describe the solution to
you out loud before you walk away

Circulate: Teachers play a vital role in computer science
education and supporting a collaborative and vibrant
classroom environment. During online activities, the role
of the teacher is primarily one of encouragement and
support. Online lessons are meant to be student-
centered, so teachers should avoid stepping in when
students get stuck. Some ideas on how to do this are:

Utilize Pair Programming - Student Video
whenever possible
Encourage students with questions/challenges to start
by asking their partner
Unanswered questions can be escalated to a nearby group, who might already know the solution
Remind students to use the debugging process before you approach
Have students describe the problem that they’re seeing. What is it supposed to do? What does it do? What does that tell
you?
Remind frustrated students that frustration is a step on the path to learning, and that persistence will pay off.
If a student is still stuck after all of this, ask leading questions to get the student to spot an error on their own.

Wrap Up (5 - 10 min)

Journaling
Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any knowledge
they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today’s lesson about?
Draw one of the Feeling Faces - Emotion Images that shows how you felt about today's lesson in the corner of your
journal page.
Draw your own maze with Scrat trying to get to an Acorn. Will loops help you solve it?
Draw yourself using a loop to do an everyday activity, like brushing your teeth.

Extended Learning

So Moving

Give the students pictures of actions or dance moves that they can do.
Have students arrange moves and add loops to choreograph their own dance.

Share the dances with the rest of the class.

Connect It Back

Find some YouTube videos of popular dances that repeat themselves.
Can your class find the loops?
Try the same thing with songs!

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

Practice  11  12 (click tabs to see student view)

https://www.youtube.com/watch?v=vgkahOzFH2Q
https://docs.google.com/document/d/1L3fdbKVZ2oHXjh43-b18esR7UbHgo4OQ9b_3RptRtFQ

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
file://code.org/contact

COURSE

D
Ch. 1 1 2 3 4 Ch. 2 5 6 Ch. 3 7 8 9 Ch. 4

10

11 12 13 14 Ch. 5 15 16 Ch. 6 17 Ch. 7 18

Lesson 8: Drawing Shapes with Loops
Overview
This lesson builds on the understanding of loops from previous
lessons and gives students a chance to be truly creative. This activity
doubles as a debugging exercise for extra problem-solving practice.

Purpose
This series highlights the power of loops with an array of puzzles
meant to get students thinking about why repeat loops are superior to

longhand.

Agenda
Warm Up (15 min)

Introduction

Main Activity (30 min)

Online Puzzles

Wrap Up (15 min)

Journaling

View on Code Studio

Objectives
Students will be able to:

Identify the benefits of using a loop structure
instead of manual repetition.
Differentiate between commands that need to
be repeated in loops and commands that
should be used on their own.

Preparation
Play through the puzzles to find any

potential problem areas for your class.
Make sure every student has a journal.

Vocabulary
Loop - The action of doing something over
and over again.
Repeat - Do something again

file://docs.code.org/spritelab/codestudio_repeat/
https://studio.code.org/s/coursed-2019/stage/8/puzzle/1/

Teaching Guide
Warm Up (15 min)

Introduction
Students should have had an introduction to loops at this point. Based on what you think your class could benefit from, we
recommend:

Creating a new dance with loops just like in "Getting Loopy"
Reviewing a puzzle from the last lesson
Previewing a puzzle from this lesson

Any of these should help prepare your class for fun with the online puzzles!

Main Activity (30 min)

Online Puzzles

 Code Studio levels

Some students may discover where to add repeat loops by writing out the program without loops then circling sections of

repetitions. If the students in your class seem like they could benefit from this, have them keep paper and pencils beside
them at their machines. Students might also enjoy drawing some of the shapes and figures on paper as they program
online.

Wrap Up (15 min)

Journaling
Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any knowledge
they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

Artist Intro with JR Hildebrand  1 (click tabs to see student view)

Practice  2  3 (click tabs to see student view)

Loops with the Artist  4 (click tabs to see student view)

Practice  5  6  7  8  9 (click tabs to see student view)

Challenge  10 (click tabs to see student view)

Practice  11 (click tabs to see student view)

https://www.codecurricula.com/csf-18/coursec/7/
file://docs.code.org/spritelab/codestudio_repeat/

What was today’s lesson about?
How did you feel during today’s lesson?
What was the coolest shape or figure you programmed today? Draw it out!
What is another shape or figure you could program using loops? Can you come up with the code to create it?

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
file://code.org/contact

COURSE

D
Ch. 1 1 2 3 4 Ch. 2 5 6 Ch. 3 7 8 9 Ch. 4

10

11 12 13 14 Ch. 5 15 16 Ch. 6 17 Ch. 7 18

Lesson 9: Nested Loops in Maze
Overview
In this online activity, students will have the opportunity to push their
understanding of loops to a whole new level. Playing with the Bee and
Plants vs Zombies, students will learn how to program a loop to be
inside of another loop. They will also be encouraged to figure out how
little changes in either loop will affect their program when they click
Run .

Purpose
In this introduction to nested loops, students will go outside of their
comfort zone to create more efficient solutions to puzzles.

In earlier puzzles, loops pushed students to recognize repetition.
Here, students will learn to recognize patterns within repeated
patterns to develop these nested loops. This stage starts off by
encouraging students try to solve a puzzle where the code is irritating
and complex to write out the long way. After a video introduces
nested loops, students are shown an example and asked to predict
what will happen when a loop is put inside of another loop. This
progression leads into plenty of practice for students to solidify and
build on their understanding of looping in programming.

Agenda
Warm Up (10 min)

Introduction

Main Activity (30 min)

Online Puzzles

Wrap Up (15 min)

Journaling

View on Code Studio

Objectives
Students will be able to:

Break complex tasks into smaller repeatable
sections.
Recognize large repeated patterns as made
from smaller repeated patterns.
Identify the benefits of using a loop structure
instead of manual repetition.

Preparation
Play through the puzzles to find any

potential problem areas for your class.
Make sure every student has a journal.

Vocabulary
Command - An instruction for the computer.
Many commands put together make up
algorithms and computer programs.
Loop - The action of doing something over
and over again.
Repeat - Do something again

https://studio.code.org/s/coursed-2019/stage/9/puzzle/1/

Teaching Guide
Warm Up (10 min)

Introduction
Briefly review with the class what loops are and why we use them.

What do loops do?
Loops repeat a set of commands. (see vocabulary on command if students don't recognize it)

How do we use loops?
We use loops to create a pattern made of repeated actions.

Tell the class that they will now be doing something super cool: using loops inside loops. Ask the class to predict what kinds
of things we would be using a loop inside of a loop for.

"If a loop repeats a pattern, then looping a loop would repeat a pattern of patterns!"

Students don't need to understand this right away, so feel free to move on to the online puzzles even if students still seem a
little confused.

Main Activity (30 min)

Online Puzzles
We highly recommend pair programming for this lesson. This may not be an easy topic for the majority of your students.
Working with a partner and discussing potential solutions to the puzzles might ease the students' minds.

Also, have paper and pencils nearby for students to write out their plan before coding. Some puzzles have a limit on the
number of certain blocks you can use, so if students like to write out the long answer to find the repeats, paper can be
useful.

 Code Studio levels

Practice  1  2 (click tabs to see student view)

Nested Loops with the Bee  3 (click tabs to see student view)

Prediction  4 (click tabs to see student view)

Practice  5  6  7  8  9 (click tabs to see student view)

Challenge  10 (click tabs to see student view)

Practice  11  12 (click tabs to see student view)

Prediction  13 (click tabs to see student view)

Wrap Up (15 min)

Journaling
Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any knowledge
they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today's lesson about?
How did you feel about today's lesson?
What is a nested loop?
Can you draw a puzzle that would use a nested loop? Try coding the solution to your own puzzle.

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

Levels  Extra  Extra (click tabs to see student view)

https://creativecommons.org/
file://code.org/contact

COURSE

D
Ch. 1 1 2 3 4 Ch. 2 5 6 Ch. 3 7 8 9 Ch. 4

10

11 12 13 14 Ch. 5 15 16 Ch. 6 17 Ch. 7 18

Lesson 10: Conditionals with Cards
Overview
This lesson demonstrates how conditionals can be used to tailor a
program to specific information. We don’t always have all of the
information we need when writing a program. Sometimes you will
want to do something different in one situation than in another, even if
you don't know what situation will be true when your code runs. That
is where conditionals come in. Conditionals allow a computer to make
a decision, based on the information that is true any time your code is
run.

Purpose
One of the best parts of teaching conditionals is that students
already understand the concept from their everyday lives.

This lesson merges computer science into the real world by building
off of their ability to tell if a condition is true or false. Students will learn
to use if statements to declare when a certain command should be

run, as well as if / else statements to declare when a command

should be run and what to run otherwise. Students may not recognize
the word conditionals, but most students will understand the idea of
using "if" to make sure that some action only occurs when it is
supposed to.

Agenda
Warm Up (20 min)

Vocabulary
Introduction

Main Activity (20 min)

Conditionals with Cards Sample Program - Teacher
Prep Guide

Wrap Up (15 min)

Flash Chat: What did we learn?
Journaling

Assessment (5 min)
Extended Learning

View on Code Studio

Objectives
Students will be able to:

Define circumstances when certain parts of a
program should run and when they shouldn't.
Determine whether a conditional is met based
on criteria.
Traverse a program and predict the outcome,
given a set of input.

Preparation
(Optional) Watch the Lesson in Action

Video.
Gather decks of cards or something

similar.
Print or display the sample programs.
Print one assessment for each student.
Make sure every student has a journal.

Links
Heads Up! Please make a copy of any
documents you plan to share with students.

For the Teachers

Conditionals with Cards - Lesson in Action
Video
Conditionals with Cards Sample
Program - Teacher Prep Guide

Conditionals with Cards - Assessment
Video
Conditionals with Cards - Assessment
Answer Key

For the Students

Conditionals with Cards - Unplugged
Video (download)
Conditionals with Cards - Assessment

Make a Copy

Make a Copy

Make a Copy

file://docs.code.org/spritelab/codestudio_ifStatement/
https://studio.code.org/s/coursed-2019/stage/10/puzzle/1/
https://www.youtube.com/watch?v=2m2Rn9VxHfU
https://drive.google.com/open?id=151s4_0NuDhuzprjPGlDubPZodeJQCEJElsvdkSSqzPM
https://youtu.be/TbUaEnAYPjI
https://drive.google.com/open?id=1SsfkUoEg316vjBSxrRNLN4q4V2-yYW8HAK4m9snLtac
https://youtu.be/UymN4lTL50s
http://videos.code.org/2014/C2-conditionals-with-cards.mp4
https://drive.google.com/open?id=1LAJIGKZkVE8Hx68qJZxOUyQ0iw1jhgIWSMGh_fv5zN0

Vocabulary
Conditionals - Statements that only run
under certain conditions.

Teaching Guide
Warm Up (20 min)

Vocabulary
This lesson has one new and important word:

Conditionals - Say it with me: Con-di-shun-uls

Statements that only run under certain conditions.

Introduction
We can start this lesson off right away

Let the class know that if they can be completely quiet for thirty seconds, you will do something like:
Sing an opera song
Give five more minutes of recess
Do a handstand

Start counting right away.
If the students succeed, point out that they succeeded, so they get the reward.
Otherwise, point out that they were not completely quiet for a full thirty seconds, so they do not get the reward.

Ask the class "What was the condition of the reward?"
The condition was IF you were quiet for 30 seconds

If you were, the condition would be true, and you would get the reward.
If you weren't, the condition would be false, so the reward woud not apply.

Can we come up with another conditional?
If you can guess my age correctly, the class can give you applause.
If I know an answer, I can raise my hand.
What examples can you come up with?

Sometimes, we want to have an extra condition, in case the "IF" statement is not true.
This extra condition is called an "ELSE" statement
When the "IF" condition isn't met, we can look at the "ELSE" for what to do

Example: IF I draw a king from this deck of cards, everybody claps. Or ELSE, everyone says "Awwwwwwe."
Let's try it. (Draw a card and see if your class reacts appropriately.)

Ask the class to analyze what just happened.
What was the IF?
What was the ELSE?
Which condition was met?

Believe it or not, we have even one more option.
What if I wanted you to clap if I draw a 7, or else if I draw something less than seven you say "YAY," or else you
say "Awwwwwwwe"?

This is why we have the terms If, Else-If, and Else.
If is the first condition
Else-If gets looked at only if the "If" isn't true.
Else gets looked at only if nothing before it is true.

Now let's play a game.

Main Activity (20 min)

Conditionals with Cards Sample Program - Teacher Prep Guide

Directions:

Create a few programs with your class that depend on things like a card's suit, color, or value to award or subtract points.
You can write the program as an algorithm, pseudocode, or actual code.

Here is a sample algorithm:

if (CARD is RED)
 Award YOUR team 1 point

Else
 Award OTHER team 1 point

Here is a sample of the same program in pseudocode:

If (card.color == RED){
 points.yours = points.yours + 1;
}

Else {
 points.other = points.other + 1;
}

Decide how you want to split your class into teams.
Each team should have a pile of cards (at least as many cards as team members) nearby.
Put one of your “Programs” up on the board for all to see.
Have the teams take turns drawing cards and following the program to see how many points they score in each round.
Play several times with several different programs to help the students really understand conditionals.

Once the class has had some practice, you can encourage students to nest conditionals inside one another. Make sure
they understand that if the card is red, YOUR team is awarded 1 point, and then nothing else happens, since the
condition was met:

If (CARD is RED)
 Award YOUR team 1 point

Else
 If (CARD is higher than 9)
 Award OTHER team 1 point
 Else
 Award YOUR team the same number of points on the card

Here is the same program in pseudocode:

If (card.color == RED){
 points.yours = points.yours + 1;
}
Else {
 if (card.value > 9){
 points.other = points.other + 1;
 }
 Else {
 points.yours = points.yours + card.value;
 }
}

Wrap Up (15 min)

Flash Chat: What did we learn?
If you were going to code this up in Blocky, what would you need to add around your conditionals to let the code run
more than one time? (A loop)

 Lesson Tip

Flash Chat questions are intended to spark big-picture
thinking about how the lesson relates to the greater world
and the students' greater future. Use your knowledge of
your classroom to decide if you want to discuss these as a
class, in groups, or with an elbow partner.

What other things do you do during the day under certain conditions?
If you are supposed to do something when the value of a card is more than 5, and you draw a 5, do you meet that
condition?
Notice that conditions are either "True" or "False."
There is no assessment of a condition that evaluates
to "Banana."
When you need to meet several combinations of
conditions, we can use something called "nested
conditionals."

What do you think that means?
Can you give an example of where we saw that during the game?

What part of that game did you like the best?

Journaling
Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any knowledge
they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today's lesson about?
How do you feel about today's lesson?
What is a conditional? How did you use a conditional today?
What are some of the conditionals you used today? Can you come up with some more that you would use with a deck of
cards?

Assessment (5 min)

Hand out Conditionals with Cards - Assessment and allow students to complete the activity independently after the
instructions have been well explained. This should feel familiar, thanks to the previous activities. Here's a Conditionals
with Cards - Assessment Video to watch as a guide.

Extended Learning

Use these activities to enhance student learning. They can be used as outside of class activities or other enrichment.

True/False Tag

Line students up as if to play Red Light / Green Light .
Select one person to stand in front as the Caller.
The Caller chooses a condition and asks everyone who meets that condition to take a step forward.

If you have a red belt, step forward.
If you are wearing sandals, take a step forward.

Try switching it up by saying things like "If you are not blonde, step forward."

Nesting

Break students up into pairs or small groups.
Have them write if statements for playing cards on strips of paper, such as:

the suit is clubs
the color is red

Have students create similar strips for outcomes.
Add one point
Subtract one point

Once that's done, have students choose three of each type of strip and three playing cards, paying attention to the order

http://www.gameskidsplay.net/games/sensing_games/rl_gl.htm

selected.
Using three pieces of paper, have students write three different programs using only the sets of strips that they selected,
in any order.

Encourage students to put some if statements inside other if statements.
Now, students should run through all three programs using the cards that they drew, in the same order for each program.

Did any two programs return the same answer?
Did any return something different?

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
file://code.org/contact

COURSE

D
Ch. 1 1 2 3 4 Ch. 2 5 6 Ch. 3 7 8 9 Ch. 4

10

11 12 13 14 Ch. 5 15 16 Ch. 6 17 Ch. 7 18

Lesson 11: If/Else with Bee
Overview
Up until this point students have been writing code that executes
exactly the same way each time it is run - reliable, but not very
flexible. In this lesson, your class will begin to code with conditionals,
allowing them to write code that functions differently depending on the
specific conditions the program encounters.

Purpose
After being introduced to conditionals in "Conditionals with Cards,"
students will now practice using them in their programs. The if / else

blocks will allow for a more flexible program. The bee will only collect
nectar if there is a flower or make honey if there is a honeycomb.
Students will also practice and recognize a connection between if /

else blocks and while loops in this set of puzzles.

Agenda
Warm Up (10 min)

Introduction

Bridging Activity - Conditionals (15 min)

Unplugged Activity Using Paper Blocks
Preview of Online Puzzles

Main Activity (30 min)

Online Puzzles

Wrap Up (15 min)

Journaling

Extended Learning

View on Code Studio

Objectives
Students will be able to:

Translate spoken language conditional
statements into a program.
Solve puzzles using a combination of looped
sequences and conditionals.

Preparation
Play through the puzzles to find any

potential problem areas for your class.
Make sure every student has a journal.

Links
Heads Up! Please make a copy of any
documents you plan to share with students.

For the Students

Unplugged Blocks (Courses C-F) -
Manipulatives

Vocabulary
Conditionals - Statements that only run
under certain conditions.

Make a Copy

https://studio.code.org/s/coursed-2019/stage/11/puzzle/1/
https://docs.google.com/document/d/1cRPELQ28TZMJhc68-eYP1D26Uqzcyfx4RDYuThZJGLo/edit

Teaching Guide
Warm Up (10 min)

Introduction
Review the "Conditionals with Cards" activity with your students.

What is a conditional statement?
When is a conditional useful?
What are some of the conditions you used in the last activity?

Now we're going to use conditionals with the Code.org bee to help him deal with some mysterious clouds. We don't know if
his flowers have nectar or not, so we'll need to use conditionals to make sure that we collect nectar if it's there, but that we
don't try to collect nectar from a flower that doesn't have any.

Bridging Activity - Conditionals (15 min)

This activity will help bring the unplugged concepts from "Conditionals With Cards" into the online world that the students
are moving into. Choose one of the following to do with your class:

Unplugged Activity Using Paper Blocks
Print and cut out 2-3 if / else and blank action blocks from Unplugged Blocks (Courses C-F) - Manipulatives and pull

out a deck of cards. Ask the class to come up with a couple of conditionals to use with the deck of cards like they did in
"Conditionals with Cards." When the conditionals have been decided on as a class, fill in the blank part of the if block with

the various card values that the kids came up with. Examples include "King of Hearts", "Even Numbered", or "Diamonds".
Fill in the action blocks with the actions the students came up with. Make sure the students know the action blocks need to
be directly under the if or else block. Below is an example.

Now shuffle the deck of cards and play "Conditionals with Cards" again. Flip through the deck card-by-card, reacting to
cards if a conditional has been made for it.

Preview of Online Puzzles
Pull up a puzzle from this lesson, we recommend puzzle 9.

Ask the class what the bee should do when it gets to the cloud.
The bee should use a conditional to check for a flower or a honeycomb.

Use the if at flower / else block. Ask the class what the bee should do if there's a flower. If there's not a flower, there will

be a honeycomb. What should the bee do then?
The bee should get nectar if there is a flower and make honey if there is a honeycomb.

Fill in the rest of the code and press Run . Discuss with the class why this worked.

Main Activity (30 min)

file://docs.code.org/spritelab/codestudio_ifStatement/
file://docs.code.org/spritelab/codestudio_ifStatement/
https://cdo-curriculum.s3.amazonaws.com/media/uploads/D.10-Lesson-hint.png

Online Puzzles
These puzzles might sprout some questions, so have the students work in pairs or implement the "Ask three before you
ask me" rule (have the students ask three other peers for help before they go to the teacher.) This will spark discussions
that will develop each student's understanding.

 Code Studio levels

Wrap Up (15 min)

Journaling
Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any knowledge
they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today's lesson about?
How did today's lesson make you feel?
What conditionals did you use in your code today?
What are some other conditionals a bee might use? Examples include:

if there is a tree in front of me, buzz out of the way
if my wing is hurt, rest on the ground
if I see another bee, say "Hello!"

Extended Learning

Conditionals: If Statements  1 (click tabs to see student view)

Prediction  2 (click tabs to see student view)

Practice  3  4  5  6  7 (click tabs to see student view)

Conditionals: If and If/Else Statements  8 (click tabs to see student view)

Practice  9 (click tabs to see student view)

Prediction  10 (click tabs to see student view)

Challenge  11 (click tabs to see student view)

Practice  12  13 (click tabs to see student view)

Levels  Extra  Extra (click tabs to see student view)

Use these activities to enhance student learning. They can be used as outside of class activities or other enrichment.

True/False Tag

Line students up as if to play Red Light / Green Light .
Select one person to stand in front as the Caller.
The Caller chooses a condition and asks everyone who meets that condition to take a step forward.

If you have a red belt, step forward.
If you are wearing sandals, take a step forward.

Try switching it up by saying things like "If you are not blonde, step forward."

Nesting

Break students up into pairs or small groups.
Have them write if statements for playing cards on strips of paper, such as:

If the suit is clubs
If the color is red

Have students create similar strips for outcomes.
Add one point
Subtract one point

Once that's done, have students choose three of each type of strip and three playing cards, paying attention to the order
selected.
Using three pieces of paper, have students write three different programs using only the sets of strips that they selected,
in any order.

Encourage students to put some if statements inside other if statements.
Now, students should run through all three programs using the cards that they drew, in the same order for each program.

Did any two programs return the same answer?
Did any return something different?

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://www.gameskidsplay.net/games/sensing_games/rl_gl.htm
https://creativecommons.org/
file://code.org/contact

COURSE

D
Ch. 1 1 2 3 4 Ch. 2 5 6 Ch. 3 7 8 9 Ch. 4

10

11 12 13 14 Ch. 5 15 16 Ch. 6 17 Ch. 7 18

Lesson 12: While Loops in Farmer
Overview
By the time students reach this lesson, they should already have
plenty of practice using repeat loops, so now it's time to mix things up.

While loops are loops that continue to repeat commands while a
condition is met. While loops are used when the programmer doesn't

know the exact number of times commands need to be repeated, but
does know what condition needs to be true in order for the loop to
continue repeating. For example, students will be working to fill holes
and dig dirt in Farmer. They will not know the size of the holes or the
height of the mountains of dirt, but the students will know they need to
keep filling the holes and digging the dirt as long as the ground is not
flat.

Purpose
As your students continue to deepen their knowledge of loops, they
will come across problems where a command needs to be repeated,
but it is unknown how many times it needs to be repeated. This is
where while loops come in. In today's lesson, students will develop a

beginner's understanding of condition-based loops and also expand
their knowledge of loops in general.

Agenda
Warm Up (10 min)

Introduction

Bridging Activity (15 min)

Unplugged Activity Using Paper Blocks
Preview of Online Puzzles

Main Activity (30 min)

Online Puzzles

Wrap Up (15 min)

Journaling

View on Code Studio

Objectives
Students will be able to:

Distinguish between loops that repeat a fixed
number of times and loops that repeat as long
as a condition is true.
Use a while loop to create programs that can
solve problems with unknown values.

Preparation
Play through the puzzles to find any

potential problem areas for your class.
Make sure every student has a journal.

Links
Heads Up! Please make a copy of any
documents you plan to share with students.

For the Teachers

Conditionals with Cards Sample
Program - Teacher Prep Guide

For the Students

Unplugged Blocks (Courses C-F) -
Manipulatives

Vocabulary
Condition - A statement that a program
checks to see if it is true or false. If true, an
action is taken. Otherwise, the action is
ignored.
Loop - The action of doing something over
and over again.
Repeat - Do something again
While Loop - A loop that continues to repeat
while a condition is true.

Make a Copy

Make a Copy

file://docs.code.org/spritelab/codestudio_repeat/
https://studio.code.org/s/coursed-2019/stage/12/puzzle/1/
https://drive.google.com/open?id=151s4_0NuDhuzprjPGlDubPZodeJQCEJElsvdkSSqzPM
https://docs.google.com/document/d/1cRPELQ28TZMJhc68-eYP1D26Uqzcyfx4RDYuThZJGLo/edit

Teaching Guide
Warm Up (10 min)

Introduction
Use "while" in a sentence in front of the students. Ask the students what the word "while" means. If you were to say "while
there is a hole, fill it with dirt" what would they do? How long would they do that?

When you use a word like “while”, you are relying on a condition to tell the computer how long the loop should run. A
condition is a statement that is tested and found to be true or false. In the case above, the condition is if there is a hole. It’s
only possible for there to be a hole or for there not to be a hole, thus the statement is only ever true or false.

Tell the students they will be learning about a new kind of loop. Previously, students only used loops to repeat a command a
certain number of times. Here, they won't always know how many times to repeat the command, however, they will know
when to stop or when to keep going. While loops allow the programmer to repeat a command as long as a condition is still

true. In the previous example, the condition is the existence of a hole.

If there's time, have the students discuss other times using a while loop would be useful. Examples include:

Running toward a ball while it is in front of you.
Filling a glass while it has space for more liquid.
Walk forward while there is a path ahead.

Bridging Activity (15 min)

This activity will help bring the unplugged concepts from "Conditionals With Cards" into the online world that the students
are moving into. It will also help bridge the concept of conditionals to a new type of loop- while loops. Choose one of the

following to do with your class:

Unplugged Activity Using Paper Blocks
Print and cut out 2-3 while / do blocks and blank action blocks from Unplugged Blocks (Courses C-F) - Manipulatives
and pull out a deck of cards. Ask the class to come up with a couple of conditionals to use with the deck of cards like they
did in "Conditionals with Cards." This time, instead of using the conditional in an if / else statement, they will be using it in a

while loop.

When the conditionals have been decided on as a class, fill in the blank part of the while block with the various card groups

that the kids came up with. Examples include "Even Numbered", "Red card", or "Diamonds". Fill in the action blocks with
the actions the students came up with. Make sure the students know the action blocks need to be directly inside the while

block. Line the blocks up sequentially so students can see how it runs as a program.

Below is an example.

Now shuffle the deck of cards and play "Conditionals with Cards" again. Flip through the deck card-by-card, reacting to
cards if a conditional has been made for it. To maintain authenticity for this while loop experience, make sure you hold up

the selected card for a good long while to give students time to react over several beats. Feel free to jump back to previous

https://curriculum.code.org/media/uploads/express17.png

cards to get the point across that once you have left a while loop, you continue moving forward and do not return to the

previous loop just because the conditions match again.

Preview of Online Puzzles
Pull up a puzzle from today's online Code Studio puzzles. We recommend Puzzle 6.

Ask the class what the farmer should do when she gets to the pile of dirt.
She should use a while loop to start removing the dirt.

Use the while there is a pile / do block. Ask the class what the farmer should do within the while loop.

The farmer should remove 1 . The farmer will keep "removing 1 dirt" while there is dirt. In other words, when there is

no dirt, remove 1 will no longer execute!

Fill in the rest of the code and press Run . Discuss with the class why this worked.

Main Activity (30 min)

Online Puzzles
While loops are not always a difficult concept for students to understand, but if you think your class might struggle with

these puzzles, we recommend pair programming. This will allow students to bounce ideas of each other before
implementing the code. Pair programming works to increase confidence and understanding with topics like while loops.

 Code Studio levels

Wrap Up (15 min)

Journaling

Practice  1  2  3 (click tabs to see student view)

While Loops with the Farmer  4 (click tabs to see student view)

Prediction  5 (click tabs to see student view)

Practice  6  7  8  9 (click tabs to see student view)

Challenge  10 (click tabs to see student view)

Practice  11  12 (click tabs to see student view)

Prediction  13 (click tabs to see student view)

Levels  Extra (click tabs to see student view)

Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any knowledge
they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today's lesson about?
How do you feel about today's lesson?
What is the difference between a while loop and a normal repeat loop?

Give an example of a puzzle where you would use a while loop, but not use a repeat loop. Can you give an example of

a puzzle where you would use a repeat loop, but not a while loop?

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

file://docs.code.org/spritelab/codestudio_repeat/
file://docs.code.org/spritelab/codestudio_repeat/
file://docs.code.org/spritelab/codestudio_repeat/
https://creativecommons.org/
file://code.org/contact

COURSE

D
Ch. 1 1 2 3 4 Ch. 2 5 6 Ch. 3 7 8 9 Ch. 4

10

11 12 13 14 Ch. 5 15 16 Ch. 6 17 Ch. 7 18

Lesson 13: Until Loops in Maze
Overview
In this lesson, students will learn about until loops. Students will build

programs that have the main character repeat actions until they reach

their desired stopping point.

Purpose
This set of puzzles will work to solidify and build on the knowledge of
loops by adding the until conditional. By pairing these concepts

together, students will be able to explore the potential for creating
complex and innovative programs.

Agenda
Warm Up (10 min)

Introduction
Preview of Online Puzzles

Main Activity (30 min)

Online Puzzles

Wrap Up (15 min)

Journaling

View on Code Studio

Objectives
Students will be able to:

Build programs with the understanding of
multiple strategies to implement conditionals.
Translate spoken language conditional
statements and loops into a program.

Preparation
Play through the puzzles to find any

potential problem areas for your class.
Make sure every student has a journal.

Vocabulary
Condition - A statement that a program
checks to see if it is true or false. If true, an
action is taken. Otherwise, the action is
ignored.
Conditionals - Statements that only run
under certain conditions.
Loop - The action of doing something over
and over again.
Repeat - Do something again
Until - A command that tells you to do
something only up to the point that something
becomes true.

https://studio.code.org/s/coursed-2019/stage/13/puzzle/1/

Teaching Guide
Warm Up (10 min)

Introduction
In this lesson, students will be creating loops that only run until a condition is true. Help the students understand how this

works by leading them in group activities and having them do an action until some condition is true. For example: Have
students touch their nose until you tell them to stop.

Preview of Online Puzzles
Pull up a puzzle from today's Code Studio puzzles. We recommend Puzzle 4.

Ask the class what the bird should repeat to get to the pig.
The bird should repeat move forward , turn right , move forward , and then turn left .

Ask the class what they can use to repeat this code.
The bird should repeat this pattern until it reaches the pig.

Fill in the rest of the code using the repeat until loop and press Run . Discuss with the class why this worked.

Main Activity (30 min)

Online Puzzles

 Code Studio levels

Bringing together concepts is not easy, but this set of lessons is meant to help students see the endless possibilities of
coding when using conditions. If students struggle at all with understanding the similarities or differences between while

loops and until loops, have them try to think of how they would use similar statements in their real lives.

Wrap Up (15 min)

Practice  1 (click tabs to see student view)

Repeat Until Statements  2 (click tabs to see student view)

Prediction  3 (click tabs to see student view)

Practice  4  5  6  7  8 (click tabs to see student view)

Challenge  9 (click tabs to see student view)

Practice  10 (click tabs to see student view)

Prediction  11 (click tabs to see student view)

file://docs.code.org/spritelab/gamelab_moveForward/
file://docs.code.org/spritelab/gamelab_moveForward/

Wrap Up (15 min)

Journaling
Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any knowledge
they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today's lesson about?
How do you feel about today's lesson?
What's the difference between an until loop and a while loop?

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
file://code.org/contact

COURSE

D
Ch. 1 1 2 3 4 Ch. 2 5 6 Ch. 3 7 8 9 Ch. 4

10

11 12 13 14 Ch. 5 15 16 Ch. 6 17 Ch. 7 18

Lesson 14: Harvesting with Conditionals
Overview
Students will practice while loops, until loops, and if / else

statements. All of these blocks use conditionals. By practicing all
three, students will learn to write complex and flexible code.

Purpose
Practicing the use of conditionals in different scenarios helps to
develop a student's understanding of what conditionals can do. In the
previous lesson, students only used conditionals to move around a
maze. In this lesson, students will use conditionals to help the farmer
know when to harvest crops. New patterns will emerge and students
will use creativity and logical thinking to determine the conditions
where code should be run and repeated.

Agenda
Warm Up (5 min)

Introduction

Main Activity (30 min)

Online Puzzles

Wrap Up (15 min)

Journaling

View on Code Studio

Objectives
Students will be able to:

Nest conditionals to analyze multiple value
conditions using if, else if, else logic.
Pair a loop and conditional statement
together.

Preparation
Play through online puzzles to find any

potential problem areas for your class.
Make sure every student has a journal.

Vocabulary
Condition - A statement that a program
checks to see if it is true or false. If true, an
action is taken. Otherwise, the action is
ignored.
Conditionals - Statements that only run
under certain conditions.
Loop - The action of doing something over
and over again.
Repeat - Do something again
While Loop - A loop that continues to repeat
while a condition is true.

https://studio.code.org/s/coursed-2019/stage/14/puzzle/1/

Teaching Guide
Warm Up (5 min)

Introduction
Students shouldn't need as much of an introduction to concepts today because they have had practice with them in the
previous lesson. Instead, you can share the story of the harvester.

The harvester is trying to pick crops like pumpkins, lettuce, and corn. However, the farmer has forgotten where she planted
these crops, so she needs to check each plant before harvesting.

Main Activity (30 min)

Online Puzzles
Students will continue to work with if / else statements, while loops, and until loops. These puzzles are a bit more

challenging, though, so encourage students to stick with them until they can describe what needs to happen for each
program.

 Code Studio levels

Wrap Up (15 min)

Journaling
Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any knowledge
they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today's lesson about?
How do you feel about today's lesson?
How can you see conditionals being useful in programs?
What if people only spoke in if/else statements? What would be some advantages and disadvantages of this?

The Harvester  1 (click tabs to see student view)

Practice  2  3  4  5  6  7 (click tabs to see student view)

Challenge  8 (click tabs to see student view)

Practice  9  10 (click tabs to see student view)

Prediction  11 (click tabs to see student view)

Levels  Extra  Extra (click tabs to see student view)

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
file://code.org/contact

COURSE

D
Ch. 1 1 2 3 4 Ch. 2 5 6 Ch. 3 7 8 9 Ch. 4

10

11 12 13 14 Ch. 5 15 16 Ch. 6 17 Ch. 7 18

Lesson 15: Binary Images
Overview
Though many people think of binary as strictly zeros and ones,
students will be introduced to the idea that information can be
represented in a variety of binary options. This lesson takes that
concept one step further as it illustrates how a computer can store
even more complex information (such as images and colors) in
binary, as well.

Purpose
In this lesson students will learn how information is represented in a
way such that a computer can interpret and store it. When learning
binary, students will have the opportunity to write code and share it
with peers to view as images. This can then be related back to how
computers read a program, translate it to binary, use the information
in some way, then reply back in a way humans can understand. For
example, when we type a sentence into a document then press
"save", a computer translates the sentence into binary, stores the
information, then posts a message indicating the document has been
stored.

Agenda
Warm Up (10 min)

Vocabulary
Introduction to Binary

Main Activity (20 min)

Binary Images - Worksheet

Wrap Up (10 min)

Flash Chat: What did we learn?
Journaling

Assessment (10 min)

Binary Images - Assessment

Extended Learning

View on Code Studio

Objectives
Students will be able to:

Identify methods for encoding images into
binary.
Relate images to a peer using binary
encoding.
Reproduce an image, based on binary code.

Preparation
Print one worksheet and assessment per

student.
Make sure every student has a journal.
(Optional)Gather groupings of items that

can show opposites for students to use when
coming up with their own binary encodings.

Links
Heads Up! Please make a copy of any
documents you plan to share with students.

For the Teachers

Binary Images - Assessment Answer Key

For the Students

Binary Images - Unplugged Video
(download)
Binary Images - Worksheet

Binary Images - Assessment

Vocabulary
Binary - A way of representing information
using only two options.
Binary Alphabet - The two options used in
your binary code.

Make a Copy

Make a Copy

Make a Copy

https://studio.code.org/s/coursed-2019/stage/15/puzzle/1/
https://drive.google.com/open?id=1P9poJc00iDA2NX7BtOpISDC0Oe_JcolZFPvfMJDUQwk
https://youtu.be/dzHlZV53VfY
http://videos.code.org/2014/C4-unplugged-binary.mp4
https://drive.google.com/open?id=1dvJzX56ZSQfTv97JYgfMeubbE4So03z5eBJjnfiJBp4
https://drive.google.com/open?id=1QCEYUamNYX7VT3dnrUkiAHqUK8I4CyuBLOHlAnXDZIE

Teaching Guide
Warm Up (10 min)

Vocabulary
This lesson has two new terms:

Binary - Say it with me: Bi-nare-ee

A way of representing information using only two options.

Binary Alphabet - Say it with me: Bi-nare-ee Al-fa-bet

The two options used in your binary code.

Introduction to Binary
What if we had a picture like this, where there's only two color options for each square, black or white.

How might we encode this so that someone else could recreate the picture without seeing it?

Some students might think back to the Graph Paper Programming lesson. While there could be a lot of similarities, let
them know that this is different enough that they should not use that lesson to guide this one

You may hear suggestions like: "Say 'white, black, white, black'."

"That's a great suggestion! Now I'm going to break you up into pairs. Work with your teammate to decide on a binary
alphabet."

Decide whether you want your pairs to share their encodings with the other groups ahead of time, and tell them if they will
be creating a key, or keeping their methods secret.

"Now, let's encode some images, just like a computer would!"

Main Activity (20 min)

Binary Images - Worksheet
Now it's the students' turn!

Activity Directions:

1. Divide students into pairs.
2. Have them choose an image with their partner.
3. Encourage them to figure out what their binary alphabet is going to be.
4. Have them encode their image using their new binary alphabet.
5. Instruct students to trade encodings with another team and see if they can figure out which picture the other worked on.
6. Choose a Level

Easy: Let the other team know what your encoding method was
Tough: Have the other team guess your encoding method.

Wrap Up (10 min)

https://levelbuilder.code.org/curriculum/course4/17/sample.png

Flash Chat: What did we learn?
What did we learn today?
What kind of binary alphabet did you create?
Can you think of how you could encode an image using only your fingers?
Do you think you could create a binary alphabet out of sounds?

Journaling
Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any knowledge
they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today's lesson about?
How do you feel about today's lesson?
What is a binary alphabet?
What kind of information can you share using binary?

Assessment (10 min)

Binary Images - Assessment
Pass out this assessment for students to do individually. Try to save time at the end to go over answers.

Extended Learning

Use these activities to enhance student learning. They can be used as outside of class activities or other enrichment.

Storing Color Images

If your class really gets the idea behind storing binary images, they may want to know how to do color images.
First, you'll need to discuss how color works using binary (as in Binary Baubles - Thinkersmith Lesson , page 21).
Then, introduce some images that use combinations of those colors

Encourage your students to come up with ways to code these color images.

Hexadecimal

Take the idea of color one step further to introduce hexadecimal color codes.

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://code.org/files/CSEDbinary.pdf
https://levelbuilder.code.org/curriculum/course4/17/color.png
http://www.mathsisfun.com/hexadecimal-decimal-colors.html
https://creativecommons.org/
file://code.org/contact

COURSE

D
Ch. 1 1 2 3 4 Ch. 2 5 6 Ch. 3 7 8 9 Ch. 4

10

11 12 13 14 Ch. 5 15 16 Ch. 6 17 Ch. 7 18

Lesson 16: Binary Images with Artist
Overview
This series of online lessons will have students learning to make
images using on and off.

Purpose
This will help reinforce the fact that computers can do a multitude of
things with 0s and 1s.

Agenda
Warm Up (15)
Main Activity (30)

Online Puzzles

Wrap Up (15)

Journaling

View on Code Studio

Objectives
Students will be able to:

Create pictures using unique combinations of
on and off
Identify repeated sequences and break long
codes up into smaller chunks that can be
looped
Utilize loops and binary code to recreate
provided images

Preparation
Play through the puzzles to find any

potential problem areas for your class.
Make sure every student has a journal.

Vocabulary
Binary - A way of representing information
using only two options.

https://studio.code.org/s/coursed-2019/stage/16/puzzle/1/

Teaching Guide
Warm Up (15)

To begin, it can be helpful to review the previous lesson, specifically different ways of using binary to indicate how to create
an image on a grid. This stage will translate the unplugged activity into a simple, independent online lesson.

Main Activity (30)

Online Puzzles

 Code Studio levels

Not all of these images are intuitive. Encourage students to click "Run" to see what happens, even if their code isn't
"finished" yet.

Wrap Up (15)

Journaling
Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any knowledge
they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today’s lesson about?
How did you feel during today’s lesson?
Did you like drawing on the 8x8 grid or the 16x16 grid better? Why?
Computers also store sounds using binary. Use your imagination to write down a possible way for that to work.

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

AP - Algorithms & Programming

Practice  1  2  3  4  5  6  7  8  9

(click tabs to see student view)

Prediction  10 (click tabs to see student view)

Free Play  11 (click tabs to see student view)

Levels  Extra  Extra (click tabs to see student view)

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
file://code.org/contact

COURSE

D
Ch. 1 1 2 3 4 Ch. 2 5 6 Ch. 3 7 8 9 Ch. 4

10

11 12 13 14 Ch. 5 15 16 Ch. 6 17 Ch. 7 18

Lesson 17: Digital Citizenship
Overview
In collaboration with Common Sense Education, this lesson helps
students learn to think critically about the user information that some
websites request or require. Students learn the difference between
private information and personal information, distinguishing what is
safe and unsafe to share online.

Students will also explore what it means to be responsible and
respectful to their offline and online communities as a step toward
learning how to be good digital citizens.

Purpose
As students spend more time on computers, they should be aware
that the internet is not always a safe space. In this lesson, students
are taught what information is safe to share and what information
should remain private. Students will create "superheros" and learn
what it means to be a Digital Citizen on the internet.

Agenda
Warm Up (15 min)

Vocabulary
Personal vs. Private Online

Main Activity (35 - 40 min)

Cubeecraft Superhero Templates - Manipulatives

Wrap Up (15 min)

Flash Chat: What did we learn?
Journaling

Assessment (5 min)
Extended Learning

View on Code Studio

Objectives
Students will be able to:

Compare and contrast their responsibilities to
their online and offline communities.
Understand what type of information can put
them at risk for identity theft and other scams.
Reflect on the characteristics that make
someone an upstanding citizen.
Devise resolutions to digital dilemmas.

Preparation
Print out a good selection of male and

female Cubeecraft Superhero Templates
- Manipulatives sheets for the whole class.

Print one Digital Citizenship -
Assessment for each student.

Links
Heads Up! Please make a copy of any
documents you plan to share with students.

For the Teachers

Digital Citizenship - Assessment Answer
Key

Common Sense Education - Website

For the Students

Cubeecraft Superhero Templates -
Manipulatives
Digital Citizenship - Assessment

Vocabulary
Digital Citizen - Someone who acts safely,
responsibly, and respectfully online.

Make a Copy

Make a Copy

https://studio.code.org/s/coursed-2019/stage/17/puzzle/1/
https://drive.google.com/open?id=1nR-4kIuw2kWhH9RH1FiwqKQBnISHF6njPsmEKnyd48A
https://www.commonsensemedia.org/educators/scope-and-sequence
http://www.cubeecraft.com/template.html
https://drive.google.com/open?id=1wJVjKuYSIQSWFygj8HS4ze_bZzan2h7LAjYVXW5HOdQ

 Lesson Tip

If you have access to a computer, feel free to navigate to a
site that might require this type of information, such as
Gmail or Facebook.

Teaching Guide
Warm Up (15 min)

Vocabulary
This lesson has one new and important phrase:

Digital Citizen - Say it with me: Dih-jih-tal Sit-i-zen

Someone who acts safely, responsibly, and respectfully online

Personal vs. Private Online
Ask "What types of information do you think are okay
to share publicly online or on a profile that others will
see?"
What are some examples of websites where you must
register in order to participate?

Write the names of the websites on the board.
What information is required and why do you think it is
required?

Information may be required to help distinguish one person from another.
The website may keep a record of who uses it.

Explain that it’s important to know that sharing some kinds of user information can put you and your family’s privacy at
risk.
Point out that you do not have to fill out fields on websites if they are not required.

Required fields are usually marked by an asterisk (*) or are highlighted in red.
Elementary school students should never register for sites that require private information without the approval and
guidance of a parent or guardian.
Here is an example of public versus private information:

SAFE - Personal Information UNSAFE - Private
Information

Your favorite food
Your opinion (though it shoud be done
respectfully)
First name (with permission)

Mother's maiden name
Social Security number
Your date of birth
Parents' credit card information
Phone number

Explain that some people will actively try to get you to share this kind of information so that they can use it to take over
your identity. Once a thief has taken someone’s identity, he or she can use that person’s name to get a driver’s license
or buy things, even if the person whose identity they stole isn’t old enough to do these things!

It’s often not until much later that people realize that their identity has been stolen. Identity thieves may also apply for
credit cards in other people’s names and run up big bills that they don’t pay off. Let students know that identity thieves
often target children and teens because they have a clean credit history and their parents are unlikely to be aware that
someone is taking on their child’s identity.

Now, let's see what we can do to keep ourselves safe.

Main Activity (35 - 40 min)

 Lesson Tip

For more in-depth modules, you can find additions to this
curriculum at the Common Sense Education - Website
page on Scope and Sequence.

 Lesson Tip

Flash Chat questions are intended to spark big-picture
thinking about how the lesson relates to the greater world
and the students' greater future. Use your knowledge of
your classroom to decide if you want to discuss these as a
class, in groups, or with an elbow partner.

Cubeecraft Superhero Templates - Manipulatives
Spiderman says "With great power comes great responsibility." This is also true when working or playing on the Internet.
The things we read, see, and hear online can lead people to have all sorts of feelings (e.g., happy, hurt, excited, angry,
curious).

What we do and say online can be powerful.
The Internet allows us to learn about anything, talk to people at any time (no matter where they are in the world), and
share our knowledge and creative projects with other people.

This also means that negative comments can spread very quickly to friends of all ages.
CREATE a three-column chart with the terms “Safe,” “Responsible,” and “Respectful” written at the top of each column.
Invite students to shout out words or phrases that describe how people can act safely, responsibly, and respectfully
online, and then write them in the appropriate column.

 Safe Responsible Respectful

Now, let's really make sure we understand how to be a Super Digital Citizen!

Directions:

Have each student grab a small selection of papercraft
sheets and encourage them to blend the pieces to
make their very own superhero.
Allow plenty of time for students to cut, glue, and color.
Give students a 5 minute warning to wrap up.
Separate students into groups of 2-4 and tell them to
use their superheroes and leftover supplies to stage a
scene in which one superhero sees an act of poor digital citizenship. Then have the superhero fix the problem … and
save the day!
Go around the room, having each student explain their scene to the class.

Wrap Up (15 min)

Flash Chat: What did we learn?
What is a good way to act responsibly online?
What kinds of personal information could you share
about yourself without showing your identity?
What kinds of superpowers or qualities did your digital
superheroes have in common?
What does Spider-Man’s motto “With great power
comes great responsibility” mean to you, as someone
who uses the internet?

Journaling
Having students write about what they learned, why it’s useful, and how they feel about it can help solidify any knowledge

https://cdo-curriculum.s3.amazonaws.com/media/uploads/CommonSenseEducationShort.png
https://www.commonsensemedia.org/educators/scope-and-sequence

they obtained today and build a review sheet for them to look to in the future.

Journal Prompts:

What was today's lesson about?
How do you feel about today's lesson?
What is a Digital Citizen?
What do you need to do to be a Digital Citizen?

Assessment (5 min)

Hand out Digital Citizenship - Assessment and allow students to complete the activity independently after the
instructions have been well explained.
This should feel familiar, thanks to the previous activities.

Extended Learning

Use these activities to enhance student learning. They can be used as outside of class activities or other enrichment.

Common Sense Education

Visit Common Sense Education - Website to learn more about how you can keep your students safe in this digital
age.

Standards Alignment
CSTA K-12 Computer Science Standards (2017)

NI - Networks & the Internet

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
file://code.org/contact

COURSE

D
Ch. 1 1 2 3 4 Ch. 2 5 6 Ch. 3 7 8 9 Ch. 4

10

11 12 13 14 Ch. 5 15 16 Ch. 6 17 Ch. 7 18

Lesson 18: Dance Party
Overview
In this lesson, students will program their own interactive dance party.
This activity requires sound as the tool was built to respond to music.

Purpose
This lesson introduces the core CS concepts of coding and event
programming (using blocks).

Agenda
Getting Started (5 minutes)

Setting the Stage

Activity (30-45 minutes)

Code Your Own Dance Party
Level by Level Support

Wrap Up (5 minutes)

Debrief

Assessment (2 minutes)

View on Code Studio

Objectives
Students will be able to:

Develop programs that respond to timed
events
Develop programs that respond to user input
Create dance animations with code

Preparation
Play through the puzzles to find any

potential problem areas for your class.
Make sure every student has a journal.
Consider the need for headphones. This

activity relies on sound.

Links
Heads Up! Please make a copy of any
documents you plan to share with students.

For the Teachers

Spotify Playlist (all ages)

For the Students

Dance Party Project Guide - Worksheet

Vocabulary
code - (v) to write code, or to write
instructions for a computer.
Event - An action that causes something to
happen.
Program - An algorithm that has been coded
into something that can be run by a machine.

Make a Copy

https://studio.code.org/s/coursed-2019/stage/18/puzzle/1/
https://open.spotify.com/playlist/2MiLztu5QGQERdEsZed81b?si=6cF0s1ETQf2vN_ea8B4fIw
https://docs.google.com/document/d/1F9dc129iWUWHmkU7fL23PQqxEK-wYstblbs-XitZ9FM/edit

 Teaching Tip

If you have time and would like to prepare your students
with an unplugged activity, consider delivering "Dance
Party: Unplugged" before this lesson. This brief lesson
introduces students to the idea of events triggering
different dance moves.

Teaching Guide
Getting Started (5 minutes)

Setting the Stage
Welcome students to class and very briefly introduce the day’s activity.

 Remarks

Today we're going to do something really creative.
What's your favorite way to be creative?

Encourage students to share the ways they express
creativity, such as with art, dance, music, writing.

Explain that today we're going to be creative with our
code. Just like choosing which type of colors of paint to
use, or what kinds of words you write with can be express creativity, choosing what code you write and how people interact
with it can be an opportunity to express your creativity too!

Get up and dance: Announce to the class that today we're going to see how we can combine coding with dancing in a
creative way. Ask your kids to floss, dab, or do a creative dance move of their own for 10 seconds to get them in the mood.
You can play a song from this Spotify Playlist (all ages) to help kick things off. Capture your class's moves on video.

Activity (30-45 minutes)

Code Your Own Dance Party
Music Filtering

This tutorial features songs from popular artists. To get a preview of the song list in this tutorial, check out this Spotify
Playlist. We are using radio-safe versions of all songs and for students under 13, we limit the music to this filtered list
Spotify Playlist (all ages) . If you would like to use the filtered list with older students, you can share this link with your
classroom.

 Code Studio levels

Practice  1  2  3  4  5  6  7  8  9  10

 11  12 (click tabs to see student view)

Free Play  13 (click tabs to see student view)

https://curriculum.code.org/hoc/unplugged/4/
https://open.spotify.com/playlist/2MiLztu5QGQERdEsZed81b?si=6cF0s1ETQf2vN_ea8B4fIw
https://curriculum.code.org/media/uploads/girls-flossing.2018-11-01-16_13_52_9Ot0bvX.gif
https://open.spotify.com/user/hadipartovi/playlist/4MSGjehzB7MqAK16SawOKD?si=BCF50JEwR7G7t1Jg-5k0rQ
https://open.spotify.com/playlist/2MiLztu5QGQERdEsZed81b?si=6cF0s1ETQf2vN_ea8B4fIw
https://studio.code.org/s/dance?songfilter=on


 Teaching Tip

By this point in the lesson you may notice that the
instructions are less prescriptive. Encourage students to
be creative and explore the new blocks that are
introduced. From this point on student code is not
checked for correctness in order to encourage
experimentation instead of solving a specific task.

Level by Level Support
Level 1

Drag the red make a new block from the toolbox on the left to the workspace on the right. Connect it inside the setup

block.
You have now written your first program. Make sure to press Run to see what happens. You should hear music and see
a character start to move in the display area.

Level 2

The green blocks are event blocks. These blocks start a new sequence of code and do not need to be connected inside
the setup block.

Connecting the purple block under the green event block should make the character perform a dance move after the
number of measures you indicate.

Level 3

Make sure to bring out a second green event block. You should have a after 4 measures block and a after 6 measures

block in your workspace. Both should have purple block connected underneath.

Level 4

Drag out the set background effect block.

This block can be connected inside setup , under an event block, or in both places!

Level 5

With the right code, you should see the dancer cycle through a different move every 2 measures.
Make sure there is a purple do forever block connected inside the every 2 measures block.

Make sure the do forever block is set to either (Next), (Previous), or (Random). Otherwise, the dancer will just perform

the set move repeatedly.

Level 6

Be careful to avoid putting the red make a new block inside the every 2 measures block. This will cause your program to

create multiple identical dancers at the same location.

Level 7

Many students will be familiar with the idea that you can make something seem to be further away by drawing it a
smaller scale. In this level, you'll create this effect by making the two dancers on the ends smaller.
It is important to make sure that the teal set block is placed somewhere in the program after the dancer has been

created. To solve this puzzle, place a set backup_dancer2 size to 50 block somewhere under the make a new robot called

backup_dancer2 block.

Level 8

As with the previous level, make sure to only use the set tint to (color) block after you have the made the dancer in your

program. For example, placing it as the first step in the setup area of your program will have no effect.

Level 9

Computer science allows to process input information into interesting types of output. In this level, students can explore
how a dancer's properties can be updated automatically based on the actual sound of the music.

Level 10-11

These levels are about making the dance interactive.
Try out the new when pressed event to make the

dancers respond to key presses.
You can use the arrow keys on your computer
keyboard or click the orange buttons under the display
area.
Note that the code students write in these levels
is not checked for correctness. This means they
will always pass the level, even if they do not change the program. Encourage students to determine for themselves

whether the code is doing what they expect before moving on.

Level 12

The top six blocks in this tool box look familiar but all work in a different way. Instead of creating or controlling one
dancer, they work with groups of dancers.
Like the previous levels, code is not checked for correctness here . Students should feel free to experiment with
groups in ways that are interesting to them.

Level 13

This last level is very open-ended. The tutorial itself is designed to give students ample time to keep working on their
own dance.
Encourage Sharing: If students have cell phones with a data plan they can quickly text a link to their projects to their
own phone or a friend's. If your school policy allows it, encourage them to do so here.
Encourage Creativity: Creativity is important throughout this lesson, but this is true here more than anywhere else!

Wrap Up (5 minutes)

Debrief
Pose a prompt that has multiple answers such as “What is something you enjoyed about today's activity?” or “What is
the connection between creativity and computer science?"

Assessment (2 minutes)

Ask students to add their “Whip Around” sticky notes or note cards to your "Computer Science" mind map on their way out
the door. Try to populate the board with lots of great ideas about what CS is and why it matters.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

https://creativecommons.org/
file://code.org/contact

	Course D
	Journaling
	Debugging

	Chapter 1: Sequencing
	Lesson 1: Graph Paper Programming
	Unplugged | Sequencing

	Lesson 2: Introduction to Online Puzzles
	Skill Building | Sequencing

	Lesson 3: Relay Programming
	Unplugged | Sequencing

	Lesson 4: Debugging with Laurel
	Skill Building | Sequencing

	Chapter Commentary
	Chapter 2: Events
	Lesson 5: Events in Bounce
	Skill Building | Events

	Lesson 6: Build a Star Wars Game
	Skill Building | Events

	Chapter Commentary
	Chapter 3: Loops
	Lesson 7: Loops in Ice Age
	Skill Building | Loops

	Lesson 8: Drawing Shapes with Loops
	Skill Building | Loops

	Lesson 9: Nested Loops in Maze
	Skill Building | Loops

	Chapter Commentary
	Chapter 4: Conditionals
	Lesson 10: Conditionals with Cards
	Unplugged | Conditionals

	Lesson 11: If/Else with Bee
	Skill Building | Conditionals

	Lesson 12: While Loops in Farmer
	Skill Building | Conditionals

	Lesson 13: Until Loops in Maze
	Skill Building | Conditionals

	Lesson 14: Harvesting with Conditionals
	Skill Building | Conditionals

	Chapter Commentary
	Chapter 5: Binary
	Lesson 15: Binary Images
	Unplugged | Binary

	Lesson 16: Binary Images with Artist
	Skill Building | Binary

	Chapter Commentary
	Chapter 6: Digital Citizenship
	Lesson 17: Digital Citizenship
	Unplugged | Online Safety

	Chapter Commentary
	Chapter 7: End of Course Project
	Lesson 18: Dance Party
	End of Course Project

	Chapter Commentary
	Lesson 1: Graph Paper Programming
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Preparation
	Links
	Agenda
	For the Teachers
	For the Students

	Vocabulary

	Teaching Guide
	Warm Up (10 min)
	Introduction to Graph Paper Programming

	Main Activity (30 min)
	Practice Together
	The Students' Turn

	Wrap Up (15 min)
	Journaling / Flash Chat
	Journal Prompts:

	Optional Assessment (10 min)
	Extended Learning
	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)

	Lesson 2: Introduction to Online Puzzles
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Preparation
	Purpose
	Links
	For the Students

	Agenda
	Vocabulary

	Teaching Guide
	Warm Up (10 min)
	Introduction
	Vocabulary

	Bridging Activities - Programming (10 min)
	Preview of Online Puzzles as a Class

	Main Activity (30 min)
	Online Puzzles
	Code Studio levels

	Wrap Up (10 min)
	Journaling
	Journal Prompts:

	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)

	Lesson 3: Relay Programming
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Preparation
	Agenda
	Links
	For the Teachers
	For the Students

	Vocabulary

	Teaching Guide
	Warm Up (15 min)
	Where did I go wrong?

	Main Activity (20 min)
	Relay Programming
	Tips to Help With Frustration
	Tips for Being Persistent

	Wrap Up (15 min)
	Journaling
	Journal Prompts:

	Extended Learning
	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)

	Lesson 4: Debugging with Laurel
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Preparation
	Agenda
	Links
	For the Students

	Vocabulary

	Teaching Guide
	Warm Up (15 min)
	Introduction

	Bridging Activities - Debugging (15 min)
	Unplugged Activity with Paper Blocks
	Preview of Online Puzzles as a Class

	Main Activity (30 min)
	Online Puzzles
	Code Studio levels

	Wrap Up (15 min)
	Journaling
	Journal Prompts:

	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)

	Lesson 5: Events in Bounce
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Preparation
	Links
	Agenda
	For the Teachers

	Vocabulary

	Teaching Guide
	Warm Up (10 min)
	Introduction

	Main Activity (30 min)
	Online Puzzles
	Code Studio levels

	Wrap Up (10 min)
	Assessment
	Journaling
	Journal Prompts:

	Extended Learning
	Take Me Out to the Ball Game

	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)

	Lesson 6: Build a Star Wars Game
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Preparation
	Vocabulary
	Agenda

	Teaching Guide
	Warm Up (15 min)
	Introduction

	Main Activity (30 min)
	Online Puzzles
	Code Studio levels

	Wrap Up (15 min)
	Journaling
	Journal Prompts:

	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)

	Lesson 7: Loops in Ice Age
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Preparation
	Agenda
	Links
	For the Students

	Vocabulary

	Teaching Guide
	Warm Up - The Unplugged Foundation (10 min)
	Repeat After Me

	Online Foundation: Preview Loops in Ice Age
	Main Activity (30 min)
	Online Puzzles
	Code Studio levels

	Wrap Up (5 - 10 min)
	Journaling
	Journal Prompts:

	Extended Learning
	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)

	Lesson 8: Drawing Shapes with Loops
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Preparation
	Agenda
	Vocabulary

	Teaching Guide
	Warm Up (15 min)
	Introduction

	Main Activity (30 min)
	Online Puzzles
	Code Studio levels

	Wrap Up (15 min)
	Journaling
	Journal Prompts:

	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)

	Lesson 9: Nested Loops in Maze
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Preparation
	Vocabulary
	Agenda

	Teaching Guide
	Warm Up (10 min)
	Introduction

	Main Activity (30 min)
	Online Puzzles
	Code Studio levels

	Wrap Up (15 min)
	Journaling
	Journal Prompts:

	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)

	Lesson 10: Conditionals with Cards
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Preparation
	Links
	Agenda
	For the Teachers
	For the Students

	Vocabulary

	Teaching Guide
	Warm Up (20 min)
	Vocabulary
	Introduction

	Main Activity (20 min)
	Conditionals with Cards Sample Program - Teacher Prep Guide

	Wrap Up (15 min)
	Flash Chat: What did we learn?
	Journaling
	Journal Prompts:

	Assessment (5 min)
	Extended Learning
	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)

	Lesson 11: If/Else with Bee
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Preparation
	Links
	Agenda
	For the Students

	Vocabulary

	Teaching Guide
	Warm Up (10 min)
	Introduction

	Bridging Activity - Conditionals (15 min)
	Unplugged Activity Using Paper Blocks
	Preview of Online Puzzles

	Main Activity (30 min)
	Online Puzzles
	Code Studio levels

	Wrap Up (15 min)
	Journaling
	Journal Prompts:

	Extended Learning
	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)

	Lesson 12: While Loops in Farmer
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Preparation
	Purpose
	Links
	For the Teachers

	Agenda
	For the Students

	Vocabulary

	Teaching Guide
	Warm Up (10 min)
	Introduction

	Bridging Activity (15 min)
	Unplugged Activity Using Paper Blocks
	Preview of Online Puzzles

	Main Activity (30 min)
	Online Puzzles
	Code Studio levels

	Wrap Up (15 min)
	Journaling
	Journal Prompts:

	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)

	Lesson 13: Until Loops in Maze
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Preparation
	Agenda
	Vocabulary

	Teaching Guide
	Warm Up (10 min)
	Introduction
	Preview of Online Puzzles

	Main Activity (30 min)
	Online Puzzles
	Code Studio levels

	Wrap Up (15 min)
	Journaling
	Journal Prompts:

	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)

	Lesson 14: Harvesting with Conditionals
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Preparation
	Vocabulary
	Agenda

	Teaching Guide
	Warm Up (5 min)
	Introduction

	Main Activity (30 min)
	Online Puzzles
	Code Studio levels

	Wrap Up (15 min)
	Journaling
	Journal Prompts:

	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)

	Lesson 15: Binary Images
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Preparation
	Links
	Agenda
	For the Teachers
	For the Students

	Vocabulary

	Teaching Guide
	Warm Up (10 min)
	Vocabulary
	Introduction to Binary

	Main Activity (20 min)
	Binary Images - Worksheet
	Activity Directions:

	Wrap Up (10 min)
	Flash Chat: What did we learn?
	Journaling
	Journal Prompts:

	Assessment (10 min)
	Binary Images - Assessment

	Extended Learning
	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)

	Lesson 16: Binary Images with Artist
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Agenda
	Preparation
	Vocabulary

	Teaching Guide
	Warm Up (15)
	Main Activity (30)
	Online Puzzles
	Code Studio levels

	Wrap Up (15)
	Journaling
	Journal Prompts:

	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)

	Lesson 17: Digital Citizenship
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Preparation
	Agenda
	Links
	For the Teachers
	For the Students

	Vocabulary

	Teaching Guide
	Warm Up (15 min)
	Vocabulary
	Personal vs. Private Online

	Main Activity (35 - 40 min)
	Cubeecraft Superhero Templates - Manipulatives

	Wrap Up (15 min)
	Flash Chat: What did we learn?
	Journaling
	Journal Prompts:

	Assessment (5 min)
	Extended Learning
	Standards Alignment
	CSTA K-12 Computer Science Standards (2017)

	Lesson 18: Dance Party
	Overview
	View on Code Studio

	Objectives
	Students will be able to:

	Purpose
	Agenda
	Preparation
	Links
	For the Teachers
	For the Students

	Vocabulary

	Teaching Guide
	Getting Started (5 minutes)
	Setting the Stage

	Activity (30-45 minutes)
	Code Your Own Dance Party
	Music Filtering

	Code Studio levels
	Level by Level Support
	Level 1
	Level 2
	Level 3
	Level 4
	Level 5
	Level 6
	Level 7
	Level 8
	Level 9
	Level 10-11
	Level 12
	Level 13

	Wrap Up (5 minutes)
	Debrief

	Assessment (2 minutes)

